References
Adams, W. W., & Demmig-Adams, B. (1994). Carotenoid composition and
down regulation of photosystem II in three conifer species during the
winter. Physiologia Plantarum, 92 (3), 451-458.
doi:10.1111/j.1399-3054.1994.tb08835.x
Bartoń, K. (2018). MuMIn: multi-model inference. In: R package (Version
1.42.1).
Berry, J., & Björkman, O. (1980). Photosynthetic response and
adaptation to temperature in higher plants. Annual Review of Plant
Physiology, 31 (1), 491-543. doi:10.1146/annurev.pp.31.060180.002423
Colombo, S. J., & Timmer, V. R. (1992). Limits of tolerance to high
temperatures causing direct and indirect damage to black spruce.Tree Physiology, 11 (1), 95-104. doi:10.1093/treephys/11.1.95
Coumou, D., & Robinson, A. (2013). Historic and future increase in the
global land area affected by monthly heat extremes. Environmental
Research Letters, 8 (3). doi:10.1088/1748-9326/8/3/034018
Cseh, Z., Vianelli, A., Rajagopal, S., Krumova, S., Kovács, L., Papp,
E., . . . Garab, G. (2005). Thermo-optically induced reorganizations in
the main light harvesting antenna of plants. I. Non-Arrhenius type of
temperature dependence and linear light-intensity dependencies.Photosynth Res, 86 (1-2), 263-273. doi:10.1007/s11120-005-5104-1
De la Haba, P., De la Mata, L., Molina, E., & Agüera, E. (2014). High
temperature promotes early senescence in primary leaves of sunflower
(Helianthus annuusL.) plants. Canadian Journal of Plant Science,
94 (4), 659-669. doi:10.4141/cjps2013-276
Dick, C. W., Lewis, S. L., Maslin, M., & Bermingham, E. (2013). Neogene
origins and implied warmth tolerance of Amazon tree species.Ecology and Evolution, 3 (1), 162-169. doi:10.1002/ece3.441
Doughty, C. E., & Goulden, M. L. (2008). Are tropical forests near a
high temperature threshold? Journal of Geophysical Research:
Biogeosciences, 113 (G1). doi:10.1029/2007jg000632
Drake, J. E., Tjoelker, M. G., Vårhammar, A., Medlyn, Belinda E., Reich,
P. B., Leigh, A., . . . Barton, C. V. M. (2018). Trees tolerate an
extreme heatwave via sustained transpirational cooling and increased
leaf thermal tolerance. Global Change Biology, 24 (6), 2390-2402.
doi:10.1111/gcb.14037
Essemine, J., Xiao, Y., Qu, M., Mi, H., & Zhu, X.-G. (2017). Cyclic
electron flow may provide some protection against PSII photoinhibition
in rice ( Oryza sativa L.) leaves under heat stress. J Plant
Physiol, 211 , 138-146. doi:10.1016/j.jplph.2017.01.007
Fauset, S., Freitas, H. C., Galbraith, D. R., Sullivan, M. J. P., Aidar,
M. P. M., Joly, C. A., . . . Gloor, M. U. (2018). Differences in leaf
thermoregulation and water use strategies between three co-occurring
Atlantic forest tree species. Plant Cell Environ, 41 (7),
1618-1631. doi:10.1111/pce.13208
Figueroa, F. L. (2003). Relations between electron transport rates
determined by pulse amplitude modulated chlorophyll fluorescence and
oxygen evolution in macroalgae under different light conditions.Photosynth Res, 75 (3), 259-275. doi:10.1023/a:1023936313544
Fu, R., Yin, L., Li, W., Arias, P. A., Dickinson, R. E., Huang, L., . .
. Myneni, R. B. (2013). Increased dry-season length over southern
Amazonia in recent decades and its implication for future climate
projection. Proc Natl Acad Sci U S A, 110 (45), 18110-18115.
doi:10.1073/pnas.1302584110
Gifford, D. J., & Taleisnik, E. (1994). Heat-shock response of Pinus
and Picea seedlings. Tree Physiology, 14 (1), 103-110.
doi:10.1093/treephys/14.1.103
Gloor, E., Wilson, C., Chipperfield, M. P., Chevallier, F., Buermann,
W., Boesch, H., . . . Sullivan, M. J. P. (2018). Tropical land carbon
cycle responses to 2015/16 El Niño as recorded by atmospheric greenhouse
gas and remote sensing data. Philosophical Transactions of the
Royal Society B: Biological Sciences, 373 (1760).
doi:10.1098/rstb.2017.0302
Harris, G. C., & Heber, U. (1993). Effects of Anaerobiosis on
Chlorophyll Fluorescence Yield in Spinach (Spinacia oleracea) Leaf
Discs. Plant Physiol, 101 (4), 1169-1173.
doi:10.1104/pp.101.4.1169
Holm, J. K., Várkonyi, Z., Kovács, L., Posselt, D., & Garab, G. (2005).
Thermo-optically induced reorganizations in the main light harvesting
antenna of plants. II. Indications for the role of LHCII-only
macrodomains in thylakoids. Photosynth Res, 86 (1-2), 275-282.
doi:10.1007/s11120-005-5302-x
Jiménez-Muñoz, J. C., Sobrino, J. A., Mattar, C., & Malhi, Y. (2013).
Spatial and temporal patterns of the recent warming of the Amazon
forest. Journal of Geophysical Research: Atmospheres, 118 (11),
5204-5215. doi:10.1002/jgrd.50456
Kitajima, M., & Butler, W. L. (1975). Quenching of chlorophyll
fluorescence and primary photochemistry in chloroplasts by
dibromothymoquinone. Biochimica et Biophysica Acta (BBA) -
Bioenergetics, 376 (1), 105-115. doi:10.1016/0005-2728(75)90209-1
Kouřil, R., Lazár, D., Ilík, P., Skotnica, J., Krchňák, P., & Nauš, J.
(2004). High-temperature induced chlorophyll fluorescence rise in plants
at 40–50 °C: Experimental and theoretical approach. Photosynth
Res, 81 (1), 49-66. doi:10.1023/B:PRES.0000028391.70533.eb
Krause, G. H., Cheesman, A. W., Winter, K., Krause, B., & Virgo, A.
(2013). Thermal tolerance, net CO2 exchange and growth of a tropical
tree species, Ficus insipida, cultivated at elevated daytime and
nighttime temperatures. J Plant Physiol, 170 (9), 822-827.
doi:10.1016/j.jplph.2013.01.005
Krause, G. H., & Weis, E. (1991). Chlorophyll Fluorescence and
Photosynthesis: The Basics. Annual Review of Plant Physiology and
Plant Molecular Biology, 42 (1), 313-349.
doi:10.1146/annurev.pp.42.060191.001525
Krause, G. H., Winter, K., Krause, B., Jahns, P., García, M., Aranda,
J., & Virgo, A. (2010). High-temperature tolerance of a tropical tree,
Ficus insipida: methodological reassessment and climate change
considerations. Functional Plant Biology, 37 (9), 890-900.
doi:10.1071/fp10034
Lípová, L., Krchňák, P., Komenda, J., & Ilík, P. (2010). Heat-induced
disassembly and degradation of chlorophyll-containing protein complexes
in vivo. Biochimica et Biophysica Acta (BBA) - Bioenergetics,
1797 (1), 63-70. doi:10.1016/j.bbabio.2009.08.001
Lloyd, J., & Farquhar, G. D. (2008). Effects of rising temperatures and
[CO2] on the physiology of tropical forest trees. Philos Trans
R Soc Lond B Biol Sci, 363 (1498), 1811-1817. doi:10.1098/rstb.2007.0032
Marengo, J. A., Nobre, C. A., Tomasella, J., Cardoso, M. F., & Oyama,
M. D. (2008). Hydro-climate and ecological behaviour of the drought of
Amazonia in 2005. Philos Trans R Soc Lond B Biol Sci, 363 (1498),
1773-1778. doi:10.1098/rstb.2007.0015
Marimon, B. S., Marimon-Junior, B. H., Feldpausch, T. R.,
Oliveira-Santos, C., Mews, H. A., Lopez-Gonzalez, G., . . . Phillips, O.
L. (2014). Disequilibrium and hyperdynamic tree turnover at the
forest-cerrado transition zone in southern Amazonia. Plant Ecology
& Diversity, 7 (1-2), 281-292. doi:10.1080/17550874.2013.818072
Mau, A., Reed, S., Wood, T., & Cavaleri, M. (2018). Temperate and
Tropical Forest Canopies are Already Functioning beyond Their Thermal
Thresholds for Photosynthesis. Forests, 9 (1).
doi:10.3390/f9010047
Mews, H. A., Marimon, B. S., Pinto, J. R. R., & Silvério, D. V. (2011).
Dinâmica estrutural da comunidade lenhosa em floresta estacional
semidecidual na transição Cerrado-floresta Amazônica, Mato Grosso,
Brasil. Acta Botanica Brasilica, 25 (4), 845-857.
doi:10.1590/s0102-33062011000400011
Morandi, P. S., Marimon, B. S., Eisenlohr, P. V., Marimon-Junior, B. H.,
Oliveira-Santos, C., Feldpausch, T. R., . . . Phillips, O. L. (2016).
Patterns of tree species composition at watershed-scale in the Amazon
‘arc of deforestation’: implications for conservation.Environmental Conservation, 43 (4), 317-326.
doi:10.1017/s0376892916000278
O’Sullivan, O. S., Heskel, M. A., Reich, P. B., Tjoelker, M. G.,
Weerasinghe, L. K., Penillard, A., . . . Atkin, O. K. (2017). Thermal
limits of leaf metabolism across biomes. Global Change Biology,
23 (1), 209-223. doi:10.1111/gcb.13477
Osborn, T. J., & Jones, P. D. (2014). The CRUTEM4 land-surface air
temperature data set: construction, previous versions and dissemination
via Google Earth. Earth System Science Data, 6 (1), 61-68.
doi:10.5194/essd-6-61-2014
Pau, S., Detto, M., Kim, Y., & Still, C. J. (2018). Tropical forest
temperature thresholds for gross primary productivity. Ecosphere,
9 (7). doi:10.1002/ecs2.2311
Pinheiro, J., Bates, D., DebRoy, S., and, D. S., & R Core Team. (2018).
nlme: Linear and Nonlinear Mixed Effects Models. In: R package (Version
3.1-137). Retrieved from https://CRAN.R-project.org/package=nlme
R Core Team. (2018). R Foundation for Statistical Computing. Vienna,
Austria. Retrieved from https://www.R-project.org/
Sastry, A., & Barua, D. (2017). Leaf thermotolerance in tropical trees
from a seasonally dry climate varies along the slow-fast resource
acquisition spectrum. Scientific Reports, 7 (1), 11246.
doi:10.1038/s41598-017-11343-5
Slot, M., Garcia, M. N., & Winter, K. (2016). Temperature response of
CO2 exchange in three tropical tree species. Functional Plant
Biology, 43 (5), 468-478. doi:10.1071/fp15320
Slot, M., Krause, G. H., Krause, B., Hernández, G. G., & Winter, K.
(2018). Photosynthetic heat tolerance of shade and sun leaves of three
tropical tree species. Photosynth Res, 141 (1), 119-130.
doi:10.1007/s11120-018-0563-3
Slot, M., & Winter, K. (2016). The effects of rising temperature on the
ecophysiology of Tropical forest trees. Tree Physiol, 6 , 385-412.
doi:10.1007/978-3-319-27422-5_18
Sun, Y., Geng, Q., Du, Y., Yang, X., & Zhai, H. (2017). Induction of
cyclic electron flow around photosystem I during heat stress in grape
leaves. Plant Science, 256 , 65-71.
doi:10.1016/j.plantsci.2016.12.004
Sunday, J. M., Bates, A. E., Kearney, M. R., Colwell, R. K., Dulvy, N.
K., Longino, J. T., & Huey, R. B. (2014). Thermal-safety margins and
the necessity of thermoregulatory behavior across latitude and
elevation. Proc Natl Acad Sci U S A, 111 (15), 5610-5615.
doi:10.1073/pnas.1316145111
Tan, Z.-H., Zeng, J., Zhang, Y.-J., Slot, M., Gamo, M., Hirano, T., . .
. Restrepo-Coupe, N. (2017). Optimum air temperature for tropical forest
photosynthesis: mechanisms involved and implications for climate
warming. Environmental Research Letters, 12 (5).
doi:10.1088/1748-9326/aa6f97
Tang, Y., Wen, X., Lu, Q., Yang, Z., Cheng, Z., & Lu, C. (2007). Heat
stress induces an aggregation of the light-harvesting complex of
photosystem II in spinach plants. Plant Physiol, 143 (2), 629-638.
doi:10.1104/pp.106.090712
Tribuzy, E. S. (2005). Variations canopy leaf temperature and effects on
CO2 assimalation rate at Central Amazon.
doi:10.11606/T.91.2005.tde-15072005-144011
Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. (2007). Heat tolerance
in plants: An overview. Environmental and Experimental Botany,
61 (3), 199-223. doi:10.1016/j.envexpbot.2007.05.011
Way, D. A. (2013). Will rising CO2 and temperatures exacerbate the
vulnerability of trees to drought? Tree Physiology, 33 (8),
775-778. doi:10.1093/treephys/tpt069
Xia, Y., Ritz, C., Baty, F., Streibig, J. C., & Gerhard, D. (2015).
Dose-response analysis using R. PLoS One, 10 (12), e0146021.
doi:10.1371/journal.pone.0146021
Yao, Y., Luo, Y., Huang, J., & Zhao, Z. (2013). Comparison of monthly
temperature extremes simulated by CMIP3 and CMIP5 models. Journal
of Climate, 26 (19), 7692-7707. doi:10.1175/jcli-d-12-00560.1
Zhang, Y., Liu, C., & Yang, C. (2011). Analysis of heat-induced
disassembly process of three different monomeric forms of the major
light-harvesting chlorophyll a/b complex of photosystem II.Photosynth Res, 111 (1-2), 103-111. doi:10.1007/s11120-011-9677-6
Zhu, L., Bloomfield, K. J., Hocart, C. H., Egerton, J. J. G.,
O’Sullivan, O. S., Penillard, A., . . . Atkin, O. K. (2018). Plasticity
of photosynthetic heat tolerance in plants adapted to thermally
contrasting biomes. Plant Cell Environ, 41 (6), 1251-1262.
doi:10.1111/pce.13133
Table 1: Mean photosynthetic thermal tolerance for adult evergreen trees
across tropical forest sites.