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Abstract

The aim of this article is to use an Evolutionary Algorithm (EA) to solve the Aircraft
Landing Problem (ALP) in an Air Traffic Flow Management (ATFM) environ-
ment. The ALP addresses the function of generating optimal or near-optimal landing
sequences and time intervals between arrivals to provide runway capacity increase
and reduce air delay. Problems of the ALP type in a dynamic environment such as Air
Traffic Control (ATC) are considered Non-Polynomial (NP) complete. We simulated
three different models. In the first model, the algorithm was applied when there was
a schedule conflict between aircraft and separation measures where used to ensure
safety. On the second and third models,we scheduled the flights in hourly batches.
In the third model, a Maximum Constrained Shift (MCS) restriction was introduced
to simulate more realistic conditions. To test the effectiveness of our study, we used
actual data from Guarulhos International Airport. Results showed a capacity gain of
12 aircraft and a delay decrease of five percent when compared to the airport current
sequencing operations. Introducing this technique represents a shift from the current
arrival sequencemodel to a Trajectory-BasedOperations (TBO)model, balancing air
traffic demand with airspace capacity to ensure the most efficient use of the airspace
system.
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1 INTRODUCTION

Air delay is an existing problem in most airports around the world, bringing an increase in costs to the airlines and discomfort

to the passengers. Flights in Europe, due to airspace inefficiencies and capacity bottlenecks, are delayed 10 minutes on average

per flight4. One reason for air delay is the concentration that some airports face because of the air demand with long-haul and
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regional traffic, creating global hubs. The air traffic growth is concentrated with a few global cities. In Latin America, since

2007, 10 airports accounted for 45% of the air traffic operations1.

The airspace capacity is defined as the maximum number of aircraft per unit of time that can be safely accommodated in the

airspace given controller workload, pilot workload and airspace constraints. When the demand for airspace is exceeded, capacity

bottlenecks arises and causes delay3. Most congestion problems are fixed on the day of operations tactically using demand

management measures. One of the most common measures applied in the Air Traffic Flow Management (ATFM) programs

is to delay the flights on the ground (ground delay) to temporally spread the demand5. When the aircraft is airborne, other

measure is to implement Flow Sequencing Programs, suggesting alternative routes to decrease the number of aircraft holding

procedures.The adherence to its flight schedule is of primary importance in the efficient operation and profitability of an airline6.

The aim of this article is to use an Evolutionary Algorithm (EA) to solve the problem of Aircraft Landing Problem (ALP).

To test the effectiveness of the proposed model, we used actual data from Guarulhos International Airport (SBGR), the busi-

est airport by passenger and aircraft traffic in Brazil. We simulated three different models. In the first model, the algorithm was

applied when there was a schedule conflict between aircraft and separation measures where applied to ensure safety. On the

second and third model, scheduled the flights in hourly batches. In the third model, a Maximum Constrained Shift (MCS) was

used to simulate more realistic conditions. This present study is part of a broad research line on Air Traffic Flow Management,

specifically for building a traffic manager adviser (TMA). The TMA seeks to rearrange the arriving aircraft in an airport to the

available runways aiming to minimize delays and satisfy safety constraints, particularly the wake-vortex safety separation. Deci-

sion support systems (DSSs) based on optimization algorithms may help to exploit at most the capacity available in the terminal

maneuvering area (TMA) during operations3.

The remainder of this paper is organized as follows. In Section II, the arrival sequencing and scheduling problem and genetic

algorithm are discussed. Section III presents the framework and optimization model. In Section IV the outcomes are presented

and analyzed. Section V shows conclusions about the study.

2 LITERATURE REVIEW

2.1 The Arrival Sequencing and Scheduling Problem

To think about air congestion mitigation measures is an exercise of managing the aircraft flow in a determined space. Air Traffic

Flow Management (ATFM) is a function of Air Traffic Management (ATM) that aims to balance the demand for air traffic in

space and/or ensure the most efficient use of the airspace system7. Because of the constant air traffic growth in the last decades,

especially in high-density airports, congestion is always present, leading to lower operational efficiency and more flight delays.

Seeking to increase efficiency in the ATC system, a major reform is taking place in the world such as NextGen in the United



PAMPLONA ET AL 3

States, SESAR in Europe and SIRIUS in Brazil. One measure adopted in landing approaches to ensure flight safety and air traffic

management on arrival is the redistribution of aircraft arrivals to ease air congestion. This procedure is called Aircraft Landing

Problem (ALP)8.

ALP is based on two premises. First, safety regulations state that any two co-latitudinal aircraft must maintain a minimum

horizontal separation, which is a function of the types and of the relative positions of the two aircraft; Second, the landing

speed of a type of aircraft is generally different from that of another type of aircraft. Because of the variability of the above

parameters, the Landing Time Interval (LTI), which is the minimum permissible time interval between two successive landings,

is a variable quantity. Problems of the ALP type in a dynamic environment such as air traffic are considered NP-complete because

they require an exponential time to be solved9.

The ALP is a discrete optimization problem and can be formulated as a permutation-based optimization problem8.The

problem is governed by the following features6: a) For each n arrival flights, an Estimated Time of Arrival (ETA) to each of m

runways is available; b) All flights scheduled to land on a runway must observe specific separation rules based on the aircraft

types between the leading aircraft and the trailing aircraft. Three aircraft are specified: Heavy (H), Large (L), and Small (S). The

separations are given in terms of time separation determined at the runway threshold. A special case is when an airport only

allows certain types of aircraft on specified runways; and c) When a flight is scheduled to a runway, the delay as result of the

schedule is defined as the difference between the Scheduled Time of Arrival (STA) and the earliest ETA among the runways for

that flight.

In the last decades, many researchers have sought to solve the ALP. Several approaches were taken to its resolution, using

various types of mathematical models. Considering the objective functions of optimization, Hu and Di Paolo10; Hu and Chen9;

Hu and Chen11 sought to minimize the total delay in flight. Beasley, Krishnamoorthy, Sharaiha and Abramson12; Beasley,

Sonander and Havelock13; and Beasley, Krishnamoorthy, Sharaiha and Abramson14 used extra costs (extra costs generated by

early or late arrival). Hu and Chen9; Hu and Chen10; and Lei, Jun and Yanbo15 used the time required for all landings.

ALP is still one of the core problems in the research of ATC8. Delahaye, Alliot, Schoenauer and Farges20 show three utilization

of Genetic Algorithm (GAs) to Traffic Flow Management (TFM): (a) optimization of air space sectoring, (b) traffic assignment,

and (c) en-route conflict resolution. GAs are appropriate to TFMproblems because of their robustness on non-convex, non-linear,

or non-analytic domains21.

2.2 Genetic Algorithm

A genetic algorithm (GA) is a search variant in a stochastic beam in which the successor state is generated by combining two

related conditions that emerge. The analogy of the natural selection of mating and reproduction found in nature is used24. Genetic
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algorithms are a search method based on the principles of natural selection and genetics. In a GA, the decision variables in a

search problem are encoded in finite-length strings containing alphabets of a certain cardinally25.

The strings that are candidates for the solution of the search problem are called the chromosomes. The alphabets are called

genes. The values of the genes are called alleles25. GA has its beginning with a set of k individuals, which can also be called

the states, are generated probabilistically. This set is called the population. Each individual will be represented by a sequence of

a finite alphabet, being represented by the binary numbers 0 and 1, for computational reasons. Each population is represented

by the binary numbers 0 and 1, for computational reasons, and is ordered by the objective function of the problem to be solved.

The terminology used in GA is the fitness function24. The objective function, a mathematical model or a computer simulation,

has the purpose of being the parameter used to compare the presented solutions, thus allowing the implementation of natural

selection (distinguish good solutions from others).

A major factor of GA is the notion of population. Candidates for the solution will emerge from the population. Population

size, which is a parameter specified by the problem modeler, is one of the important factors affecting scalability, which can be

defined as the ability of a system to deal with a growing portion of the demands to be performed and the performance of a GA25.

In the present study, it was used the roulette wheel as a method of selection. In the present study, the one-point recombination

operator will be used. The basis of the method is that two individuals are selected according to selection techniques, and their

offspring result from recombination of the parents with a crossover probability (cp). The one-point recombination operator is

one of the most commonly used methods. A crossover site is selected at random over the string length, and the alleles on one

side of the site are exchanged between the individuals25.

Mutational operators are designed to add adversity to the population and ensure that it is possible to explore the entire sample

space in search of the best solution. Generally, low probabilities are used. In the present study, a mutation probability of 0.1 was

used. For replacement, once the new offspring solution is created through the use of crossover and mutation techniques, it is

necessary to introduce them into the parents’ sampling spectrum. In the present study, the delete-all technique was used. In this

technique, all members of the current population are replaced with the same number of chromosomes that have just been created.

Since GA is an efficient algorithm for non-constrained optimization, the penalty technique is used in this problem. Through

this method, a constrained optimization problem is transformed into an unconstrained problem by penalizing the infeasible

solution24.
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3 FRAMEWORK AND STUDIED MODELS

3.1 Studied models

First Come, First Served (FCFS) is a cornerstone of Air Traffic Control. In accordance of FAA26, FCFS is the algorithm used for

operational priority. In the FCFS algorithm, a queue is formed from which elements are extracted in a first-in, first-out manner.

Adapting to the air traffic control reality, as the aircraft approaches an airport for landing, a queue is formed and the aircraft are

sequenced. Usually, radar vectors and Standard Terminal Arrival (STAR) Procedures are used to form this queue independently

of the aircraft category and other characteristics. Because of pair-wise separations between aircraft, measures of decreasing

speed or performing holding procedures are requested by the ATC. The main consequence is an increase in airborne time and

inefficiency.

Although FCFS scheduling establishes a fair order based on predicted landing time, it ignores other useful information which

can efficiently use the capacity of the airport, reduce airborne delays and/or improve the service to airlines9. Evidence shows

that FCFS is not the best strategy to maximize the use of existing airport capacity and to reduce the average delay costs. The

problem is that FCFS policy mostly depends on the work experience of the controllers to make sorting of flight. For the approach

flight, controllers need to make a reasonable allocation of their runways and taxiways to make them land smoothly and reach

the apron safely27. For air traffic controllers, a simple way to solve the ALP is to schedule the arriving aircraft by the FCFS

algorithm and the predicted landing time maintaining the safety pair-wise separation between aircraft28.

Our GA models were implemented in all arrival flights in a single day at SBGR and comprehended 354 flights as shown in

Figure 1.

Some periods of the day are more congested than others. The Minimum Safe Separation (MSS) was used as a constraint in all

models. The main purpose of these separations is to maintain a safe distance between aircraft due to the wake vortex. In terms

of flight safety, the problem that may exist is excessive scrolling and yawing caused to the tracking aircraft, and may sometimes

exceed the controllability of the aircraft. The most serious scenario is when the aircraft in a takeoff or landing approach, flying at

low altitude, is subjected to the rolling and yaw forces, losing control of the airplane and causing accidents, which is aggravated

by flying at low speed. The recovery of an extreme event will be inherent in the altitude, maneuverability, and power of the

aircraft. In the present study, it was considered that all aircraft would be separated in pairs by seconds as described in Table 1.

The aircraft were divided into three categories:

• Heavy: all types of aircraft with a maximum take-off weight of 136,000 kg or more.

• Medium: all types of aircraft with a maximum take-off weight of less than 136,000 kg and over 7,000 kg.

• Light: all types of aircraft with the maximum take-off of 7,000 kg or less.
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FIGURE 1 Landing schedule for SBGR.

TABLE 1 Minimum Safe Separation for different pairs of aircraft types

Trailing Aircraft

Leading Aircraft Heavy Medium Light

Heavy 94 114 167
Medium 74 74 138
Light 74 74 98

We formulated our problem as a static case where all landing aircraft must be sequenced when all information is known in

advance3. Most literature formulated ALP as a static case where the data of all arriving flights is thought to be known ahead of

time and scheduling of every one of these flights will be conducted.14,13,12,18,29,30,31,32,33,34,35

3.1.1 First Model

In the first model, we aimed to minimize the air delay subject with the wake-vortex separation. The first objective function it

was used in the present study was:

Minimize:
N
∑

i=1
DTi =

N
∑

i=1
(ETAi − STAi), (1)
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Subject to:

ETAi − ETAj ≥ MSSij (2)

where:

DTi: Delay Time of aircrafti;

ETAi: Estimated Arrival Time of aircrafti;

STAi: Scheduled Arrival Time of aircrafti;

MSSij :Minimum Safe Separation of aircrafti and aircraftj .

3.1.2 Second and Third Models

In the second and third models all flights were rescheduled in batches. Each batch comprehended a one-hour period, scheduling

the arrival aircraft within approximately 40 to 200 nautical miles from the airport. For example, one hour bank is composed of

the aircraft are in the radar range for landing in the next hour. As proposed by Hansen6 a flight vector identifies the flights in the

current aircraft bank. For example, in the first hour of the day (0100), the flight bank is composed of 12 aircraft. For confidential

reason, the airline and the respective flight numbers were removed. A vector also describes the associated aircraft types, under

their wake-vortex classification. Another vector identifies the Estimated Time of Arrival (ETA) for the flights in seconds on the

current aircraft bank.

• FLIGHT BANK 0100 = [’AC_01’, ’AC_02’, ’AC_03’, ’AC_04’, ’AC_05’, ’AC_06’, ’AC_07’, ’AC_08’, ’AC_09’, ’AC_10’,

’AC_011’, ’AC_12’, ].

• AIRCRAFT TYPE 0100 = [M, M, H, M, H, H, M, M, H, H, M,H].

• ETA 0100 = [3600, 3600, 3900, 3900, 4100, 4200, 4200, 4600, 4600, 5000, 5800].

The second model presented no constrained shift. Due to practical reasons where an aircraft cannot keep longer periods

waiting for landing or cannot advance for so long in the scheduled landing time, a new restriction has been added (Third Model)

that introduces a Maximum Constrained Shift (MCS) for aircraft landing. Because of aircraft and approach limitations, each

aircraft will present a maximum position shifting of five aircraft when compared to the original scheduled order to land.

We added the following restriction to the third model:

MCSi = IPi − FPi, 0 ≤ 5 (3)

where:

MCSi: Maximum Constrained Shift of aircrafti;
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IPi: Initial Position of aircrafti;

FPi: Final Position of aircrafti.

Figure 2 shows the application of the complete model in the studied problem. The proposed optimization was implemented

in the Guarulhos International Airport (SBGR/ICAO). It is the largest airport in Brazil, with an annual movement estimated of

40 million passengers per year. SBGR has two runways, and it was considered that runway 09R will be used only for landing.

Actual data provided by the Brazilian Aviation Agency (ANAC) through the Transport Time Schedule (HOTRAN) was used in

the implementation process of the algorithm.

FIGURE 2 Optimal Scheduling.

4 RESULTS

The main purpose of our study was to effectively diminish flight delay in the Final Approach Procedure segment of a flight. A

4D-compliant framework was used where the aircraft must meet the three axes (latitude, longitude, and altitude) plus fly-by at

a determined time an aeronautical fix.

Since the models are based on the wake-vortex separation (Equation 2) for better rearrangement, due to the aircraft mix

presented at Guarulhos Airport, some schedule conflicts (Model 1) and batches (Model 2 and 3) were not selected. Model 1
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presented 110 scheduled conflicts and only 25 were selected for model application. From the 24 batches presented on Model 2

and 3, seven batches were not selected due to a homogeneous fleet presented. The aircraft mix is directly linked to the airlines

and the presented demand and their business model.

All the simulations were conducted with a Intel Core i7 5500U CPU 2.4GHz.

Even with the low rate of Model 1 usage (23%) for the resolution of time conflicts, Model 1 presented a decrease of 4% on

air traffic delay. Considering the most common aircraft pairs (Medium-Medium) presented at the airport and its time separation

Table 1 , it represents a capacity gain of 11 operations in a single day.

Table 2 shows the results for the second and third model. The columns represent the objective function sum in each batch

for the First Come First Service Model, Model 2 and Model 3.

TABLE 2 Results for FCFS, Model 2 and Model 3

∑

Obj. Function FCFS GA_II GA_III

batch 0 638 598 598
batch 1 282 242 242
batch 2 188 158 158
batch 3 114 74 114
batch 6 1558 1468 1710
batch 7 1730 1680 1710
batch 8 2062 1972 2002
batch 9 1918 1858 1888
batch 10 1334 1304 1324
batch 12 1458 1418 1458
batch 16 1686 1616 1626
batch 17 1830 1730 1760
batch 19 2318 2268 2318
batch 20 1898 1848 1878
batch 21 1626 1586 1616
batch 23 786 746 776

Batches 4, 5, 11, 13, 14, 15, 18 and 22 were not optimized due aircraft mix homogeneity. FCFS denotes First Come First Service.
GA_II denotes the Genetic Algorithm used in the Second Model. GA_III denotes the Genetic Algorithm used in the Third
Model. Best performance in bold

The main objective was to minimize the runway total operation time. We noticed that depending on the sequence size and

aircraft mix the objective function tend to decrease. It represents an increase in the runway capacity. Model 2 increased the daily

capacity in 12 aircraft. When MCS measures were applied (Model 3), the capacity was increased in 6 aircraft.

The objective of the study was to solve the ALP in a fast and secure (feasible solutions) way. The GA algorithm provided

fast and good solutions, adapting to the Air Traffic Control reality where there is a constant need for fast responses (bellow one



10 PAMPLONA ET AL

second). The best results appeared when the congestion levels increased. Genetic Search algorithms proved to be reliable to the

TMA task of scheduling aircraft for arriving banks of aircraft. It provided a real-time controller support.

5 CONCLUSION

Delay is a reality in the busiest airports around the world. One of the reasons for its appearance is when the demand of an airspace

is exceeded. The main consequence of this inefficiency is the increase in the airlines costs and discomfort for the passengers.

Most the congestion problems are fixed on the day of operations in a tactical manner, during operations through tactical

actions. The aim of this article is to use an Evolutionary Algorithm (EA) for arriving flow management to solve the Aircraft

Landing Problem.

The results showed the importance of the FCFS algorithm and the necessity of operational constraints in themodel tominimize

delay. The model and the GA algorithm proved to be quick and efficient.

However, some limitations can be pointed out in the present study. The present model does not consider, if there will be space

for the parking of aircraft at the airport, only considering the use of the runway. Likewise, the costs of delays differ according

to the aircraft model. Finally, in the model, a priority level for sequencing is not used that uses the airport concentration of a

certain airline. This is a next step to extend the studied model.
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