https://doi.org/10.1029/2021JA030071
Heelis, R. A., J. K. Lowell, and and R. W. Spiro (1982), A model of the high latitude ionosphere convection pattern, J. Geophys. Res. ,87 , 6339–6345, doi:10.1029/JA087iA08p06339.
Heelis, R.A., Stoneback, R.A., Perdue, M.D. et al. Ion Velocity Measurements for the Ionospheric Connections Explorer, Space Sci Rev 212, 615–629 (2017). https://doi.org/10.1007/s11214-017-0383-3.
Huang, C.-S., J. C. Foster, and M. C. Kelley (2005), Long-duration penetration of the interplanetary electric field to the low-latitude ionosphere during the main phase of magnetic storms, J. Geophys. Res., 110 , A11309, doi:10.1029/2005JA011202.
Huang, C.‐S. (2019), Long‐lasting penetration electric fields during geomagnetic storms: Observations and mechanisms. Journal of Geophysical Research: Space Physics , 124. doi:10.1029/2019JA026793.
Immel et al., (2018), The Ionospheric connection explorer mission: Mission Goals and design, Space Sci. Rev., doi:/10.1007/s11214-017-0449-2.
Kelley, M. C., J. J. Makela, J. L. Chau, and M. J. Nicolls (2003), Penetration of the solar wind electric field into the magnetosphere/ionosphere system, Geophys. Res. Lett., 30 (4), 1158, doi:10.1029/2002GL016321.
Kikuchi, T., K. K. Hashimoto, and K. Nozaki (2008), Penetration of magnetospheric electric fields to the equator during a geomagnetic storm, J. Geophys. Res ., 113, A06214, doi:10.1029/2007JA012628.
Lin, D., Wang, W., Scales, W. A., Pham, K., Liu, J., Zhang, B., Maimaiti, M. (2019). Saps in the 17 March 2013 storm event: Initial results from the coupled magnetosphere-ionosphere-thermosphere model. Journal of Geophysical Research: Space Physics, 124(7), 6212–6225. doi: 10.1029/2019JA026698.
Lu, G., et al. (2002), Solar wind effects on ionospheric convection: A review, J. Atmos. Sol. Terr. Phys.64 (2), 145– 157.doi: 10.1016/S1364-6826(01)00080-3
Lu, G., L. Goncharenko, M. J. Nicolls, A. Maute, A. Coster, and L. J. Paxton (2012), Ionospheric and thermospheric variations associated with prompt penetration electric fields, J. Geophys. Res., 117, A08312, doi:10.1029/2012JA017769.
Maruyama, N., A. D. Richmond, T. J. Fuller-Rowell, M. V. Codrescu, S. Sazykin, F. R. Toffoletto, R. W. Spiro, and G. H. Millward (2005), Interaction between direct penetration and disturbance dynamo electric fields in the storm-time equatorial ionosphere, Geophys. Res. Lett. , 32 , L17105, doi:10.1029/2005GL023763.
Merkin, V., & Lyon, J. (2010). Effects of the low-latitude ionospheric boundary condition on the global magnetosphere. Journal of Geophysical Research: Space Physics, 115(A10). doi: 10.1029/2010JA015461.
Nishida, A. (1968), Coherence of geomagnetic DP 2 fluctuations with interplanetary magnetic variations, J. Geophys. Res. , 73(17), 5549–5559, doi: 10.1029/JA073i017p05549.
Richmond, A., Ridley, E., & Roble, R. (1992). A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophysical Research Letters, 19(6), 601–604. doi: 10.1029/92GL00401.
Shepherd, S., Greenwald, R., & Ruohoniemi, J. (2002). Cross polar cap potentials measured with Super Dual Auroral Radar Network during quasi-steady solar wind and interplanetary magnetic field conditions.Journal of Geophysical Research , 107 (A7), 1094. https://doi.org/10.1029/2001JA000152.
Toffoletto, F., Sazykin, S., Spiro, R., & Wolf, R. (2003). Inner magnetospheric mod- eling with the rice convection model. Space Science Reviews, 107(1-2), 175– 196. doi: 10.1023/A:1025532008047.
Wang, W., J. Lei, A. G. Burns, M. Wiltberger, A. D. Richmond, S. C. Solomon, T. L. Killeen, E. R. Talaat, and D. N. Anderson (2008), Ionospheric electric field variations during a geomagnetic storm simulated by a coupled magnetosphere ionosphere thermosphere (CMIT) model, Geophys. Res. Lett. , 35 , L18105, doi:10.1029/2008GL035155.
Weimer, D. R. (2005), Improved ionospheric electrodynamic models and application to calculating Joule heating rates, J. Geophys. Res.  Space Physics , 110 (A5), 1–21, doi:10.1029/2004JA010884.
Zhang, B., Sorathia, K. A., Lyon, J. G., Merkin, V. G., Garretson, J. S., & Wilt- berger, M. (2019). GAMERA: A three-dimensional finite-volume MHD solver for non-orthogonal curvilinear geometries. The Astrophysical Journal Supplement Series, 244(1), 20. doi: 10.3847/1538-4365/ab3a4c.