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Abstract — Modern manufacturing enterprises have 
invested in a variety of sensors and IT infrastructure to 
increase plant floor information visibility. This offers an 
unprecedented opportunity to track performances of 
manufacturing systems from a dynamic, as opposed to static, 
sense. Conventional static models are inadequate to model 
manufacturing system performance variations in real-time 
from these large non-stationary data sources. This paper 
addresses a physics-based approach to model the 
performance outputs (e.g., throughputs, uptimes, and yield 
rates) from a multi-stage manufacturing system. Unlike 
previous methods, degradation and repair dynamics that 
influence downtime distributions in such manufacturing 
systems are explicitly considered. Sigmoid function theory is 
used to remove discontinuities in the models. The resulting 
model is validated using real-world datasets acquired from 
the General Motor’s assembly lines, and it is found to 
capture dynamics of downtime better than traditional 
exponential distribution based simulation models. 

 

Index Terms — nonlinear stochastic differential equation (n-
SDE) model, mean time between failure (MTBF), mean time to 
repair (MTTR), recurrence analysis, multi-stage 
manufacturing systems 

I. INTRODUCTION 

Increasing global competition is forcing many automotive, 
aerospace and microelectronic manufacturing systems 
towards low margins and lean operations. More than ever, 
customers are demanding lower prices, short turnaround 
times, higher quality, and customized designs. In order to 
stay competitive under volatile demands as well as internal 
and external disruptions, modern manufacturing systems 
need to dynamically adjust product mix, plan near-term 
capacity, and manage suppliers and dealers with little time 
latency. 

Accurate real-time prediction of performance is essential for 
making a manufacturing system respond in a fast and 
flexible manner to demand variations and disruptions. 
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Performance of manufacturing systems, such as automotive 
manufacturing lines, are typically expressed in terms of 
throughput rates, throughput losses due to breakdowns, 
blocking and starving, and WIP levels [1].  

However, conventional static models are inadequate for 
predicting these performance variables in real-time, 
therefore, dynamic models are necessary. Modern 
manufacturing systems are pervasively networked to 
carefully monitor and record most events and statuses, e.g., 
start and end of operations, fault events, exceptions and 
errors, etc. Hundreds of messages related to performance 
variables can be generated in every second. Dynamic models 
can compactly capture information from these real-time data 
sources and thus help track the performances of a 
manufacturing system from a dynamic, as opposed to 
conventional static, sense.  

Recent advancements on sensing techniques and computing 
power have compelled the research community to show a 
renewed interest in continuous flow modeling approaches 
[2-7]. Continuous flow modeling approaches can offer an 
effective balance between accuracy and speed. These 
approaches essentially model the parts movement in a 
manufacturing system as a fluid flow expressed in the form 
of differential equations. This is a reasonable assumption 
that enable us to capture dynamics of several manufacturing 
systems including automotive and semiconductor production 
lines where part inter-release time-scales are much shorter 
than those for other perturbation events. These models offer 
several advantages including faster simulations and 
enhanced identification of the system dynamic patterns 
compared to discrete-event simulations (DES). While 
queuing network models and micro DES have received 
significant attention, aggregate modeling has received little 
attention in the domain of manufacturing systems. Many of 
the recent pioneering works have applied these models to 
gain certain crucial qualitative insights into the plant-floor 
and into the enterprise-level system characteristics [2-12]. 
Few works have shown the potential of time-aggregated 
flow models for performance monitoring and prediction. 

We present an approach that uses the sigmoid function 
theory to relax certain assumptions made on the 
instantaneous nature of up and down time events. The 
resulting simulation model is found to capture the dynamics 
of downtime better than conventional exponential 
distribution based simulation models. The remainder of this 
paper is organized as follows: Section II presents a physics-
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based nonlinear stochastic differential equation (n-SDE) 
modeling approach; Section III demonstrates the n-SDE 
model parameterization using a genetic algorithm, 
comparisons of the resulting probability density functions 
(PDF) of the n-SDE and Exponential models versus the 
actual realizations, and nonlinear dynamic quantification of 
the investigated models versus the actual field data. Finally, 
Section IV presents the conclusions of the reported research 
and perspectives on future investigations. 

II. PHYSICS BASED N-SDE MODELING APPROACH 

Physics-based models use the first-principle physical and 
logical relationships in manufacturing systems to derive 
functional forms, and the aggregated line statistics to 
parameterize the models (just as how one derives DES 
models). For a simple N-stage manufacturing system, the 
change in the length of the buffer at the downstream of the 
kth operation is given by 

dLk/dt = uk-1– uk                                                   (1) 

where uk is the throughput velocity of operation k, Lk is the 
buffer inventory level. Typically, uk is modeled using 
random processes μk and νk as 

uk = μk-νk                                                             (2) 

where μk is the processing rate during uptime, νk is the 
throughput rate loss due to downtime (alternative treatments 
of machine breakdown as a valve or a switch have been 
considered) , and uk = 0 during downtime [13].  Downtime 
in many manufacturing system operations (see Fig. 1) can 
occur due to the following three reasons: (1) Machine 
breakdown and repair that takes place during times t∈ repair, 
(2) Starving (upstream buffer is empty) that takes place 
during times t∈ starve and/or (3)Blocking (downstream 
buffer is full) that takes place during times t∈ block, i.e., 

uk = 0 if (Lk ≤ 0, Lk+1 > max
1kL + , t ∈ repair)                       (3) 

kumax
k kL L≤ 1 1

max
k kL L+ +≤

 
Fig. 1 Blocking and starving operation in an assembly line 

The aforementioned flow modeling approaches have 
traditionally been used for qualitative analysis of system 
dynamics and not for real-time performance estimation. 
However, discontinuities in flow adversely affect the 
integration routines used to solve the model, and often cause 
the routines to become unstable. Sigmoid function theory is 
applied to derive equivalent analytic forms of the vector 
flow fields, whose integration methods pose less numerical 
instability issues and is expected to enable much faster 
simulation of system dynamics.  

As shown in Fig. 2, the operation downtime due to machine 
breakdown and repair is simulated from a dynamic interplay 
between the machine degradation condition β and the 
restoration effort ρ. Intuitively, the machine will breakdown 
if the machine condition drops below a threshold β0. At this 
point the restoration process which proceeds from its base 
level ρ− will start. As the restoration efforts (including 
diagnostics) proceed, the machine condition steadily 
bottoms out, improves from its lowest level β− and above to 
a full restoration level β+. About this point, the restoration 
efforts are relaxed out.  

Such a dynamic interplay can be effectively captured using 
coupled nonlinear stochastic differential equations (n-SDEs) 
[6, 7]. For example, the machine degradation dynamics can 
be captured using a first order nonlinear differential equation 
of the form 

( )( ) ( )( )
( )( ) ( )( )

1 1 1 2 2

2 3 3 4 4

sgm sgm

sgm sgm

d K w a w a
dt

K w a w a

β β ρ

ρ β

= ⋅ − − −

+ ⋅ − −

      (4) 

and the restoration (damage-repair) dynamics is captured 
using the following second order differential equation 

( )( ) ( )( )
( )( ) ( )( )

2

3 5 5 6 62

4 7 7 8 8

sgm sgm

sgm sgm

d K w a w a
dt

K w a w a

ρ ρ β

β ρ

= ⋅ − −

+ ⋅ − −

       (5)  

where a1-8 and w1-8 are the threshold values and K1-4 and the 
weights of sigmoid functions of the form 

( ) ( ) 1( )sgm ( ) 1 j jw a
j jw a e ββ

−− −− = +        (6) 

which are the structural parameters of the model. Evidently, 
such sigmoid functions can be used to adjust throughput rate 
for each operation for downtime as well as for starve/block 
conditions as 

)(sgm)LL(sgm)L(sgmu 0
kk1k

max
1kkkk ββμ −−= ++ .       (7) 

β +  

β 1  

β 0  

β -  

ρ +  
ρ 1  

ρ 0  

ρ -  

β  

ρ  

 
Fig. 2 Illustrative diagram of degradation and restoration variable 
dynamics 

Parameterization of these models using historical fault 
distributions, such as distributions of time between failure 
(TBF) and time to repair (TTR), can be significantly 
challenging. We used a genetic algorithm for 
parameterization. The following fitness function Op defined 
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in Eq. 8 is based on the empirical distributions of TTR and 
TBF obtained through histogram transformation of actual 
data and the model outputs:  

0 12 2
( ( ) ( )) ( ( ) ( ))

1 1100( )

0 1
0 2 1 32 2
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1 10 110( )
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−
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54 1 3 2
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11 3 )

4 5
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∑ ∑ −

= + +
+

(8) 

where k is the bin index. The histograms of TBF from the 
model (HistTBF) and the actual data (HistTBFa) are divided 
into three areas: N0, N2, N4 are the number of bins used for 
the three areas to compare histogram transformations of TBF 
distribution from the model (HistTBF) with that from actual 
data (HistTBFa). Similarly, N1, N3, N5 are the corresponding 
bins used to compare histogram transformations of TTR 
distribution from the model (HistTTR) with actual historic 
data (HistTTRa). The weights for the three areas of the 
histogram are assigned to be 100, 10, 1 that signify their 
relative importance from an operational standpoint. For 
instance, the values in the histogram bins with a weight of 
100 are considered to be in the normal range of TBF/TTR, 
while the bins with smaller weights are taken to capture the 
highly infrequent instances of TBF/TTR where the number 
of samples is few. We parameterized the n-SDE models for 
each of the 18 machines in a real-world assembly line 
segment. The line segment considered for the present 
investigation consists of 18 stations of which 17 are 
allocated in tandem. One pair of stations is located in a 
parallel arrangement in the assembly line. We used the 
actual occurrences of various faults to derive distributions 
for TBF and TTR. The simulated as well as the actual TBF 
and TTR data were gathered over a two-month long period.  

III. N-SDE MODEL PARAMETERIZATION AND RESULTS  

The Genetic Algorithm (GA) aims to determine the optimal 
values for 17 n-SDE model parameters namely a1, a2, a3, a4, 
a5, a6, a71, a72, a8, k11, k12, k21, k22, k31, k32, k41, k42  that reduce 
Op values to below 10-2, such that TTR and TBF 
distributions closely match with those derived from the 
actual data. The GA procedure begins with the generation of 
the initial set of 50 different combinations of parameter 
vector values that are random within the allowable range for 
the 17 parameters n-SDE model. Each parameter was 
encoded as 35-bit long binary string. The objective function 
Op corresponding to this generated set of parameters is 
evaluated. Standard genetic operators like roulette-wheel 
selection, crossover, and mutation are used to generate a 
new set of 20 coded parameter values and the fitness 
function is then reevaluated. The GA terminates after the 

maximum number of iterations are reached or when the 
Genetic Algorithm converges.  

For the cases examined, GA is found to converge in less 
than 50 iterations. To refine the fitness of the solutions a 
Nelder-Mead simplex method is used. Once the fitness 
improvement rate drops below a threshold level, it is 
assumed that the parameter values lie in the basin of the 
global minimum because non-gradient based stochastic GA 
optimization methods are known to locate the 
basin (trough/crest) of the global optimum with a very high 
probability.  

The resulting GA-parameterized model can capture the 
dynamics of machine degradation as well as the distributions 
of downtime, especially the time between failures (TBF) and 
time to repair (TTR) better than conventional exponential 
distribution models. For instance, Fig.3 shows the marginal 
PDFs of TTR for an operation at a assembly station obtained 
from the actual historical data (solid blue line) vs. the 
distribution obtained from the model (red dash line) vs. the 
one obtained using the best fit exponential distribution 
(green dash dotted line). 
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Fig. 3 Comparison of marginal PDFs of TTR and TBF obtained from actual 
data (blue), n-SDE model (red) and exponential distribution model (green) 

Table 1 compares the mean, standard deviation, % deviation 
between model for TTR and TBF for machine 2. Moreover, 
the investigated model shows a mean square error which is 
one order in magnitude smaller than the one from the 
exponential model.  
TABLE 1. COMPARISON OF MEAN, STANDARD DEVIATION, % DEVIATION OF 

MEAN AND STANDARD DEVIATION FOR MACHINE 2 TTR AND TBF 
Mean  
TTR 

Std Dev 
TTR 

Mean  
TBF 

Std Dev 
TBF 

Actual Model Actual Model Actual Model Actual Model
9.41 9.24 13.59 15.11 27.35 24.71 29.42 25.28 

% dev. % dev % dev % dev 
1.81 10.1% 9.67% 14.05% 
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Fig. 4 Processing Velocity for Machine 2 

Fig. 4 shows the variations of processing velocity with time 
for Machine 2. Maximum processing velocity for Machine 2 
obtained from the actual data is 129 jobs/hour. This value is 
likely to occur, as is evident from Eq. (7), whenever the 
upstream buffer is full and the downstream buffer is empty 
and the machine is up. Also evident from the examining the 
histogram of the processing velocities (Fig. 5) is that the 
machine is down for longer duration than when it is 
operating at the peak velocity. 
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Fig. 5 Histogram for Processing Velocity for Machine 2 

Table 2 shows the comparison between the processing 
velocity, expressed in terms of jobs per hour, from actual 
data versus the model. The average jobs/hour (processing 
velocity) from the actual and the model are 37.29 jobs/hour 
and 39.50 jobs/hour, respectively. The deviation between the 
model and the actual is 5.59%, which makes it quite 
comparable. 

TABLE 2. COMPARISON OF PROCESSING VELOCITY BETWEEN MODEL AND 
ACTUAL 

Jobs/Hour %Deviation Jobs/Hour 
Actual Model 5.59 % 
37.20 39.50 

Fig. 6 and Fig.7 compare the mean time to repair (MTTR) 
and mean time between failure (MTBF) for the 18 machines 
from the model vs. the actual data. The actual statistics are 
shown in brown bars and the model outputs are shown in 

blue. The comparisons show that the proposed model can 
capture the MTTR and MTBF variations from machine to 
machine for the investigated assembly line segment. The 
result shows that MTBF computed from the model lies 
within 3-10% of that computed from the actual data for 10 
out of 18 machines. The model-computed MTBF values for 
the remaining 8 machines vary on an average by 24% 
relative to those computed from actual data. Similarly, the 
model-computed TTR values for 10 machines vary between 
2-8% of those computed from the actual data, and vary by 
an average of 28% from those computed from the actual 
data for the remaining 8 machines. 
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Fig. 6 Comparison of Mean TTR (Model vs. Actual) 
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Fig. 7 Comparison of Mean TBF (Model vs. Actual) 

Traditional simulation models use the distributions for TTR 
and TBF that capture the static characteristic, but not the 
dynamics. In this investigation, nonlinear dynamics 
characterization methods, for e.g., recurrence quantification 
analysis, are used to extract quantifiers for deciding the 
dimension of the state vector and functional forms of vector 
fields of n-SDE models. Recurrence methods capture the 
topological relationships (including several nonlinear 
dynamics and non-stationarity related manifestations) 
existing in this state-space as a 2-dimensional representation. 
Fig. 8 shows representative unthresholded (top) and 
thresholded (bottom) recurrence plots of TBF and TTR for 
n-SDE, actual and exponential models from an assembly 
line segment. Recurrence plots from n-SDE and actual 
model show complex (nonlinear) and irregular (stochastic) 
texture patterns while the one from exponential model  
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Fig. 8 Comparison of TBF Recurrence Plots for Model, Actual and Exponential 

 
shows complete noise. The more blue (dark shade) and more 
yellow shade indicate the underlying non-stationarities in the 
signal.  

Clearly, n-SDE model captures the certain intriguing and 
visually appealing patterns underlying the measured 
throughput data. The color map captures recurrence points 
identified at different neighborhood sizes. It may be noted 
that the patterns along vertical segments between two 
consecutive marked time indices are similar and nearly 
shifted versions of each other. Thus it is evident that 
recurrence patterns from the n-SDE model more closely 
capture the dynamics from actual data compared to a 
conventional exponential distribution model. The following 
recurrence quantifiers were used as metrics to quantify these 
recurrence patterns: (1) Recurrence rate, which measures the 
density of points in the recurrence plots; (2) Determinism, 
which measures the predictability of the system and is 
expressed in terms of the number of lines in the recurrence 
plot which lengths exceeding a specified threshold of lmin; 
(3) Laminarity that captures the mixing rates of the system; 
(4) Trapping time, which provides a measure of how long 
the system remains in a specific state; (5) Linemax  which 
quantifies the divergence rates of trajectories in the system; 
(6) Shannon entropy that captures the complexity of  
the deterministic structure; and (7) Trend that determines the 
rate at which the density of the recurrence plots fade from 
the diagonal line. 

Table 3 and Table 4 compare the quantifiers (quantification 
of recurrence plots) for TTR and TBF. As stated in the 
foregoing, these metrics are based on the recurrence point 
density, diagonal lines, and vertical lines structures of the 

recurrence plots [14, 15]. Table 3 and Table 4 reveals that 
the recurrence quantifiers of the model are much closer to 
actual compared to those from an exponential model. These 
results provide strong evidence that the present n-SDE 
modeling approach is superior to the commonly used 
exponential and other parametric distributions to capture 
TBF and TTR processes. Further investigations are 
necessary to develop this approach for effective (faster and 
more accurate) fitting of the downtime distributions and 
their interrelationships. 

TABLE 3. COMPARISON OF TBF RECURRENCE QUANTIFIERS FOR MODEL, 
ACTUAL AND EXPONENTIAL 

Metric 
TBF TBF Error % 

Actual Model Exp Model Exp 
Recrate 39.94 24.70 0.04 38% 100% 
Determinism 97.48 96.94 25.32 1% 74% 
Laminarity 115.00 82.00 8.00 29% 90% 
Entropy 5.55 4.89 1.84 12% 62% 
Trend 0.04 0.02 0.01 50% 50% 
Linemax 90.70 91.25 0.00 -1% 100% 
Trap. time 30.72 25.73 NaN 16% >>100% 

 
TABLE 4. COMPARISON OF TTR RECURRENCE QUANTIFIERS FOR MODEL, 

ACTUAL AND EXPONENTIAL 

Metric 
TTR TTR Error % 

Actual Model Exp Model Exp 
Recrate 43.24 21.78 0.13 50% 99% 
Determinism 97.84 97.90 51.31 0% 48% 
Laminarity 115.00 102.00 30.00 11% 71% 
Entropy 5.71 4.65 2.38 19% 49% 
Trend 0.04 0.04 0.01 0% 75% 
Linemax 92.08 95.32 0.00 -4% 100% 
Trap. time 33.01 29.10 NaN 12% >>100% 
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IV. CONCLUSIONS 

The present work implemented analytical nonlinear 
stochastic differential equation (n-SDE) models to capture 
the dynamics of automotive manufacturing systems. 
Sigmoid function theory has been used to model downtime 
as the interplay between a machine degradation and 
restoration efforts. The n-SDE modeling approach was 
experimented on an 18 station assembly line segment in 
Matlab’s Simulink© environment. The results were 
compared with those from a real-world production line 
observed during approximately one-year long period. The 
results show that the n-SDE model is significantly better at 
capturing the distribution of (marginal probability) of TBF 
and TTR compared to commonly used exponential 
distribution models. The model is also able to capture the 
salient trends in the assembly line dynamics, including the 
relative throughput losses due to blocking, starving, and 
machine breakdown. An extensive set of metrics were used 
to compare the statistical and nonlinear dynamical behaviors 
gathered from the models versus actual assembly line data. 
The model was found to capture the recurrence and other 
nonlinear behaviors of the assembly line dynamics better 
than conventional exponential distribution based models. 

Our ongoing investigations will consider additional nuances 
of degradation dynamics (e.g., various structures for 
different modes of failure) and their implications on 
computational complexity and accuracy of simulations 
relative to the actual observations. We will also study the 
use of alternative sigmoid functional forms and the effects of 
linearization of the model on the stability and computational 
efficiency. 
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