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Abstract 10 

Scientific programming has become increasingly essential for manipulating, visualizing, and interpreting the large 11 

volumes of data acquired in earth science research. Yet few domain-specific instructional approaches have been 12 

documented and assessed for their effectiveness in equipping geoscience undergraduate students with coding and 13 

data literacy skills. Here we report on an evidence-based redesign of an introductory Python programming course, 14 

taught fully remotely in 2020 in the School of Oceanography at the University of Washington. Key components 15 

included a flipped structure, activities infused with active learning, an individualized final research project, and a 16 

focus on creating an accessible learning environment. Cloud-based notebooks were used to teach fundamental 17 

Python syntax as well as functions from packages widely used in climate-related disciplines. By analyzing 18 

quantitative and qualitative student metrics from online learning platforms, surveys, assignments, and a student 19 

focus group, we conclude that the instructional design facilitated student learning and supported self-guided 20 

scientific inquiry. Students with less or no prior exposure to coding achieved similar success to peers with more 21 

previous experience, an outcome likely mediated by high engagement with course resources. We believe that the 22 

constructivist approach to teaching introductory programming and data analysis that we present could be broadly 23 

applicable across the earth sciences and in other scientific domains. 24 
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Introduction 25 

Motivation 26 

Data programming has become the foundation of research in today’s geoscientific disciplines. As the volume and 27 

size of earth science data sets have steadily increased, so have the complexity and ubiquity of the computational 28 

techniques used for analysis and visualization. Some argue that innovation in earth science research will 29 

increasingly be driven by one’s competency in translating ideas into computer code (Jacobs et al., 2016). 30 

The field of oceanography is no exception to this “data tsunami,” with more hydrographic casts collected in the 31 

past two decades than over the previous 100 years (Brett et al., 2020). Unprecedented collaborative initiatives 32 

such as the Argo profiling float array (Wong et al., 2020), the National Science Foundation’s Ocean Observatories 33 

Initiative (OOI; Greengrove et al., 2020), and remote sensing platforms such as satellite altimeters (Scheick et al., 34 

2023) are continuously adding to expansive, publicly available data sets. In addition to these observational 35 

programs, hard drives at institutions across the world are being filled with terabytes of data generated by 36 

numerical simulations. From highly resolved ocean general circulation models to lower-resolution global climate 37 

models assessed in the Intergovernmental Panel on Climate Change (IPCC) reports, the natural ocean is being 38 

reproduced with ever-increasing fidelity (Haine et al., 2021). The resulting challenges in accessing and analyzing 39 

these data require new computational tools that enable truly open science, further motivated by the notion that 40 

“research conducted openly and transparently leads to better science” (National Academies of Sciences, 41 

Engineering, and Medicine, 2018). At the same time, the computational methods used to study the ocean – which 42 

have traditionally differed between modeling- and observation-focused oceanographers – remain “radically 43 

unstandardized,” contributing to scientific code that is influenced by unique requirements and social contexts and 44 

may deviate from best practices in software engineering, as highlighted by an ethnography of oceanographers’ 45 

programming practices (Kuksenok et al., 2017). 46 
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Domain-specific computational coursework and data literacy are thus a critical part of a modern oceanographic 47 

undergraduate curriculum, and we infer the same applies across many geoscience disciplines. While students can 48 

collect and analyze small-scale data sets through hands-on fieldwork and labs that are common elements of 49 

undergraduate earth science curricula, working with larger, professionally collected data sets requires familiarity 50 

with a programming language (Kastens et al., 2015). Historically, introductory programming education has been 51 

the responsibility of computer science departments, with a focus on data structures and algorithms. Geoscience-52 

specific programming instruction will necessarily reflect distinct goals and tools compared to computer science 53 

(Grapenthin, 2011) or data science (Anderson et al., 2015; Lasser et al., 2021), namely, the use of coding to derive 54 

insight into natural systems through mathematical manipulation, visualization, and interpretation of idiosyncratic 55 

data, often in the time and space domains. Yet scientific computing is often absent in earth science curricula, 56 

including oceanography (Old, 2019), except for highly scaffolded coding modules in courses where programming 57 

is not the focus (e.g., Rowe et al., 2021). In this void, brief but intensive hands-on workshops like those offered by 58 

Software Carpentry (https://software-carpentry.org; Wilson, 2016), Data Carpentry (https://datacarpentry.org/; 59 

Irving, 2019), and scientific societies (e.g., Arms et al., 2020) have provided crucial training to young scientists. 60 

These short workshops, however, give learners limited opportunities to apply new coding skills to their own 61 

research in a supervised setting. In lieu of formalized instruction, many earth science students teach themselves 62 

programming during research experiences or in graduate programs, which can lead to the propagation of ad hoc, 63 

inefficient, and outdated practices. 64 

Incorporating programming into an earth science curriculum additionally opens the door to a constructivist 65 

approach to teaching scientific concepts—one that encourages students to use experimentation and individualized, 66 

self-guided inquiry to build on previous learning, construct new knowledge, and engage in critical reflection 67 

(Bada, 2015; Hadjerrouit, 2008). The iterative, reflective process of writing and refining scientific code makes it 68 

naturally suited to this individualized model of learning. In practice, a constructivist pedagogy – much like 69 

programming instruction – often involves active techniques such as project-based investigation, cooperative 70 

learning, and inquiry-based activities, which have been shown to improve student competencies in information 71 
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recall, analysis, and quantitative reasoning in the context of a large-enrollment introductory oceanography course 72 

(Yuretich et al., 2001). 73 

Throughout higher education, there is an increasing recognition that effective teaching requires a focus on active 74 

learning, which can be described broadly as “any instructional method that engages students in the learning 75 

process” (Prince, 2004). Active modalities stand in contrast to traditional lecturing, which represents about three-76 

quarters of class time across STEM undergraduate and graduate courses today (Stains et al., 2018). There is 77 

strong evidence that using active learning techniques increases student performance – that is, students’ 78 

understanding and retention of material – in STEM courses, with disproportionate benefits for underrepresented 79 

students and students who learn in different ways (Freeman et al., 2014; Haak et al., 2011; Theobald et al., 2020). 80 

One reason these strategies appear to be effective is that they often require an instructor to implement more 81 

structure in their course through, for example, regular and intensive practice using scaffolded activities (Haak et 82 

al., 2011). Evidence supporting the efficacy of active learning strategies in geoscience classrooms is more limited 83 

due to a paucity of discipline-specific research, but a variety of easily implemented student-centered activities and 84 

techniques have been documented (McConnell et al., 2017). 85 

Embedding computing skills into a geoscience curriculum faces the challenge of introducing students to 86 

unfamiliar skills such as algorithmic thinking and overcoming a steep learning curve, similar to teaching a foreign 87 

language (Jacobs et al., 2016). Perhaps for this reason – as well as a lack of accessible software tools and 88 

computational power in previous decades (Hays et al., 2000) – existing examples of courses using geoscience data 89 

have often focused on interactive online modules, portals, or widgets that are constrained in their data sets and 90 

capabilities (e.g., Ellwein et al., 2014; Greengrove et al., 2020; Klug et al., 2017). Software such as Microsoft 91 

Excel or specialized tools like Ocean Data View face similar limitations. In comparison, programming skills are 92 

more versatile, enabling the analysis of virtually any data set from any domain and empowering students to 93 

conduct independent or mentored research projects. 94 
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Why teach Python? 95 

In an introductory classroom setting, the choice of programming language matters. Python is an ideal candidate, 96 

as it is easy to learn, versatile, and free to use. First released three decades ago, Python is increasingly ubiquitous 97 

within earth science (Lin, 2012) and is widely used outside the scientific community, particularly in industry, 98 

making it valuable even for students seeking a career outside of academia (Srinath, 2017). The language features 99 

concise, easily read, higher-level syntax that allows one to focus on data exploration, enabling more efficient 100 

science (Ayer et al., 2014; Jacobs et al., 2016; Lin, 2012). For those learning programming for the first time, a 101 

primary challenge is thinking algorithmically, that is, developing structured code to solve a problem. Compared to 102 

Python, lower-level programming languages commonly taught in introductory computer science courses (such as 103 

Java and C++) require substantial syntactical overhead that can distract from achieving that pedagogical goal 104 

(Pears et al., 2007; Srinath, 2017). 105 

Python offers other advantages (Gentemann et al., 2021). Its open-source nature has fostered a large active 106 

developer community, which has contributed to its stability and the dissemination of numerous multipurpose 107 

packages that extend its functionality. Python is free to download and use, avoiding reliance on expensive 108 

commercial solutions that can render analysis code inaccessible to scientists outside of well-resourced university 109 

environments. These stand in contrast to MATLAB, a scientific programming language also popular in 110 

geoscientific research. Despite the clear benefits of teaching Python in an earth science context, we find only one 111 

documented example of an instructional approach for a quarter- or semester-long course in the existing literature 112 

(Jacobs et al., 2016). 113 

Course history and development 114 

Our study reports on an evidence-based redesign of an undergraduate oceanography course that teaches 115 

introductory Python data analysis techniques. In subsequent sections, we highlight key course elements 116 

(summarized schematically in Fig. 1) and assess the efficacy of the redesign from the standpoint of student 117 

engagement and learning. 118 
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S.C.R. established and previously taught “Methods of oceanographic data analysis” (OCEAN 215) annually in the 119 

School of Oceanography at the University of Washington from 2015-2019. It was the first introductory Python 120 

course offered by the department and met in person two times each week in two-hour sessions that featured a mix 121 

of traditional lecturing and dedicated homework time. Over a ten-week quarter, students completed four 122 

assignments using programming techniques taught in lectures. The course was well-received by students, who 123 

rated it as “very good” (4 on a scale from 1-5) across a variety of metrics in end-of-quarter evaluations from 2015, 124 

2016, 2017, and 2019 (Fig. 2), and has been perceived as demanding relative to other courses in students’ 125 

curricula (see Fig. S1 in Supplemental Materials). 126 

However, faculty teaching other courses in the department’s curriculum reported that many students who 127 

completed OCEAN 215 had difficulty with core Python programming tasks. A review of past senior theses – 128 

projects in which students formulate and execute original research – revealed that students often used minimal 129 

scientific code and reverted to less versatile, non-coding solutions like Microsoft Excel and Google Earth for data 130 

visualizations, to the detriment of their science. Given that students recognized the usefulness of the course 131 

content after completing the course (see Fig. S1 in Supplemental Materials), we partially attribute their 132 

subsequent hesitancy and lack of confidence in applying Python skills to weaknesses in the course design, some 133 

of which are prevalent across undergraduate education: 134 

● An overreliance on non-interactive lectures. This is commonplace—in a survey of almost 200 135 

undergraduate oceanography professors, for example, three-quarters indicated that they use data in their 136 

teaching but are most likely to use a lecture teaching strategy, rather than creating opportunities for active 137 

inquiry (McDonnell et al., 2015). As detailed above (see Introduction section “Active learning”), 138 

traditional lecturing is less effective at promoting student understanding and retention of material than 139 

active learning techniques. 140 

● A lack of student-driven inquiry. In assignments, students answered prescribed questions and worked with 141 

tidy, unrealistically clean scientific data. Such a controlled environment is valuable for practicing basic 142 
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skills but offers students few opportunities to pose their own questions and engage in “open inquiry,” 143 

which Banchi & Bell (2008) associate with deeper, more original scientific thinking. 144 

● A stagnation of curriculum. Since the course’s launch in 2015, the scientific computing landscape has 145 

rapidly evolved (Gentemann et al., 2021). However, certain course elements not reflective of current 146 

scientific Python practices were still taught, resulting in the use of outdated, unsupported, and 147 

unnecessarily limiting packages and methods. At the same time, the course did not formally address 148 

essential programming practices such as commenting etiquette, formulaic code debugging, and use of 149 

online documentation. 150 

The course was restructured (Fig. 1, Table 1) and subsequently co-taught during a 10-week quarter in 2020 by 151 

two graduate students (E.C.C. and K.M.C.), both of whom had served as TAs in past years. Twenty-five 152 

undergraduate students completed the course, a typical class size (Fig. 2). The plurality were third-year 153 

oceanography majors. No prior knowledge of computing or upper-level math was required or assumed. Elements 154 

retained from previous iterations included the basic format of four structured programming assignments as well as 155 

twice-weekly classes and office hours; however, the latter were conducted virtually rather than in a physical 156 

classroom space. 157 

In 2020, the COVID-19 pandemic forced a swift transition to virtual instruction. The timing of this course in 158 

Autumn 2020, however, allowed for careful planning of an online learning framework, rather than the forced 159 

adoption of emergency remote instruction necessary in the first half of 2020 (Donham et al., 2022; Hodges et al., 160 

2020). Nonetheless, disruptions outside of the classroom were still present: students dealt with being isolated on 161 

campus or sequestered at home with family, research programs had to be reconfigured, mental health declined, 162 

and many became sick or had loved ones fall ill or even pass away (Furman & Moldwin, 2021). With these 163 

realities in mind, the course redesign also paid special attention to the need for a supportive and accommodating 164 

learning environment (Shay & Pohan, 2021). 165 
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The updates to the course were guided by past experience as TAs, consultation with previous teaching teams and 166 

department faculty, the need for fully virtual instruction during the COVID-19 pandemic, and a desire to infuse 167 

the course with active learning strategies. Changes included flipped video lessons delivered on the online platform 168 

Panopto, an individually-driven final research project, content that reflected the current scientific Python 169 

ecosystem (including cloud-based notebooks; see Table 1), discussions on the online question-and-answer (Q&A) 170 

forum Piazza, analysis of data from a wider range of earth science domains, encouragement of pair collaboration 171 

and use of external resources, and a syllabus with explicit policies, expectations, and the following end-of-quarter 172 

student learning outcomes: 173 

● Understand why the Python programming language is ideal for data analysis. 174 

● Write, execute, and debug Python code. 175 

● Access, read, transform, visualize, and interpret oceanographic data with confidence using Python. 176 

● Explore the ever-expanding universe of packages and tools available for creating and sharing code. 177 

● Formulate and investigate scientific research questions using programming and data analysis skills. 178 

● Adopt best practices in programming and data visualization that facilitate collaboration and information-179 

sharing, both within the classroom and the broader scientific community. 180 

All course materials were original, created by the graduate instructors, and are available for free reuse and 181 

adaptation under a CC-BY-4.0 license at https://ethan-campbell.github.io/OCEAN_215/. 182 

Methods 183 

We qualitatively assess the effectiveness of instructional approaches in Autumn 2020 using descriptive examples 184 

from the quarter. We also quantitatively analyze the data from standardized course evaluations, an end-of-quarter 185 

student survey, graded assessments, and engagement/usage metrics provided by the video and Q&A platforms. 186 

Various student-specific engagement and performance metrics were collected by the co-instructors (E.C.C. and 187 

K.M.C.), as described in sections below. Prior to analysis, all metrics were de-identified and coded by a coauthor 188 

(M.N.) who was not directly involved in quantitative analyses; identified versions were not used thereafter. This 189 
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study was approved as qualifying for exempt status for institutional review by the Human Subjects Division at the 190 

University of Washington. 191 

Initial, mid-quarter, and end-of-quarter surveys 192 

To gauge initial exposure to the Python programming language and to coding in general, students were asked to 193 

share their prior experience(s) in an introductory survey issued during week 1 (Assignment #0). The instructors 194 

translated students’ short-answer responses into a numeric rating (1-5) using a subjective analysis of their word 195 

choice (see rubric in Table S1 in Supplemental Materials). The factors considered were any previous coding 196 

languages learned, the reported efficacy of past learning experiences, and time since last exposure to coding. 197 

We also obtained summary reports from end-of-quarter Instructional Assessment System (IAS) surveys 198 

completed by OCEAN 215 students in 2015, 2016, 2017, 2019, and 2020 (results from 2018 were unavailable), 199 

which were administered and anonymized by the University of Washington. Standardized questions asked 200 

students to evaluate aspects of the course quality and their engagement with the course. While most questions 201 

were consistent across years, others evolved in their wording and thus required mapping or aggregation to enable 202 

comparison between years (as shown in Table S2 in Supplemental Materials). Questions that could not be tracked 203 

across years were excluded. Students completed surveys either in paper or online format, with the class response 204 

rate of around 70% in 2020 being somewhat higher than in past years (Fig. S1 in Supplemental Materials). As 205 

IAS summary reports correspond to specific instructors, we averaged the class median responses between the two 206 

graduate instructors for each question in 2020. 207 

Furthermore, we referenced students’ anonymous responses to open-ended questions from two IAS surveys in 208 

2020: a mid-quarter evaluation administered during weeks 4-5 of the course and the final evaluation. The survey 209 

prompts are listed in Table S3 in the Supplemental Materials. In addition to excerpting quotes from students’ 210 

responses, we identified common or unique themes mentioned by students and tabulated the frequency with 211 

which each theme was mentioned in either a subjectively positive context (e.g., an appreciative or affirming 212 
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comment; assigned a value of +1) or subjectively negative context (e.g., an unenthusiastic or critical comment; 213 

assigned a value of –1) (Fig. 3). 214 

In addition to the university-managed IAS surveys, a Google Form survey was administered during the week after 215 

the final class to measure students’ perceived success relative to the main objectives outlined in the syllabus. The 216 

response rate was 92%. Submissions were not anonymous, but instructors guaranteed that students’ responses 217 

would not impact their final course grades. As a final self-assessment of students’ Python skills, we use responses 218 

to the question, “How proficient do you feel in writing, executing, and debugging Python code?”, which were on 219 

a 6-point scale from “Least proficient” to “Most proficient.” 220 

Flipped video viewership 221 

Panopto, the course video hosting and delivery platform, provides instructors with usage statistics, including view 222 

counts, minutes delivered, percent completed, and last view time. Those metrics – associated with individual 223 

students, individual videos (both aggregated and disaggregated by student), and distinct video viewing sessions, 224 

where applicable – were downloaded, and student identities were anonymized as described above. Usage data are 225 

presented in Fig. 4, Fig. 5a, and Fig. S2 in the Supplemental Materials. Student-specific Panopto metrics 226 

computed for Fig. 6 include total minutes watched, minutes watched before the class for which a video was 227 

assigned, and minutes watched after class for the first time (i.e., late views). 228 

Final grades and programming skills 229 

To measure learning outcomes, students’ final grades and programming skills at the conclusion of the course are 230 

presented in Fig. 6. Grades were recalculated to ignore assignments that students did not complete (i.e., dropping 231 

grades of 0%), and the following weights were re-applied: 60% for assignments #0-#4 (weighted equally), 15% 232 

for Piazza posts, and 25% for final projects. Original and recalculated final grades averaged 95.0% and 95.9%, 233 

respectively, with standard deviations of 5.7% and 3.8%. Programming skills were evaluated as the fraction of 234 

Python syntax (functions, operators, and methods) taught in the course that were used at least once in each 235 
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student’s final project code notebook (see Table S4 in the Supplemental Materials). This metric varies widely 236 

between students from 6% to 29% of all syntax keywords taught and thus offers significant discriminatory power, 237 

albeit limited by our exclusion of miscellaneous functions that were not taught in the course but were used by 238 

some students at higher skill levels. 239 

Online forum engagement 240 

Piazza, the online Q&A platform, also makes usage statistics available to instructors. The following student-241 

specific metrics (presented in Fig. 6) were downloaded, then anonymized as described above: days online, 242 

answers, and total contributions (which include questions, notes, answers, and comments). Additionally, a time 243 

series of engagement was constructed (Fig. 5a) based on unique users per day, as provided by Piazza. The time 244 

series was supplemented by a manual tabulation of daily Piazza activity within the following categories: student 245 

questions and notes related to programming; student scheduling, extension, or logistical requests; student answers 246 

and comments; student posts that were required for assignments; and instructor posts, answers, or comments. 247 

Where relevant, those categories were further divided by chosen audience into total posts that were public and 248 

signed, public and anonymous, or private (i.e., visible to instructors only), as shown in Fig. 5b. 249 

Student focus group 250 

Undergraduate students who completed OCEAN 215 in Autumn 2020 were considered for a focus group based on 251 

responses to a voluntary survey asking students to rate their interest in the project and to provide a short paragraph 252 

about course elements that affected their learning positively or negatively. Five students were chosen by E.C.C. 253 

and K.M.C. based on the thoughtfulness of their written responses and the diversity of their academic 254 

backgrounds and experiences within the course. Selection was not dependent on students’ grades in the course, 255 

and it was made clear that survey responses would not impact course grades in any way (and in fact final grades 256 

were issued over a month prior to selecting students). Three focus group sessions were held in the quarter 257 

following Autumn 2020, each lasting 1-2 hours. In the sessions, E.C.C. and K.M.C. asked questions designed to 258 

provoke open and candid discussion on students’ perception of course elements. Insights gleaned from the focus 259 
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group are clearly denoted in the text. We use them as supporting evidence to depict students’ perspectives about 260 

the course more holistically and accurately, and to indicate areas where students felt the course could be modified 261 

to improve their experience. 262 

Additionally, at the request of E.C.C. and K.M.C., four of the five students shared short testimonials detailing 263 

their unique experiences in the course, which are presented in Box 1. The testimonials were assembled from 264 

students’ responses to their selection of a subset of the guiding questions included as Table S5 in the 265 

Supplemental Materials and were edited for style and grammar. As noted below in Author Contributions, the five 266 

undergraduate students were offered coauthorship on the basis of their substantive intellectual and written 267 

contributions to this study and were full participants in providing input on the final manuscript. The 268 

undergraduate student coauthors did not have access to the anonymized student metrics described above and did 269 

not participate in analysis of the data. 270 

Course elements 271 

Course content 272 

OCEAN 215 taught scientific Python skills needed for oceanographic data analysis, starting with fundamental 273 

Python syntax, as well as data management and research practices (Table 1). Students learned core functions (see 274 

Table S4 in Supplemental Materials) from versatile, interoperable, and open-source software libraries widely 275 

used in climate-related disciplines: NumPy, a fundamental library for multidimensional array computing (Harris 276 

et al., 2020); Matplotlib, a visualization library (Hunter, 2007); Cartopy, a mapping toolbox (Met Office, 2022); 277 

SciPy, a scientific and statistical analysis library (Virtanen et al., 2020); Pandas, a toolkit for working with 1-D 278 

and 2-D data (McKinney, 2010); and Xarray, a toolkit for label-based, coordinate-aligned manipulation of 279 

multidimensional netCDF data files (Hoyer & Hamman, 2017). Students were encouraged to reference online 280 

documentation and use their knowledge of general function syntax to expand their Python capabilities beyond the 281 

course content. Lessons also addressed programming best practices, such as modularizing code, adhering to 282 
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variable naming conventions, writing comments, and applying consistent style and formatting (Wilson et al., 283 

2014), as well as effective visualization principles, including legibility and labeling (Hepworth et al., 2020) and 284 

considerations of accuracy and accessibility when choosing colormaps for visualizations (Thyng et al., 2016). 285 

These concepts were introduced using examples and data from oceanographic disciplines (physics, chemistry, 286 

biology, and marine geology) and other domains (e.g., cryosphere, atmosphere, and climate) using scaffolding to 287 

familiarize students with new topics. 288 

That said, the most novel aspect of this course was not its content but rather how it was taught. As we discuss in 289 

the following sections, an effective learning environment was created through the use of evidence-based 290 

pedagogical elements: a mix of flipped lectures and engaging activities, opportunities for student collaboration, an 291 

online discussion forum, a student-designed research project, and efforts to center accessibility and foster 292 

classroom community. 293 

Google Colab notebooks 294 

Google Colaboratory (Colab), a cloud-based, in-browser Python development environment modeled after Jupyter 295 

notebooks, was chosen as the coding platform for the course. Notebooks can include a mix of interactive code 296 

blocks and narrative text, allowing for easy exploration of data and documentation of scientific workflows. 297 

Jupyter notebooks are widely used and considered one of the top 10 computing advances that have transformed 298 

science (Granger & Pérez, 2021; Perkel, 2021). In general, cloud-based computing has democratized the ability to 299 

conduct complex analyses of earth science data sets, and have created new opportunities for innovation, 300 

transparency, and reproducibility (Gentemann et al., 2021). 301 

Google Colab is an ideal teaching platform compared to alternatives like an integrated development environment 302 

(IDE) and Jupyter notebooks. Unlike IDEs, Colab requires no local installation of Python or additional software, 303 

so students could start coding immediately with minimal device-specific troubleshooting. Notebooks also avoid 304 

the cognitive overhead associated with learning command-line syntax or a professional-level IDE (Jacobs et al., 305 

2016; Pears et al., 2007). Unlike Jupyter notebooks, Colab does not require server configuration and integrates 306 
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with Google Drive, facilitating file sharing and submission of assignments. Comments can be added to notebooks 307 

for grading purposes, similar to Google Docs, and built-in edit history can confirm students’ compliance with 308 

deadlines. While constraints exist, such as a lack of transparent package management, computational limitations, 309 

and the need for an internet connection, the advantages of Google Colab outweigh its disadvantages in a 310 

classroom setting. 311 

Flipped structure 312 

Blended learning models have been shown in a systematic review to improve the learning experience of novice 313 

programmers, as they allow class time to be reserved for active learning and afford students more flexibility to 314 

plan and customize their study (Alammary, 2019). In our course, a flipped classroom approach was implemented 315 

by assigning 14 recorded lessons of approximately 30 minutes each to be watched before synchronous (Zoom) 316 

sessions. Most lessons consisted of lectures using slides that illustrated Python concepts using multiple 317 

representations, which has been suggested as a core pedagogical strategy for teaching programming (Hadjerrouit, 318 

2008). For example, slides introducing a new concept would often include three distinct representations: a 319 

simplified overview of syntax and function arguments, a minimal example of the function or concept being used 320 

(e.g., Fig. 1b), and a schematic or illustrative plot. Consistent fonts, color schemes, and other design elements 321 

were used to reliably indicate relationships between concepts and distinguish examples from core syntax. Some 322 

lessons used live-coding demonstrations rather than slides. Accompanying Colab notebooks were provided with 323 

each lesson to allow students to run code while watching. 324 

The 14 flipped lessons were divided into 41 tightly scripted segments of about 10 minutes each (see Fig. S2c in 325 

Supplemental Materials). This was done with the goal of helping students maintain focus, as some evidence 326 

suggests the average student has an attention span of 15–20 min during traditional lecturing (Middendorf & 327 

Kalish, 1996). In addition to segmenting videos, students were reminded to take breaks between segments. 328 

Students in the focus group indicated that they indeed used these opportunities to step away and refocus. While 329 

one student reported in their final course evaluation that “occasionally the length of the recorded lectures 330 
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prevented [them] from finishing them entirely,” we find no significant correlation between video or lesson 331 

duration and fraction watched (see Fig. S2f, Fig. S2h in Supplemental Materials). 332 

In total, students spent 166 hours watching lesson videos on the Panopto platform. Two-thirds of the watch time 333 

occurred before the class for which the video was assigned (Fig. 4). Most lessons were released 1.5-3 days before 334 

the Zoom class meeting, and students generally watched lessons during the 24 hours prior to class. The remaining 335 

one-third of total watch time occurred throughout the month following the relevant class, of which three-quarters 336 

were first-time views. This indicates that some students attended class without having watched videos, but did so 337 

later, perhaps while completing assignments. Students in the focus group expressed that they appreciated the 338 

opportunity to watch videos at a convenient time. Some shared that they would have viewed videos immediately 339 

before class regardless of release timing, while others said they would have taken advantage of a longer period of 340 

availability. Half of students watched nearly every video, with class-wide average video completion between 80-341 

90% in most weeks (Fig. 5a). Completion rates dropped near the end of the course, which student focus group 342 

participants suggested was due to high end-of-quarter demands in other courses and because the material covered 343 

didn’t appear in assignments. 344 

The flipped structure appears to have enabled a diversity of strategies for content acquisition. Some students in 345 

the focus group re-watched videos to review material or used corresponding slide decks for the same purpose, 346 

while another student took notes on the videos and later referenced those notes. In final course evaluations, 347 

students noted that having slide decks available benefitted their learning (Fig. 3), with one student sharing, “I was 348 

able to surprise myself with how much I could figure out through review when feeling helpless at first.” Despite 349 

the addition of watching flipped videos (as well as a final project) to the overall course workload, students 350 

reported in final evaluations that the amount of time they spent each week was similar to past quarters. Yet 351 

students reported that out of the total time spent on the course, a greater fraction than in past quarters – nearly 352 

90% – was valuable in advancing their education, and that their participation was higher (Fig. 2). In line with 353 

prior research on the student perspective of the flipped model (McCallum et al., 2015), our course structure 354 

generally received students’ approval in course evaluations (Fig. 3). 355 
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Synchronous class sessions 356 

In-class sessions were conducted using the Zoom platform. Each synchronous class started with simple 357 

icebreakers and anonymous Poll Everywhere polls to gather feedback about previous video lessons. Following 358 

these activities, concepts from the relevant flipped videos were briefly reviewed, with ample time for students to 359 

ask lingering questions. In some class sessions, short activities were used to introduce topics not covered in lesson 360 

videos. Classes often concluded with discussions of course logistics and upcoming deadlines. One-on-one tutoring 361 

was offered in lieu of class sessions for students located in remote time zones, among other accommodations (see 362 

Course Elements section “Accessibility and inclusivity”). 363 

The majority of synchronous class time on Zoom was spent facilitating coding tutorials that integrated concepts 364 

taught in the video lessons. Tutorials were designed with multiple goals in mind, in alignment with core 365 

considerations for programming activities laid out by Hadjerrouit (2008): (1) to encourage students to analyze the 366 

problem at hand and develop stepwise solutions to address separate components; (2) to build on concepts that 367 

students previously learned, encouraging reuse and modification of previous code examples; and (3) to compare 368 

and contrast different ways of achieving the same analytical or graphical result. The purpose of class activities 369 

was clearly communicated to students to explain why they were relevant. 370 

Tutorials were presented in a Google Colab notebook for each class, which students would copy within the 371 

Google Drive file structure so that they could edit their notebook individually. In each notebook, copious 372 

scaffolding around each problem (e.g., step-by-step instructions, expected intermediate results, and links to 373 

documentation websites) was often provided to create an environment of “structured inquiry.” In the hierarchy of 374 

Banchi & Bell (2008), who propose a four-level continuum of inquiry, for example, structured inquiry represents 375 

the second level, followed by the more independent modes of “guided inquiry” and “open inquiry.” 376 

A tutorial notebook would often include four or five related but distinct problems that applied different concepts 377 

or functions to a real-world data set from oceanographic and related disciplines (e.g., Fig. 1c); data were curated 378 

by the instructors for their instructional potential. These exercises created opportunities to divide the classroom 379 
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into small groups that worked cooperatively within Zoom breakout rooms. A modified “think-pair-share” model 380 

(McConnell et al., 2017; Yuretich et al., 2001) was adopted: students first individually attempted a problem for a 381 

few minutes, then teamed up with their group of classmates in a breakout room to discuss challenges encountered 382 

and optimal solutions, and lastly returned to the main Zoom room, at which point a designated ‘reporter’ from 383 

each group reviewed their results with the full class. Instructors monitored student discussions by moving 384 

between breakout rooms and providing guidance when needed. Groups’ progress was tracked by watching a 385 

shared Google Doc configured ahead of time with templates in which each group was told to fill in their code 386 

after they finished their work. We recommend that instructors consider randomizing groups occasionally so that 387 

students get exposure to a variety of coding styles, social dynamics, and levels of confidence with the material. 388 

Student focus group participants shared mixed views on the number of students per group, as smaller groups 389 

require more individual accountability, but larger groups allow instructors cycling between breakout rooms to 390 

provide more efficient guidance. Additional benefits of larger groups include increased opportunities for peer 391 

instruction and a higher likelihood of at least one student having the required understanding to assist their group 392 

in completing an activity. In course evaluations, students mostly offered criticism on the use of breakout groups, 393 

with one noting, “I didn't find the small group coding breakout rooms very helpful for coding, but they were nice 394 

for getting to know my classmates.” While breakout rooms allow for more individualized attention, instructors 395 

must be careful to distribute their finite time across groups. Several students wished for more time and instructor 396 

guidance in breakout rooms, which contributed to their overall negative rating (Fig. 3). 397 

On the other hand, interactive tutorials involving live coding demonstrations and individual activities were the 398 

most positively reviewed course element in students’ mid-quarter and final surveys (Fig. 3). Based on the mid-399 

quarter feedback, the instructors emphasized these tutorials and live coding in the second half of the course. 400 

Compared to using slides or copying and pasting blocks of existing code, live coding offers several advantages: it 401 

forces slower, more digestible instruction, allows instructors to be responsive to student questions in real-time, 402 

and inevitably allows students to see instructors’ mistakes and how they are diagnosed and fixed (Wilson, 2016).  403 
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The unique challenges posed by virtual teaching require instructors to explore alternative avenues of assessing 404 

student understanding. Opportunities for engagement were provided through breakout rooms and use of the chat 405 

function to ask and answer questions; in final course evaluations, students rated their participation as higher 406 

relative to other courses (6.0 on a 7-point scale, where 4.0 is “average”; Fig. 2). 407 

Assignments 408 

Students completed four programming assignments at two-week intervals, each consisting of approachable, multi-409 

part problems in a Google Colab notebook that utilized real scientific data (e.g., Fig. 1d). For example, one 410 

assignment tasked students with importing data collected by an ocean observing platform (a seaglider), 411 

identifying key summary statistics, creating a visualization of the glider’s location and temperature measurements, 412 

and calculating trends in the data. 413 

Assignments incorporated elements of both “structured inquiry” and “guided inquiry,” the second and third levels 414 

in the hierarchy of Banchi & Bell (2008). Questions were somewhat less structured than in class activities, 415 

allowing students more flexibility to design their own solutions. This created opportunities to practice both 416 

programming skills and data literacy, creating a stepping stone to more sophisticated independent analysis of data 417 

sets. Without a midterm exam, assignments were instructors’ main window into student progress prior to the final 418 

project. The assignments were designed to be challenging yet were viewed favorably by both the student focus 419 

group and the final evaluation respondents (Fig. 3). Both, however, indicated a desire for more short, frequent, 420 

low-stakes practice opportunities to help reinforce concepts and check understanding. 421 

Pair programming 422 

Students were offered the option to collaborate in pairs on assignments and the final project, which 48% of the 423 

class exercised at some point and, on average, 37% of students exercised on any given assignment. The number of 424 

times that a student worked collaboratively is presented as the metric “Pair programming experiences” in Fig. 6. 425 

When programming as a pair, one student may serve as the “driver,” writing code, while the other observes, 426 
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monitoring the code for defects and helping to problem-solve. Pair programming has long been known to improve 427 

student learning, performance, and satisfaction in the computer science classroom, without loss of competency on 428 

exams (e.g., McDowell et al., 2002; Williams & Upchurch, 2001). Previous work has found equal benefits to 429 

student performance and confidence for students who pair program remotely using screen-sharing and audio 430 

connectivity compared to physically collocated students who pair program (Hanks, 2005). In a survey of 431 

undergraduates who conducted collaborative research, almost 80% reported that working in teams or pairs 432 

enhanced their research experience (Lopatto, 2010). 433 

We found pair programming to be readily adaptable to the virtual classroom using Zoom screen-sharing, with the 434 

caveat that Colab notebooks must be refreshed to show updates and thus edits must be made by one user at a time 435 

rather than synchronously. One lesson learned was that some pairs will gravitate towards asynchronous 436 

collaboration (i.e., a division of labor, rather than true pair programming) unless it is specified that the coding 437 

must be done synchronously. Additionally, collaborations appeared to prove more successful when coding 438 

partners had a pre-existing working relationship; naturally, this is less likely to occur in a remotely taught 439 

introductory class setting. 440 

Piazza 441 

In the context of a pandemic that saw many undergraduate students isolated from friends and support networks, 442 

there was an urgent need to cultivate a classroom community. An online Q&A board, Piazza, was offered as an 443 

outlet for students to connect asynchronously with peers and instructors outside of class and office hours (see Fig. 444 

1e; we note that alternative platforms with similar functionality exist, e.g., Ed Discussions). Instructors benefit 445 

from receiving fewer individual emails from students and being able to endorse student answers. Students benefit 446 

from easier access to help – not only on logistical or clarifying questions, but also when seeking support on their 447 

problem-solving processes. Previous study in an undergraduate computer science setting found that students use 448 

Piazza for this full range of question types (Vellukunnel et al., 2017). This past work notes that asking a question 449 
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on a discussion forum, by definition, constitutes a form of active learning, though posts may vary in their level of 450 

reasoning and connectedness. 451 

We find that engagement with Piazza in the form of questions, answers, and comments closely tracked 452 

assignment deadlines and peaked while students worked on the final project (Fig. 5a). Many questions from 453 

students were simple – for example, diagnosing a coding bug or clarifying the goal of an assignment – while 454 

others were more complex – such as seeking strategies to efficiently work with large data sets for one’s final 455 

project. Four brief check-ins (including Assignment #0) required Piazza submissions and an additional quota of 456 

five substantive posts per student (i.e., those that contribute “further insight” to the discussion, rather than simply 457 

writing “Good work” or “I agree”) was prescribed in the syllabus. That said, voluntary engagement was 458 

unexpectedly robust, with students visiting Piazza once every 1-5 days on average. The forum saw 889 total 459 

contributions, out of which two-thirds of students’ posts were not required by a check-in or Assignment #0 (Fig. 460 

5b). Past work has likewise shown high participation rates on Piazza when students are encouraged to use the 461 

platform by teaching staff (Vellukunnel et al., 2017). 462 

In the ideal case, Piazza would be used by students to seek help after they have invested time into trying different 463 

solutions and have perhaps consulted online resources, rather than as an option of first resort. The asynchronous 464 

nature of the forum also encourages students to look elsewhere first. While prompt instructor engagement is vital 465 

for establishing a strong teaching presence in a remotely taught course (Prince et al., 2020), it is important that 466 

responses be somewhat delayed so that an expectation of near-instantaneous feedback is not established. 467 

Importantly, this also allows peers an opportunity to provide input. Nonetheless, the instructors found that 468 

delaying feedback – particularly when a question had a straightforward answer – often ran against their desire to 469 

help students, and thus proved challenging. 470 

The platform allowed students to select the audience for their questions (instructors and/or classmates), to post 471 

anonymously, and to respond to peers in threaded discussions. Students selected the three audience options 472 

(public, signed or anonymous, and private posts) with approximately equal frequency, depending on their needs 473 
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(Fig. 5b). Student focus group participants shared that the anonymous and private posting options were useful 474 

when they were worried that a question would be perceived as obvious or simple, or when they were less sure of 475 

their answer. Final course evaluations show that students felt positively about having access to Piazza (Fig. 3). 476 

One student shared their appreciation for the ability to post anonymously, stating that it “alleviated some anxiety 477 

about asking questions.” 478 

Final project 479 

Students completed an individually-driven or collaborative final project. The goal was for students to write code 480 

to explore a scientific data set of their choice, supported by ample guidance from the instructors, peer review from 481 

classmates, and use of external resources. Similar to the structure of an introductory data programming course 482 

described by Anderson et al. (2015), low-stakes checkpoints throughout the quarter required students to share 483 

their topic, data set, scientific questions, and hypotheses on the Piazza Q&A board, as well as offer feedback on at 484 

least three other classmates’ choice of data or questions. The project culminated in each student or pair delivering 485 

a short final presentation. A rubric was provided to clearly communicate expectations and evaluation techniques 486 

for code, figures, and presentation content and delivery (see Table S6 in Supplemental Materials). A literature 487 

review tentatively indicates that rubrics can lead to increased student performance, and in any case, rubrics are 488 

recognized as a user-friendly tool for setting guidelines and enabling self-assessment (Brookhart & Chen, 2015). 489 

In contrast to instructor-generated activities, the final project allowed for student-designed questions and 490 

procedures. This encouraged “open inquiry” – the highest level of the hierarchy presented by Banchi & Bell 491 

(2008) – an experience that is exceedingly rare in undergraduate oceanography teaching (McDonnell et al., 2015). 492 

In general, inquiry-based learning develops cognitive skills on higher levels of Bloom’s taxonomy (Bloom et al., 493 

1956; Krathwohl, 2002). Consistent with a constructivist approach to learning (Bada, 2015), the project exposed 494 

students to complex or potentially ill-structured questions and ‘messy’ real-world data sets that were flawed or 495 

incomplete (e.g., Ellwein et al., 2014; Klug et al., 2017), though instructors offered guidance related to feasibility. 496 

In courses where undergraduate students conduct research with unknown outcomes, students have reported 497 
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learning gains similar to those of dedicated summer research programs (Lopatto, 2010). In final course 498 

evaluations, most students viewed the final project as beneficial, specifically citing the opportunity to synthesize 499 

course knowledge and to collaborate with classmates (Fig. 3). One critical comment related to ambiguity about 500 

the rigor of science expected and the open-ended nature of project checkpoints. 501 

The final projects that students produced were impressive and original, and spanned oceanographic, cryosphere, 502 

and atmospheric domains (see Fig. S3 in Supplemental Materials). Here we assess students’ final project 503 

questions and hypotheses based on four higher levels of the cognitive process dimension of the revised Bloom’s 504 

taxonomy (Bloom et al., 1956; Krathwohl, 2002), namely application, analysis, evaluation, and creation (see 505 

rubric in Table 2), similar to the methodology of Kastens et al. (2020). We also evaluate each project’s 506 

complexity by summing the number of scientific domains, file types, and data sets incorporated. We find that 507 

students’ project cognitive levels were consistent between the questions and hypotheses they posed. Interestingly, 508 

we identify no significant relationship between projects’ overall cognitive level and complexity, suggesting that a 509 

larger project scope was not necessarily indicative of higher-order (or lower-order) cognition and vice versa (Fig. 510 

S3 in Supplemental Materials). 511 

Accessibility and inclusivity 512 

The instructors of the course in 2020 (E.C.C. and K.M.C.) implemented intentional practices to ensure that the 513 

course was accessible for all students and that those with varying backgrounds and needs felt welcome and 514 

accommodated. Some practices were specific to the remote setting, while others are equally applicable to in-515 

person teaching. Instructional approaches focused on active learning and student engagement can help to combat 516 

inequities in the classroom (Theobald et al., 2020), but equally important are strategies that promote a culture of 517 

respect and foster a sense of belonging for students (Dewsbury & Brame, 2019). 518 

Virtual teaching – and adaptations such as virtual office hours – offered inherent accessibility benefits for students 519 

facing long commutes, disability-related accessibility challenges, and other barriers to attending classes on 520 

campus (Pichette et al., 2020). Virtual office hours offered added benefits for students who may perceive office 521 
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hours as an unfamiliar, unsafe, or inaccessible space, with breakout rooms creating privacy for students with 522 

questions on assignments or personal matters. Students shared their enthusiasm for virtual office hours in final 523 

course evaluations (Fig. 3). Recorded lessons, the asynchronous Piazza Q&A board, a flexible attendance policy, 524 

and an option to submit a recorded final project presentation enabled the participation of students located in 525 

remote time zones due to the pandemic. 526 

That said, virtual learning can make it harder to maintain focus and limit distractions. The large amount of screen 527 

time was the most frequently mentioned criticism in students’ course evaluations (Fig. 3). “Zoom fatigue” is a 528 

form of exhaustion that may result from the intensity of continuous, close-up eye contact and seeing oneself, 529 

reduced mobility when having to stay in a video frame, and increased cognitive load from having to exaggerate 530 

nonverbal cues (Bailenson, 2021). As one student reported in their mid-quarter evaluation, “just being on Zoom 531 

for so long takes away my attention span.” To mitigate these effects, regular breaks were taken during class, 532 

students were encouraged to take breaks during recorded videos, a video-optional policy was instituted on Zoom, 533 

and students were allowed to use the chat function to participate. Nonetheless, we acknowledge that teaching 534 

online to students with their cameras off can be disorienting. We remind prospective instructors teaching in a 535 

virtual setting for the first time to be kind to themselves. 536 

In a survey distributed in the first week of class (“Assignment #0” in Fig. 5a), students were encouraged to 537 

introduce themselves to the teaching team by sharing their pronouns and any anticipated accessibility or learning 538 

needs. Survey responses helped instructors affirm students’ identities and accommodate students’ disabilities and 539 

led to instructors making an effort to accurately caption all lesson videos. The survey also asked about comfort 540 

with technology and prior exposure to coding, which we analyze in this study (as discussed in Methods). Previous 541 

coding experience was not required, and a prerequisite of one quarter of calculus from previous iterations of the 542 

course was removed. Instructors offered one-on-one mentoring as needed, recognizing that some students require 543 

additional, intensive help with certain topics or specialized guidance tailored to their specific learning style in 544 

order to keep pace with the class. These mentoring sessions also had the benefit of allowing those students to 545 

form a personal connection with the instructors, which is otherwise challenging in a large virtual classroom. 546 
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A classroom community built on safety and mutual understanding promotes engagement, especially among 547 

students with marginalized identities, by creating a supportive space to share ideas and ask questions (Barrett, 548 

2021). In an online teaching environment, genuine care and a strong presence from instructors are particularly 549 

critical for creating student trust (Shay & Pohan, 2021) and keeping students engaged in learning (Prince et al., 550 

2020). However, connection in the classroom can be difficult to promote in the absence of face-to-face 551 

instruction. With this in mind, community was intentionally fostered throughout the course. Community 552 

guidelines were co-created on the first day of class using an activity that asked both students and instructors to 553 

contribute their expectations of shared norms and endorse each other’s contributions. At the start of each 554 

synchronous class, icebreaker activities asking students about their well-being and comfort with recent material 555 

primed them for participating. Warm-up activities like these have been shown to allay anxiety about classroom 556 

engagement, connect students with each other, and create a safer environment more conducive to active learning 557 

(Bledsoe & Baskin, 2014; Chlup & Collins, 2010). In general, the instructors cultivated connection by being 558 

easily accessible for questions, encouraging collaboration, and emphasizing that student physical and mental well-559 

being were priorities throughout the course. In mid-quarter evaluations, one student noted that the “low stress 560 

environment” of the course helped them learn. 561 

Course policies and expectations 562 

Setting clear expectations supported by explicit guidance on how to succeed contributes to an accessible learning 563 

environment by establishing a safe and productive classroom culture and reducing confusion. The syllabus is the 564 

first opportunity to outline expectations. As such, a detailed course syllabus was drafted to include six student 565 

learning objectives (see Introduction), course and university policies, logistics, guidelines on Zoom etiquette, and 566 

a week-by-week schedule. Each of these components give students a clear understanding of what they should gain 567 

from the course, outline metrics for success, and create trust that the instructors have thoughtfully planned the 568 

curriculum (Habanek, 2005). 569 
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The syllabus also included an integrity policy that encouraged collaboration but prohibited plagiarism. Students 570 

were allowed to reference external resources such as online API documentation sites and Stack Overflow. 571 

Citations and acknowledgment of collaboration were expected in assignments, and students confirmed their 572 

agreement with the integrity policy in the initial survey (Assignment #0). In this way, the syllabus also acted as a 573 

contract that codified expectations for student behavior in the course (Eberly et al., 2001). No textbook was 574 

required in order to allow flexibility in the topics addressed and avoid high textbook costs that have a 575 

disproportionately negative impact on historically underserved students (Jenkins et al., 2020). That said, 576 

instructors could consider offering excerpts from textbooks as a supplementary resource. Some earth science-577 

oriented Python textbooks now exist in print (e.g., Alyuruk, 2019; DeCaria & Petty, 2021; Esmaili, 2021) and 578 

online (Palomino et al., 2021; https://www.earthdatascience.org/courses/intro-to-earth-data-science/); a 579 

comprehensive text not specific to earth science is also freely available online (VanderPlas, 2016; 580 

https://jakevdp.github.io/PythonDataScienceHandbook/). 581 

In-class participation and flipped video watching were not graded, partially in recognition of pandemic stressors 582 

but also to accommodate individual circumstances without requiring students to disclose possibly sensitive 583 

information. The expectation was that assignment grades would be sufficiently impacted if students were not 584 

engaged in these activities. For assignments that were graded, instructors offered a one-time, two-week extension 585 

to allow flexibility while still requiring students to learn foundational material. While lesson videos had high 586 

completion rates (Fig. 5a), implementing low-stakes graded comprehension checks could be useful in a situation 587 

of lower engagement (Jacobs et al., 2016). 588 

Conclusions 589 

Student experience 590 

Overall, students perceived the course positively, rating its content, evaluation techniques, organization, and the 591 

course as a whole markedly higher than in past quarters (Fig. 2). These evaluations are notable given hardships 592 
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related to the COVID-19 pandemic, as well as findings that show students often prefer passive lecturing over 593 

active learning due to the additional cognitive effort required to engage actively with material (Deslauriers et al., 594 

2019). Students’ view of the course content evolved from a critical stance expressed in mid-quarter evaluations, 595 

with comments citing its abstract or challenging nature, to an appreciative view of the data skills they had 596 

acquired by the end of the course (Fig. 3). 597 

By calculating correlations between a variety of anonymized data sources (see Methods), presented in Fig. 6, we 598 

explore the impact of students’ varying backgrounds and learning strategies on their course experiences and 599 

outcomes. We find that highly engaged students acquired more Python skills and earned higher grades. The 600 

correlation observed between three key metrics – Q&A forum days online, total lesson minutes watched, and 601 

number of forum answers – and the breadth of Python skills used in final projects suggests that highly-skilled 602 

students were more engaged with the course, acquired more content knowledge, and frequently shared that 603 

knowledge with peers. Variations in students’ final Python skills cannot fully explain differences in their final 604 

grades, but the two show a positive nonlinear correlation. Students who earned higher grades tended to monitor 605 

the Q&A forum more frequently, collaborate more often with classmates, and watch lesson videos before class. A 606 

positive relationship between question-asking on a Q&A forum and final grades has been found in past work 607 

(Vellukunnel et al., 2017). Exposure to video content before working on related in-class activities may have 608 

helped students prepare for assignments, which comprised the majority of final grades. That said, the lack of 609 

correlation between Python skills used in final projects and the timing of video lesson views suggests that it was 610 

the total amount of time spent viewing lessons, not whether those lessons were watched before or after a class, 611 

that mattered most for students’ application of course content to an open-ended project. 612 

We find that students’ self-assessment of programming skills in a final survey was not correlated with their final 613 

grades, consistent with research that found a weak correlation between tutor grades and self-assessments by over 614 

3,000 undergraduate students (Lew et al., 2010). That said, students were asked to self-assess their Python 615 

competence, rather than their final grade, and the two metrics may not be entirely comparable. Nonetheless, this 616 

result could reflect the Dunning-Kruger effect, a cognitive bias in which those with the least knowledge tend to 617 
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overestimate their performance or ability because they lack the competencies required for self-assessment (Kruger 618 

& Dunning, 1999). Students’ final self-assessments were not correlated with any metrics other than prior coding 619 

experience, pointing to a persistent confidence from previous Python exposure that contributed to a perception of 620 

competence not necessarily reflected in grades or skills. 621 

Significantly, neither students’ final grades nor their code usage in final projects were correlated with prior coding 622 

experience, indicating that previous exposure to Python was not predictive of success in the course. That said, less 623 

prior experience was associated with higher engagement with lesson videos and the Q&A forum. This suggests a 624 

‘level playing field’ in which those who came in with less previous knowledge of programming took full 625 

advantage of class resources to ultimately reach the same level of proficiency as their peers. 626 

Recommendations for future teaching 627 

We recommend without reservations adopting the key elements that we describe in this paper, particularly flipped 628 

instruction, an online coding platform and discussion board, and strong attention to accessibility. That said, we 629 

encourage others to improve on our framework and regularly seek feedback from students, preferably in a format 630 

that allows for anonymity. For example, in course evaluations, students encouraged the addition of more frequent, 631 

low-stakes practice of basic skills to reinforce fundamental concepts (see Course Elements section 632 

“Assignments”). New practice opportunities would ideally be coupled with immediate feedback that guides 633 

further practice, which promotes efficient learning and refinement of conceptual understanding (Ambrose et al., 634 

2010). Additionally, data literacy skills could be taught through higher-level exercises asking students to 635 

scrutinize the limitations, biases, and provenance of scientific data sets and make predictions and 636 

recommendations grounded in their analysis of data (see, e.g., Kastens & Krumhansl, 2017). Instructors may 637 

consider expanding this offering into a multi-course sequence to incorporate these elements. 638 

We acknowledge the ongoing paradigm shift in many scientific fields towards “open science,” a broadly defined 639 

set of ethics that encapsulates practices like code reproducibility, curation of data for reuse, and open journal 640 

access (Brett et al., 2020; Ramachandran et al., 2021). While these practices were not explicitly taught in this 641 
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course, its emphasis on collaborative programming, well-documented code, and the scientific method as an open, 642 

transparent endeavor speak to fundamental open science principles. Explicit instruction on advanced topics like 643 

reproducibility, data archival, version control using Git and GitHub (e.g., Blischak et al., 2016), manipulation of 644 

large data sets stored on the cloud (e.g., Gentemann et al., 2021), and the UNIX command line may be more 645 

appropriate for a separate, higher-level course. 646 

The pandemic likely accelerated existing trends in higher education towards multi-modal instruction and more 647 

engaging teaching practices (Lockee, 2021). As universities have transitioned back to in-person teaching, we 648 

believe that the framework developed for this course is well-suited to a hybrid approach with in-person tutorial 649 

and work sessions but recorded lesson videos, opportunities for regular online engagement, and virtual office 650 

hours for accessibility. Alternatively, a fully remote version like that described in this study could still be offered, 651 

potentially with minimal penalty in student performance and satisfaction compared to in-person instruction 652 

(Ghosh et al., 2022; Ramirez et al., 2022). 653 

Impact 654 

OCEAN 215 recently became listed in the University of Washington’s new cross-campus undergraduate Data 655 

Science Minor, which aims to bolster students’ data literacy and programming skills within their field of study as 656 

well as other domains. The course has also had an impact outside of our university environment. The flipped 657 

lesson videos have been uploaded to a dedicated YouTube channel 658 

(https://www.youtube.com/@ocean215python), where they have been collectively viewed more than 13,000 times 659 

as of June 2023, reaching over 30 different countries. 660 

Furthermore, the graduate student instructors have benefited from the professional development that teaching this 661 

course allowed. Opportunities such as this have been linked with the success of doctoral students earning their 662 

degree in a timely manner and attaining future employment in higher education (Bettinger et al., 2016). Our 663 

department plans for a rotating cast of two graduate students to continue serving as the primary teaching team, 664 
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with the guidance and support of a dedicated teaching mentor to develop their pedagogical skills. Graduate 665 

students’ ownership of the course will promote the teaching of current data science practices. 666 

For many undergraduate students without a deeper interest in data science, however, multiple years may pass after 667 

completing OCEAN 215 before their next opportunity to use Python programming. For most, this comes in the 668 

form of their senior thesis. Students’ demonstrated loss of coding skills during the intervening years (see 669 

Introduction section “Course history and development”) suggests not only the merits of our improved 670 

instructional design but also an urgent need to infuse an oceanographic undergraduate curriculum with regular 671 

opportunities to practice and apply programming skills. Barriers to enacting this change include some instructors’ 672 

lack of familiarity with Python – many, for example, use MATLAB for research – and the need to communicate a 673 

standard set of programming skills that students can be expected to know. In addition to infusing curricula with 674 

programming, effort could be invested in creating supervised research opportunities for students that involve the 675 

use of programming and data analysis skills. More broadly, we see the need for earth science undergraduate 676 

curricula to adopt active, student-centered pedagogical practices that more frequently allow students to construct 677 

knowledge through hands-on exploration of real-world data. Infusing earth science curricula with current data 678 

programming practices will naturally facilitate the achievement of these goals. 679 

Data and code availability 680 

The Python code used to generate the figures in this paper is available at https://github.com/ethan-681 
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Figures 911 

Figure 1. Key course elements: (a) Python platforms and software libraries that were taught (see Table S4 in 912 

Supplemental Materials for specific functions, operators, and methods); (b) flipped video lessons, with a slide 913 

demonstrating how colors, fonts, design elements, and a minimal working example help to explain Python syntax; 914 

(c) class sessions focused on active learning, showing a completed portion of a group activity; (d) programming 915 

assignments, with an illustrative plot; (e) discussion on the Piazza Q&A forum, showing a student question and a 916 

peer answer endorsed by an instructor; (f) the final research project, represented as the sequence of assigned 917 

components; (g) underlying course elements that fostered an effective learning environment. Solid arrows indicate 918 

the progression from foundational material (a) to content delivery (b) and application (c); dashed arrows indicate 919 

the contributions of discussion forum engagement (e) to students’ work on assignments (d) and the final project 920 

(f). 921 

  922 
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Figure 2. Selected metrics from anonymous end-of-quarter student evaluations in 2015, 2016, 2017, 2019, and 923 

2020 (see Methods section “Initial, mid-quarter, and end-of-quarter surveys”). Differently worded questions were 924 

mapped between years as shown in Table S2 in the Supplemental Materials. Metrics shown are class medians for 925 

2015, 2016, 2017, and 2019 (gray crosses, except for “Total students enrolled”); 2015-2019 mean or 2020 class 926 

median (black points); and 2015-2019 standard deviation (bars). Note that y-axes have been truncated from the 927 

full 1-5 scale (“Very poor” to “Excellent”) or 1-7 scale (“Much lower” to “Much higher”). For the full set of 928 

survey metrics, see Fig. S1 in the Supplemental Materials. 929 
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Figure 3. Themes identified in anonymous, open-ended student responses to mid-quarter (hatched bars) and end-931 

of-quarter (solid bars) surveys in 2020, ranked according to the net positivity (blue) or negativity (red) of 932 

comments regarding those themes (see Methods section “Initial, mid-quarter, and end-of-quarter surveys”). 933 

Original survey prompts are listed in Table S3 in the Supplemental Materials. 934 
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Figure 4. Timing of individual flipped (Panopto) video viewing sessions relative to the class for which each video 936 

was assigned. Overall watch timing is depicted as a filled histogram, similar to a cumulative distribution function, 937 

where each viewing session is weighted by its length, expressed as a fraction of the total video time delivered 938 

during the course (166.3 hours over n = 41 videos). The median and interquartile range (25%-75%) of video 939 

releases by instructors, relative to the corresponding class, is included for reference, indicating that videos were 940 

generally released 1.5 to 3 days before they were due. Note that vertical shading corresponds to days; also note 941 

the compressed positive x-axis scale. 942 
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Figure 5. Student engagement with online platforms. (a) Flipped video completion rates (black lines) over time 944 

from Panopto are presented as both the class-wide median (dotted line) and average (solid line). Note that video 945 

completion by student was allowed to exceed 100% due to repeat views. Piazza Q&A forum engagement is 946 

shown as unique users per day (purple) and posts per day, segmented by the type of post (shaded colors; see 947 

legend). The timing of coursework deadlines (assignments [“A#...”] and final project checkpoints) are indicated 948 

with arrows. (b) Usage of the Piazza Q&A online forum by students and instructors, segmented by type of post 949 

(outer) and further divided by chosen audience (inner). “Required posts” were those requested from every student 950 

for Assignment #0 and final project check-ins. “Public posts” were viewable by all users, while “private posts” 951 

were visible to instructors only. “Anonymous posts” refer to those in which the author was hidden from other 952 

students, but not from instructors. 953 

 954 
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Figure 6. Correlations between student-specific anonymized metrics. Two tests were applied: Pearson’s r (top 955 

values) and Spearman’s ρ (lower values, italicized). Higher Pearson correlations indicate stronger positive linear 956 

relationships, while higher Spearman values indicate stronger monotonic relationships, which may not necessarily 957 

be linear. Correlations without statistical significance (p > 0.05) are indicated by “n.s.” For detailed information 958 

about the metrics presented, see Methods section “Final grades and programming skills” (for “Final grade”; 959 

column 1), Table S4 in Supplemental Materials (for “Python skills used in project”; column 2), Course Elements 960 

section “Assignments” (for “Pair programming experiences; column 3), Methods section “Online forum 961 

engagement” (for Q&A forum-related metrics; columns 4-6), Methods section “Flipped video viewership” (for 962 

video-related metrics; columns 7-9), Table S1 in Supplemental Materials (for “Prior coding experience”; column 963 

10), and Methods section “Initial, mid-quarter and end-of-quarter surveys” (for “Final self-assessment of Python 964 

skills; column 11). 965 
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Tables 967 

Table 1. Core topics and concepts taught in Ocean 215. Topics listed here are not necessarily in chronological 968 

order as taught in the course, and class time was not necessarily allocated in equal proportions to each topic. 969 

Topic Main concepts and skills 

Why code in Python? The power of programming is its versatility. Python is open source, stable, popular, free, and 
ideal for scientific data analysis. Google Colab offers advantages in a classroom setting 
compared to other programming environments. 

Variables and object 
types 

Variables store Python objects, which include numbers, booleans, strings, lists, tuples, 
dictionaries, and module-specific objects. Objects can be altered, indexed, sliced, iterated over, 
or used in mathematical operations. Assigning meaningful variable names makes for clearer 
code. 

Logical operations and 
control flow 

Objects can be compared using logical operations (and, or, is/equals, greater/less than, in, not). 
Loops and if-statements facilitate repetitive and conditional actions. 

Packages and functions Installing and using packages extends the capabilities of Python. Built-in, imported, and user-
created functions accomplish common tasks and make for more compact, efficient code. 
Online documentation can be used to understand functions’ arguments and outputs. 

Data files Oceanographic data are often stored in CSV and netCDF files, which can be read into Python, 
displayed, indexed, sliced, and manipulated using functions in the NumPy, Pandas, and Xarray 
packages. Real-world data sets can be obtained from public repositories and frequently contain 
messy or missing data. 

Working with data Data can be stored in multi-dimensional NumPy arrays and labeled structures specific to the 
Pandas and Xarray packages. These packages, as well as others like SciPy, have functions that 
average, sort, group, correlate, resample, smooth, regress, interpolate, and perform other 
computations on the data. Understanding common error types and tracing errors from their line 
of origin allows for methodical debugging of code. 

Plotting Line, scatter, bar, contour, pseudocolor, and other types of plots available from the Matplotlib 
package can be used to visualize data. Geospatial data can be projected onto maps using 
Cartopy. Appropriately customizing and labeling a plot is essential for interpretability. 

Scientific skills The modern scientific method is driven by data exploration, but also relies on traditional 
research skills like formulating hypotheses, interpreting the scientific significance of 
visualizations, effectively communicating results, and giving and receiving feedback from 
peers and mentors. 
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Table 2. Rubric used to classify students’ final project questions and hypotheses based on the cognitive process 971 

dimension of the revised Bloom’s taxonomy (Krathwohl, 2002). Higher levels of Bloom’s taxonomy represent 972 

higher-order questioning and prediction. For the analyses in Fig. S3 in the Supplemental Materials, multiple 973 

hypotheses and/or questions offered by students (up to three each) were assessed separately and weighted such 974 

that a student’s three hypotheses, for example, would each contribute ⅓ of a point to their respective cognitive 975 

level’s total count. 976 

Cognitive level Questions Hypotheses 

Level 3: Apply “What [happens if…]” 
Intention to execute or implement a specific 
procedure, such as calculating a correlation; or 

“Do [...]” 
Intention to answer a binary (yes/no) question 

Specific results and relationships (e.g., the 
answer will be yes/no; X will show an 
increase over time; X and Y will show a 
positive correlation) 

Level 4: Analyze “How [does/do/is/are…]” 
Intention to characterize or test a straightforward 
or single-dimensional relationship, phenomenon, or 
difference 

Contextual results and relationships (e.g., 
X and Y will show a positive correlation, but 
only under Z conditions; X and Y will vary 
with Z; X is characterized by Y patterns) 

Level 5: Evaluate “How [does/do…] affect…” 
“What [is/are…] the relationship between…” 
Intention to characterize or attribute in an open-
ended or multidimensional way; or 

“Why [does/do/is/are…]” 
Intention to establish causality by integrating 
external ideas or models and/or connecting, 
contrasting, or weighing multiple sources of 
information 

Explanations (e.g., X and Y will show a 
positive correlation because of mechanism 
Z; X and Y are different because of Z) 

Level 6: Create “What [does/do…] mean…” 
“How [does/do…] fit into…”  
Intention to evaluate the implications of findings, 
place findings within old or new paradigms, 
construct or produce new frameworks, or 
investigate the consequences of phenomena using 
an open-ended approach 

Discovery (e.g., X is important because Y; X 
will differ from a past model Y, where a 
model is composed of two or more 
mechanisms; X can be explained using Y 
model; or a hypothesis cannot be established 
due to lack of prior information) 
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Boxes 978 

Box 1. Testimonials shared by undergraduate student coauthors (see Methods section “Student focus group” for 979 

more details). The students were encouraged to address one or more of the guiding questions listed in Table S5 in 980 

the Supplemental Materials in their submissions. 981 

——— 982 

Other coding classes that I have taken have generally failed to place skills in the context of applications. Without examples of 983 
methods being used, there is less of an incentive to understand them. In contrast, this course provided the opportunity to work 984 
with oceanographic data, allowing us to recognize the significance of the methods we were applying. For instance, ocean 985 
glider data was used to teach about interpolation. This was engaging because we first visualized the original, non-interpolated 986 
data and could see the gaps due to the physical motion of the device, then compared this with the data interpolated using the 987 
same axes and color scale. 988 

Additionally, the lack of a textbook in this course made it easier to approach methods beyond what we learned in class. 989 
Instead, we learned to answer questions by accessing online resources like Stack Overflow. Doing so developed essential 990 
skills and gave me the confidence to apply new concepts in my final project. This meant my research could be dictated by my 991 
curiosity and questions, as it should be, and not by the limitations of what concepts we had covered in class. 992 

In general, research can seem intimidating to many students because it relies on an individual’s creativity. In other classes 993 
with exclusively rigid assignments and predetermined tasks, there is little opportunity for students to form original ideas, let 994 
alone develop them. In this class, we used creativity and critical thinking skills to develop a final project that answered an 995 
independently formed question. This experience has helped to prepare me for research.  -O.B. 996 

——— 997 

I previously took a Fortran class at the Ocean University of China, which had two traditional lectures and one lab each week. 998 
In that class, most students were not engaged during the lectures, which led them to be bewildered when doing real coding. I 999 
have also been teaching myself MATLAB for three years, basically learning by doing tasks with the help of the internet. This 1000 
process has often been time-consuming, and it has been hard to organize my notes in a logical way. In comparison to those 1001 
experiences, this course provided a logical pathway into Python, especially for oceanography applications. Without this class, 1002 
it would have taken ten times longer to acquire the same knowledge, which would also have been less clear. 1003 

In class, Zoom breakout rooms forced everyone to discuss and practice the coding, which in turn forced us to come well-1004 
prepared for class. Though Google Colab has limited storage (RAM) and is unable to process large data sets, it is great for 1005 
starters. Most of my other classes have been about theory and previously derived conclusions in the field, but this class has 1006 
provided a bridge between theory and practice. After taking this course, I would say that we can now start to connect math 1007 
and data to discover the areas of science we are interested in.  -J.L. 1008 

——— 1009 

I have always viewed research as something that is extraordinarily complicated. This class demonstrated that knowing a few 1010 
basic Python functions and packages can provide a solid foundation to start conducting research. Additionally, offering this 1011 
class as part of an oceanography curriculum instead of relying on a computer science department allowed us to learn about 1012 
programming skills in a way that directly applied to our interests and studies. 1013 
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I liked the way that the course was set up, in which we learned the material in an asynchronous video first and then practiced 1014 
it in class. This helped me to discover where my gaps in understanding were and to learn from other people who may have 1015 
understood a concept better than I did. Google Colab may not be the most powerful programming platform, but it is 1016 
streamlined and easy to use, which made it great for first-time coders like me. Piazza was also an exceptionally useful 1017 
resource. 1018 

Many classes present an idealized version of how research works. This class didn’t. It was an important learning experience 1019 
when my final research project didn’t yield the correlation I expected. This was frustrating since I put so much time and 1020 
effort into the project, but it showed that a lack of correlation can be an important result and that one’s research doesn’t 1021 
always have to produce a major scientific breakthrough.  -R.M. 1022 

——— 1023 

I came in with a little prior coding experience thanks to robotic projects that I completed with my father as a child. In taking 1024 
this class, the love of coding that I had as a child was reignited. I hadn’t realized how beneficial and necessary knowing a 1025 
programming language would be for research. Having Python in my arsenal opened up research opportunities that I wouldn’t 1026 
have been qualified for before and can aid me in branching out beyond oceanography in the future. The great experience I 1027 
had in this class – and my realization that research and coding are extremely integrated – inspired me to pursue a minor in 1028 
Data Science. 1029 

In this class, the coding assignments were based on real-world problem solving. I loved having the opportunity to work with 1030 
a partner because we coded in completely different ways, and it was fascinating to see those differences. We were more 1031 
effective together because we learned to compromise and collaborate to find the cleanest and fastest method between the two 1032 
of us. Writing code on Zoom was a good alternative to in-person collaboration because we could share our screens and help 1033 
pinpoint issues in each other’s code. In addition, Piazza was helpful for me because it allowed anonymous or private 1034 
questions, which avoids the uncomfortable feeling of asking a question that you think might be silly. I liked that we were able 1035 
to get quick and helpful feedback on our code. It was a better way of communicating than those I have used in other classes, 1036 
like email, which might get drowned out in a teacher’s inbox, or Slack, which doesn’t provide the anonymity that Piazza 1037 
does.  -I.O. 1038 

——— 1039 


