The SDG monitoring framework provides limited evidence that environmental policies are delivering multiple ecological and social benefits

Alison Fairbrass¹, Aidan O'Sullivan¹, Jillian Campbell², and Paul Ekins¹

²Convention on Biological Diversity

March 16, 2023

Abstract

The Sustainable Development Goals (SDGs) provide targets for humanity to achieve sustainable development by 2030. A monitoring framework of 248 environmental, social, and economic indicators, reported nationally by 193 UN Member States, tracks progress. The framework includes 92 environmental indicators, most of which refer to environmental policies. The SDG monitoring framework provides data to assess whether, across countries, environmental policies are: 1. Addressing environmental pressures, 2. Linked to environmental improvements, and 3. Linked with societal benefits delivered by healthy environments. We use statistical analysis and a generalized linear modeling approach to test for correlations between SDG indicators related to environmental policies, environmental pressures, the state of the environment, and social impacts delivered by healthy environments. Our results show that environmental policies, particularly protected areas and sustainable forest certification, are linked with environmental improvements, mainly in forest and water ecosystems. However, we find no evidence that environmental improvements are linked with positive social impacts. Finally, environmental pressures, including freshwater withdrawal, domestic material consumption, and tourism, are linked with environmental degradation. Environmental policy responses are generally increasing across countries. Despite this, the state of the environment globally continues to decline. Governments must focus on understanding why environmental policies have not been sufficient to reverse environmental decline, particularly concerning the pressures that continue to degrade the environment. To better track progress towards sustainable development, we recommend that the SDG monitoring framework is supplemented with additional indicators on the state of the environment.

¹University College London

1 The SDG monitoring framework provides limited evidence that environmental

- 2 policies are delivering multiple ecological and social benefits
- 3 Fairbrass, A.J.^{1*}, O'Sullivan², A., Campbell, J.³, Ekins, P.¹
- 4 ¹ Institute for Sustainable Resources, University College London, London, UK.
- 5 ² Energy Institute, University College London, London, UK.
- 6 ³ United Nations Environment Programme, Nairobi, Kenya.
- 7 Corresponding author: Alison Fairbrass (alison.fairbrass.10@ucl.ac.uk)
- **8 Key Points:**

15

- The state of the environment globally continues to decline despite increasing
 environmental policy responses.
- The SDG indicators provide no evidence that environmental policies deliver secondary social benefits.
- Protected areas and sustainable forest certification are linked with environmental improvements, mainly in forest and water ecosystems.

16	Abstract
17	The Sustainable Development Goals (SDGs) provide targets for humanity to achieve sustainable
18	development by 2030. A monitoring framework of 248 environmental, social, and economic
19	indicators, reported nationally by 193 UN Member States, tracks progress. The framework
20	includes 92 environmental indicators, most of which refer to environmental policies. The SDG
21	monitoring framework provides data to assess whether, across countries, environmental policies
22	are: 1. Addressing environmental pressures, 2. Linked to environmental improvements, and 3.
23	Linked with societal benefits delivered by healthy environments. We use statistical analysis and
24	a generalized linear modeling approach to test for correlations between SDG indicators related to
25	environmental policies, environmental pressures, the state of the environment, and social impacts
26	delivered by healthy environments. Our results show that environmental policies, particularly
27	protected areas and sustainable forest certification, are linked with environmental improvements,
28	mainly in forest and water ecosystems. However, we find no evidence that environmental
29	improvements are linked with positive social impacts. Finally, environmental pressures,
30	including freshwater withdrawal, domestic material consumption, and tourism, are linked with
31	environmental degradation. Environmental policy responses are generally increasing across
32	countries. Despite this, the state of the environment globally continues to decline. Governments
33	must focus on understanding why environmental policies have not been sufficient to reverse
34	environmental decline, particularly concerning the pressures that continue to degrade the
35	environment. To better track progress towards sustainable development, we recommend that the
36	SDG monitoring framework is supplemented with additional indicators on the state of the
37	environment.
38	Plain Language Summary
39	Governments implement environmental policies to reduce ecological degradation and sustain
40	environmental benefits to humans, such as food and clean water. The Sustainable Development
41	Goals (SDGs) call for all countries to commit to pathways that lead to sustainable development.
42	Progress towards achieving the Goals is reported by governments using 231 indicators. The SDG

indicators track the implementation of environmental policies, the state of the environment, and

environmental benefits such as food security and drinking water access. Using the data

underlying the SDG indicators reported by governments to date, we investigate whether the

43

44

45

implementation of environmental policies correlates with improvements in the environment and 46 47 the provision of environmental benefits to humans. Results show that most environmental 48 policies are not associated with environmental improvements; worse, we find no evidence that 49 environmental policies lead to more human benefits. However, we see two types of 50 environmental policies, protected areas and sustainable forest certification, that lead to increasing 51 the size of forest and water ecosystems which are essential for sustaining the lives of plants, 52 animals, and humans that rely on them. Our findings highlight that governments must improve 53 their use of environmental policies to achieve environmental improvements and the benefits 54 humans derive from the environment. 55 1. Introduction 56 In September 2015, the United Nations Sustainable Development Summit adopted an 57 international framework to guide development efforts, entitled Transforming our World: the 58 2030 Agenda for Sustainable Development (United Nations, 2015). The Agenda is built around 59 17 Sustainable Development Goals (SDGs), divided into 169 targets, which are a call to action 60 from all countries to move the world onto a sustainable development trajectory. An underlying 61 monitoring framework composed of 231 unique indicators (a further thirteen are repeated under 62 different targets) tracks progress toward the goals and targets. The environmental dimension of 63 the SDG monitoring framework is composed of 92 indicators (UNEP, 2021). These indicators 64 encompass a range of topics, such as sustainable consumption, ocean acidification, and 65 environmental education, and a range of environments, such as marine, freshwater, and mountain 66 ecosystems. A dataset underlies the SDG monitoring framework and is composed of indicators 67 reported to the UN by the Member States or derived by the UN from global datasets when 68 nationally produced indicators are unavailable. However, some indicators still need more data, as 69 discussed further below. 70 Environmental policies are intended to reduce environmental damage, incentivise positive 71 environmental behaviour, and guide practices toward a more sustainable future (Schwartz & 72 Goubran, 2020). The umbrella term 'environmental policy' encapsulates various environmental 73 policy types, including regulatory instruments, market-based instruments, voluntary agreements, 74 and information provision (Jordan et al., 2003). In addition, innovation policy may also be used 75 to improve the environment (OECD, 2011). Most recently, a class of policy instruments called

76	'Nature-based solutions' has been defined as 'actions to protect, sustainably manage and restore
77	natural or modified ecosystems that address societal challenges effectively and adaptively,
78	simultaneously providing human well-being and biodiversity benefits' (Cohen-Shacham et al.,
79	2016).
80	The SDG monitoring framework uses SDG indicators to track the national use of environmental
81	policy instruments. For example, indicator 15.8.1 covers legislation about invasive alien species
82	(a regulatory instrument), indicator 15.4.1 covers the protection of mountain biodiversity (a
83	Nature-based Solution), and indicator 12.1.1 covers sustainable consumption policies (the
84	indicator does not specify instrument type).
85	If the aim of environmental policies is 'to prevent or reduce harmful effects of human activities
86	on ecosystems' (Bueren, 2019) and to 'address societal challengesby providing human well-
87	being benefits' (Cohen-Shacham et al., 2016), we should expect that environmental
88	improvements would follow the use of environmental policies. In addition, environmental
89	improvements would also benefit human society via ecosystem services. Indeed, the natural
90	environment provides various services that benefit humans, such as providing food and fibre,
91	mitigating the effects of extreme weather events, and cultural connections to nature (Millennium
92	Ecosystem Assessment, 2005). In this study, we use the SDG monitoring framework data to
93	investigate, at the national scale, the relationships between the use of environmental policies, the
94	state of the environment, and the provision of environmental benefits to society.
95	The DPSIR indicator framework describes the interactions between society and the environment
96	(Kristensen, 2004; UN Environment, 2019). The framework provides a structure to understand
97	the causal links between 'driving forces' [D] (economic sectors, human activities), 'pressures'
98	[P] (emissions, waste, resource use), environmental 'states' [S] (physical, chemical, and
99	biological), 'impacts' [I] (on ecosystems, human health, and functions), and political 'responses'
100	[R] (policies, and other actions at different levels). In this study, we investigate whether the SDC
101	monitoring framework's data provides evidence for relationships, at a national level, between
102	political 'responses,' the 'state' of the environment, and the 'impacts' of the environment on
103	society. In addition, we investigate relationships between environmental 'pressures' (UN
104	Environment, 2019) and environmental 'state' indicators to highlight which environmental
105	pressures require increased policy attention to reduce their harmful impacts. Finally, this
106	investigation allows us to leverage the SDG monitoring framework data to investigate whether

107	national environmental policies are delivering their primary objective of improving the state of
108	the environment and their secondary objective of reducing the negative impacts of environmental
109	degradation on people.
110	Several studies have already investigated the relationships between the Goals and Targets of the
111	SDGs (Breuer et al., 2019; Fuso Nerini et al., 2018; International Council for Science (ICSU),
112	2017; PwC, 2016; Scharlemann et al., 2020; Weitz et al., 2019). However, only one study has
113	investigated the relationships between the SDG indicators underlying the entire SDG monitoring
114	framework (Pradhan et al., 2017). This study took SDG indicators in pairs for all countries and,
115	given the availability of time-series data, calculated correlations between the indicator pairs
116	using Spearman's rank. We go beyond the Pradhan et al. study in two ways. Firstly, we weed out
117	all indicator pairs where there is no evidence in the scientific literature of likely correlation or
118	causation along the DPSIR (Driving forces to Pressures to States to Impacts to Responses) chain
119	Then, the indicator pairs are selected on this basis, which both aids our interpretation of our
120	results and strengthens the probability that any correlations may have at least some causal
121	elements. Secondly, we used a modelling approach to investigate the relationship between
122	indicator pairs, rather than a correlation test as used by Pradhan et al A modelling approach
123	enables us to control for potentially confounding factors that may influence the SDG indicators,
124	such as economic development, demographics, or geolocation of a country (Breuer et al., 2019).
125	
126	Therefore, this study uses the SDG monitoring framework data to investigate whether national
127	environmental policies deliver their intended primary environmental and secondary social
128	benefits and identify which environmental pressures require increased political attention. First,
129	we apply the DPSIR framework to identify SDG indicators representing environmental
130	'pressures,' policy 'responses,' environmental 'states,' and social 'impacts.' Secondly, we identify
131	plausible relationships between indicators of environmental pressures, environmental policy
132	responses, the state of the environment, and secondary societal impacts. Finally, we use
133	statistical tests and multivariate analysis to test relationships between SDG indicators while
134	controlling for confounding factors of countries' development and geographic status. Leveraging
135	the dataset underlying the SDG monitoring framework, our approach allows us to ask the
136	questions:

- Are environmental policies correlated with improvements in the state of the environment? These results will suggest where political efforts have the desired impact on the environment.

 Are improvements in the state of the environment correlated with reductions in the impacts of
- Are improvements in the state of the environment correlated with reductions in the impacts of poor environmental quality on society? These results will highlight where environmental policies can deliver additional societal benefits.
- *Is there evidence of negative impacts from environmental pressures on the state of the*143 *environment?* These results will highlight where additional efforts need to focus.

2. Materials and Methods

2.1. Classifying SDG indicators and assessing data availability

We classified the 231 unique SDG indicators and their underlying sub-indicators into one of four groups (Table 1). Some SDG indicators are composed of a single indicator, and others are disaggregated into sub-indicators. For example, SDG indicator 2.5.1 'Secure genetic resources for food' is produced by aggregating two underlying sub-indicators: 1. The number of local breeds for which sufficient genetic resources are stored for reconstitution, and 2. Plant breeds for which sufficient genetic resources are stored. In contrast, SDG 6.6.1 includes sub-indicators related to water body extent, wetland extent, and mangrove extent, which are used without aggregation. In addition to our classification, Table 1 shows the smaller number of indicators with sufficient data to carry out our analysis.

Table 1. Classification and data availability of the SDG indicators and sub-indicators

Class	Number of unique indicators (and sub-indicators)	Number of unique indicators (and sub-indicators) with sufficient data to include in the analysis
Environmental policy responses	50 (85)	22 (38)
Environmental states	11 (36)	5 (9)
Social impacts	16 (44)	11 (31)
Environmental pressures	20 (41)	18 (38)

Data collection efforts to support the SDG monitoring framework vary significantly across the Targets and Indicators (UNEP, 2019). Tier 3 indicators still need an agreed methodology for collecting data; Tier 2 indicators are not yet supported by regular data collection (IAEG-SDGs,

160	2020). This means many SDG environmental indicators do not have the necessary datasets for
161	robust statistical analysis.(UNEP, 2019). Therefore, we assessed the data availability of each
162	SDG indicator and sub-indicator. In order to be included in our analysis, an indicator or sub-
163	indicator must have data for at least two years since 2000 by at least 20 countries (Table 1).
164	Between January and June 2020, we extracted the data underlying the SDG indicators from the
165	UN's SDG Indicators Database. However, some underlying data was unavailable on the SDG
166	Indicators Database, and we sourced this additional data from UNEP in July 2020.
167	2.1.1 Group 1: Environmental policy responses
168	We identified 50 unique SDG indicators related to environmental policies that cover issues such
169	as sustainable agricultural management, renewable energy use, and action plans for
170	sustainability. In addition, the SDG monitoring framework contains sufficient data to include 22
171	environmental policy indicators in this analysis.
172	2.1.2 Group 2: Environmental states
173	We identified 11 SDG indicators that relate to the state of the environment. These state of the
174	environment indicators measure the quality and quantity of water resources, marine
175	eutrophication, plastic concentration and acidity, fish stocks, forest cover, land degradation,
176	green land cover in mountain ecosystems, and extinction risk of wild and domesticated species.
177	The SDG monitoring framework contains sufficient data to include five environmental state
178	indicators in this analysis.
179	2.1.3 Group 3: Social impacts
180	We identified 16 SDG indicators that relate to the social impacts of the environment. These
181	social impacts indicators include the human and economic impacts of natural disasters, food, and
182	water access, and mortality attributed to air pollution. The SDG monitoring framework contains
183	sufficient data to include 11 social impact indicators in this analysis.
184	2.1.4 Group 4: Environmental pressures
185	We identified 20 SDG indicators related to environmental pressures. These environmental
186	pressure indicators include water stress, domestic material consumption (DMC), tourism, and
187	infrastructure development. The DMC indicator comprises numerous material-specific sub-
188	indicators including, but not limited to, DMC of wood, minerals, fossil fuels, crops, wild catch,

and harvested materials. The SDG monitoring framework contains sufficient data to include 18 environmental pressure indicators in this analysis.

2.2. Identifying potential synergies between indicator pairs

The IPBES Global Assessment (Watson et al., 2019) provides a global evidence review of the environmental and social effects of environmental pressures and policy responses; for example, the direct environmental impacts of sustainability certification schemes on forest ecosystems and the secondary social impacts on access to non-timber forest products (Shanley, 2002). For the indicators with sufficient data to include in our analysis (Table 1), we identify potential relationships between pairs of SDG indicators and their sub-indicators using this evidence base. To investigate the relationship between environmental 'pressures,' policy 'responses,' environmental 'states,' and social 'impacts' we identify 618 potential relationships between SDG indicators and their underlying sub-indicators. We detail these potential relationships in the Supplementary Information. We supplemented the evidence presented in IPBES Global Assessment through consultation with experts from various environmental and social stakeholder groups. This consultation on selecting SDG indicator relationships took the form of an online meeting held on 21-22 April 2020 and an online survey held from 29 May to 13 June 2020. We provide the minutes of this meeting and an overview of the responses received from experts to the online survey in the Supplementary Information.

2.3.Determining how to interpret SDG indicators to identify improvements in environmental and social conditions

A good indicator has a clear relationship to the situation about which it is reporting. Of the environmental state and social impact indicators that we include in this investigation, we identify when they are showing improvements in the state of the environment and the social impacts of the environment (Figure 1). In terms of improving environmental and social conditions, some indicators would increase (e.g., forest area and schools with drinking water access), and other indicators would decrease (e.g., air pollution and food insecurity). Different correlation directions indicate desirable relationships between environmental pressure, environmental policy, environmental state, and social impact indicators. Environmental state indicators that show improvement when they increase should show a **positive correlation** with environmental policy indicators, e.g., an *increase* in forest areas should correlate positively with *increasing* the

220	protection of forest ecosystems. Conversely, environmental indicators that show improvement
221	when they decrease should show a negative correlation with environmental policy indicators,
222	e.g., decreasing domestic species extinction risk should correlate negatively with increasing
223	conservation of domestic species' genetic resources.
224	Environmental state indicators will tend to be negatively affected by environmental pressures,
225	with the direction of the correlation depending on whether improvement in each indicator is
226	represented by an increase or a decline.
227	Finally, the desirable correlation between an environmental state and a social impact indicator
228	would suggest that social impacts are improving alongside improvements in the state of the
229	environment. Again, the desirable direction of the correlation depends on whether improvement
230	is associated with increasing or decreasing values of each indicator.

Direction of correlation in response to:

What we want to see	Increasing environmental policies	Decreasing environmental pressures
ent		
Decreasing proportion of local breeds classified as being at risk of extinction	•	0
Increasing extent of water-related ecosystems	0	•
Decreasing levels of fine particular (e.g. PM2.5 and PM10) matter in cities	•	•
Increasing forest area	0	•
Increasing Red List Index indicates decreasing species extinction risk	0	•
	Decreasing proportion of local breeds classified as being at risk of extinction Increasing extent of water-related ecosystems Decreasing levels of fine particular (e.g. PM2.5 and PM10) matter in cities Increasing forest area Increasing Red List Index indicates	What we want to see environmental policies ent Decreasing proportion of local breeds classified as being at risk of extinction Increasing extent of water-related ecosystems Decreasing levels of fine particular (e.g. PM2.5 and PM10) matter in cities Increasing forest area Increasing Red List Index indicates

Direction of correlation in response to an environmental state indicator that shows improvement when values are:

SDG	Indicators	What we want to see	Increasing	Decreasing
Social imp	act			
1.5.1	Disasters: human impacts	Decreasing human impacts of disasters	•	•
1.5.2	Disasters: economic impacts	Decreasing economic impacts of disasters	•	•
2.1.1	Undernourishment	Decreasing prevalence of undernourishment	•	•
2.1.2	Food insecurity	Decreasing prevalence of moderate or severe food insecurity	•	0
2.2.2	Children wasted	Decreasing prevalence of children wasted	•	•
2.2.2	Children overweight	Decreasing prevalence of children overweight	•	•
4.a.1	Schools drinking water access	Increasing proportion of schools offering access to drinking water	•	•

231232

233

234

235

236

237

238

Figure 1. The desirable direction of correlation between indicators (plus sign indicates a positive correlation, minus sign indicates a negative correlation) that show improvement in the state of the environment in response to increasing environmental policies and decreasing environmental pressures (upper table) and the social impacts of the state of the environment (lower table).

2.4. Investigating relationships between indicator pairs

We used generalized linear regression modelling (GLRM) to investigate whether there is evidence for a statistically significant relationship between our chosen indicator pairs within our

239	model, controlling for two potentially confounding factors, population, and GDP. This
240	methodology adapts the analysis we present in (UNEP, 2021), in which we combined a GLRM
241	and correlation test to investigate SDG indicator interactions. Here we report only the results of
242	our investigation of SDG indicator interactions using a GLRM approach. In addition, this
243	approach enables us to investigate correlations while considering some confounding factors that
244	a correlation test does not.
245	A GLRM produces a correlation coefficient, the sign of which indicates a positive or negative
246	direction of the relationship between the two indicators. For example, one of our indicator pairs
247	is clean fuels and air quality, both of which may change due to a change in GDP. A GLRM
248	allows us to separate the different potential influences on our indicator variables, making it more
249	likely that any correlation between the two indicators is not the result of some other factor. In
250	addition to GDP and population, we included a fixed effect in our regressions to account for
251	regional or other differences between the countries.
252	There are several points to note about our approach: 1. The GLRM approach is characterized by
253	the assumption that the relationship between two indicators is linear. Therefore, any non-linear
254	associations between the two indicators will not be captured adequately by the GLRM. 2. We
255	applied a log transformation to several indicators to control for the substantial differences
256	between some countries. The log transformation is appropriate to the data underlying the
257	indicators because the values are generally positive, such as percentages and square kilometres.
258	The log transformation also mitigates the impact of outliers by compressing the data. 3. We
259	needed at least two data points at different times to estimate the relationships between our
260	indicators 4. Finally, for each indicator pair we investigated, our analysis was limited to the
261	number of countries reporting data for both indicators.
262	2.4.1 Generalised linear regression model (GLRM)
263	The complete model formulation is as follows:
264	$\log(Y) = \beta_1 \log(X) + \beta_2 \log(pop) + \beta_3 \log(GDP) + I_{region}$
265	Where:
266	Y: an indicator of either the environmental state OR a social impact
267	X: an indicator of either the environmental pressure OR an environmental policy OR the
268	environmental state
269	pop and GDP: national population and GDP for each year, the potential confounding factors

- 270 I_{region}: a fixed effect variable for each country or geographical region
- β1, β2, and β3: maximum likelihood estimates of the model coefficients. These measure the
- 272 relationship between each independent variable in the model and the dependent Y variable.
- We conducted a hypothesis test on the coefficient of interest (β 1) to assess whether there is
- 274 evidence of a relationship between a pair of indicators (using a significance level of $\alpha = 0.05$)
- after accounting for the influence of the potential confounding factors. The GLRM model also
- 276 calculates the R2 value, which shows how much of the variance in the dependent variable it
- captures. We did not consider regressions with an R2 of less than 0.2, which was our minimum
- 278 goodness of fit threshold. We conducted all statistical analyses using R software (R Core Team,
- 279 2021).

280

288

289

290

3. Results

- We identified significant correlations between the indicators on the state of the environment,
- with the indicators on environmental policies and pressures—some correlations aligned with our
- 283 hypotheses, and others contrasted with our hypotheses. However, we identified no significant
- correlations between the indicators on the state of the environment and the social impacts of the
- environment. Therefore, the Results section presents only the findings of the analysis of the
- environmental policy, pressure, and state indicators, and no findings on the social impact
- indicators, as we found no significant relationships with these indicators.

3.1. Relationships between environmental policies, the state of the environment

- Table 2. The environmental policy indicators that correlate significantly with the environmental state indicators. Correlations that show environmental improvement are presented in the upper
- 291 half of the table. Correlations that show environmental degradation are presented in the lower
- 292 half of the table. The middle column describes the causal relationship between environmental
- 293 policies and environmental improvements based on scientific evidence. The right-hand column
- describes how to interpret the results of the statistical analysis.

Environmental policy indicator	Environmental state indicator	Hypothesised outcomes of environmental policy, leading to environmental improvements	Evidence for the hypothesised relationship	What our results suggest (green/red shading indicates agreement/disagreement with our hypotheses)
7.2.1 Renewable energy	11.6.2 Outdoor air pollution in cities	Greater reliance on clean fuels leads to less combustion of dirty fuels, which reduces the amount of air pollutants produced and leads to improvements in air quality	(IEA et al., 2022, p. 7)	Increasing renewable energy use correlates with decreasing levels of fine particulate matter in cities

Environmental policy indicator	Environmental state indicator	Hypothesised outcomes of environmental policy, leading to environmental improvements	Evidence for the hypothesised relationship	What our results suggest (green/red shading indicates agreement/disagreement with our hypotheses)
7.2.1 Renewable energy	15.1.1 Forest area	Greater reliance on clean fuels reduces reliance on wood resources for energy which leads to less deforestation and a greater extent of forest ecosystems	(IEA et al., 2022, p. 7)	Increasing renewable energy use correlates with increasing forest area
15.1.2 Protection of Key Biodiversity Areas (KBAs)	6.6.1 Water ecosystems	Protection of KBAs reduces the abstraction of water from protected water ecosystems and leads to an increase in water ecosystem extent	(Chan et al., 2006; IUCN, 2012)	Increasing protection of KBAs is correlated with increasing water ecosystem extent
15.1.2 Protection of Key Biodiversity Areas (KBAs)	15.1.1 Forest area	Protection of KBAs reduces deforestation in protected forest ecosystems and leads to an increase in forest area	(Carranza et al., 2014; Geldmann et al., 2013)	Increasing protection of KBAs is correlated with increasing forest area
15.2.1 Sustainable forest certification	15.1.1 Forest area	Sustainable forest certification reduces unsustainable deforestation, which increases forest area	(Auld et al., 2008; Damette & Delacote, 2011; Potapov et al., 2017; Rametsteiner & Simula, 2003)	Increasing sustainable forest certification is correlated with increasing forest area
15.2.1 Sustainable forest certification	15.5.1 Species at risk	Sustainable forest certification reduces human disturbance of biodiversity in forest ecosystems which leads to a reduction in the number of species threatened with extinction	(Burivalova et al., 2017; Kalonga et al., 2016; van Kuijk et al., 2009)	Increasing sustainable forest certification is correlated with increasing Red List Index, which indicates decreasing species extinction risk
15.2.1 Protected forest area	15.1.1 Forest area	Protection of forest ecosystems reduces unsustainable deforestation, which increases forest area	(Carranza et al., 2014; Eklund et al., 2016)	Increasing the protection of forests correlates with increasing forest area
2.5.1 Secure genetic resources for food	2.5.2 Local breeds extinction	Conservation of genetic resources reduces the extinction risk of domesticated species	(Coping with Climate Change, 2015; Enjalbert et al., 2011)	Increasing conservation of genetic resources for food correlates with an increasing proportion of local breeds at risk of extinction
6.a.1 Investment in water and sanitation	6.6.1 Water ecosystems	Investment catalyses improved water resource management which reduces demand for, and abstraction of, water from water ecosystems and leads to an increase in water ecosystem extent	(Turral et al., 2010)	Increasing investment in water and sanitation correlates with decreasing water ecosystem extent
7.1.2 Primary reliance on clean fuels	11.6.2 Air pollution	Greater reliance on clean fuels and technologies leads to less non-renewable resource combustion, which reduces the amount of air pollutants produced and leads to improvements in air quality	(IEA et al., 2022, p. 7)	Increasing reliance on clean fuels correlates with increasing levels of fine particulate matter in cities
15.1.2 Protection of Key Biodiversity Areas (KBAs)	15.5.1 Species at risk	Protection of KBAs reduces human disturbance of biodiversity, which leads to a reduction in the number of species threatened with extinction	(Barnes et al., 2016; Butchart et al., 2006; Coad et al., 2015; Geldmann et al., 2013; Gray et al., 2016)	Increasing protection of KBAs is correlated with decreasing Red List Index, which indicates an increasing species extinction risk
15.2.1 Sustainable	15.5.1 Species at risk	Sustainable forest management reduces human disturbance of biodiversity in forest ecosystems	(Burivalova et al., 2017)	Increasing the forests under sustainable long-

Environmental policy indicator	Environmental state indicator	Hypothesised outcomes of environmental policy, leading to environmental improvements	Evidence for the hypothesised relationship	What our results suggest (green/red shading indicates agreement/disagreement with our hypotheses)
forest long-term management		which leads to a reduction in the number of species threatened with extinction		term management correlates with decreasing Red List Index, which indicates an increasing species extinction risk
15.2.1 Protected forest area	15.5.1 Species at risk	Protection of forest ecosystems reduces human disturbance of biodiversity in forest ecosystems which leads to a reduction in the number of species threatened with extinction	(Barnes et al., 2016; Butchart et al., 2006; Coad et al., 2015; Geldmann et al., 2013; Gray et al., 2016)	Increasing protection of forests correlates with decreasing Red List Index, which indicates an increasing species extinction risk
15.4.1 Mountain protected areas	15.5.1 Species at risk	Protection of mountain ecosystems reduces human disturbance of biodiversity in mountain ecosystems which leads to a reduction in the number of species threatened with extinction	(Barnes et al., 2016; Butchart et al., 2006; Gray et al., 2016)	Increasing protection of mountain ecosystems correlates with decreasing Red List Index, which indicates an increasing species extinction risk
15.8.1 Invasive alien species	15.5.1 Species at risk	National legislation and adequate resourcing for the prevention or control of invasive alien species leads to a reduction in the negative impacts of invasive alien species on biodiversity and a reduction in the number of species threatened with extinction	(Butchart et al., 2006)	Increasing prevention and management of alien invasive species correlates with decreasing Red List Index, which indicates increasing species extinction risk.

3.1.1 Extinction risk of local breeds (2.5.2)

The extinction risk of local breeds was positively correlated with policies to secure genetic resources for food (2.5.1) (Table 2), suggesting that despite increasing numbers of genetic resources secured in conservation facilities, the proportion of local breeds at risk of extinction is going up.

3.1.2 Water ecosystem extent (6.6.1)

We found a positive correlation between the protection of important sites for terrestrial and freshwater biodiversity (15.1.2) and the extent of water ecosystems (Table 2). On the other hand, we found a negative correlation between water ecosystem extent and the value of development assistance for water supply and sanitation (6.a.1), suggesting that increased spending on water and sanitation is related to decreasing water ecosystem extent. Furthermore, there was no significant relationship between water ecosystem extent and water use efficiency (6.4.1).

3.1.3 Air pollution (11.6.2)

Air pollution, measured as levels of outdoor fine particulate matter in cities, was positively correlated with the proportion of the population with primary reliance on clean fuels and technology (7.1.2) (Table 2). This result suggests that despite the increasing use of clean fuels and technologies, urban air pollution levels continue to increase. Conversely, air pollution was negatively correlated with the share of renewable energy in a country's total final energy consumption (7.2.1), suggesting that there may be a link between renewable energy use and air

consumption (7.2.1), suggesting that there may be a link between renewable energy use and air

316 pollution in cities.

3.1.4 Forest ecosystem extent (15.1.1)

The extent of forest ecosystems was positively correlated with the share of renewable energy in a country's total final energy consumption (7.2.1) (Table 2). This result suggests a relationship between increasing renewable energy use and increasing forest area, perhaps due to decreasing deforestation linked to the use of timber for energy production. We found no significant correlation between forest ecosystem extent and population with primary reliance on clean fuels and technology (7.1.2). However, forest ecosystem extent was positively correlated with the protection of important sites for terrestrial and freshwater biodiversity (15.1.2), the extent of forests certified under an independently verified certification scheme (15.2.1), and the area of forest that is protected (15.2.1). These results suggest that protected area policies and forest certification schemes are related to increasing forest ecosystem extent.

3.1.5 Species at risk (15.5.1)

We found a negative correlation between the extinction risk of wild species and several environmental policy indicators (Table 2), including the protection of important sites for terrestrial and freshwater biodiversity (15.1.2), the extent of protected forest ecosystems (15.2.1), the extent of protection of mountain ecosystems (15.4.1), implementation of long-term forest management plans (15.2.1), and the prevention or control of Invasive Alien Species (15.8.1). These results suggest that despite implementing these environmental policies, several of which have the primary objective of conserving biodiversity, the number of species at risk of extinction continues to increase. Only the extent of forests certified under an independently verified certification scheme (15.2.1) correlated positively with decreased species extinction risk. There was no significant relationship between species extinction risk and the protection of marine ecosystems (14.5.1). We must highlight that SDG indicator 15.5.1, based on the IUCNs Red List

Index, does not include marine species. Therefore the link between this indicator and marine protected areas (indicator 14.5.1) is tenuous.

3.2. Relationships between environmental pressures and the state of the environment

Table 3. The environmental pressure indicators that correlate significantly with the environmental state indicators. Correlations that show environmental degradation are presented in the upper half of table. Correlations that show environmental improvements are presented in the lower half of table. The middle column describes the causal relationship between the environment and society based on scientific evidence. The right-hand column describes how to interpret the results of the statistical analysis.

Environmental pressure indicator	Environmental state indicator	Hypothesised outcomes of environmental pressures, leading to environmental degradation	Evidence for the hypothesised relationship	What our results suggest (green/red shading indicates agreement/disagreement with our hypotheses)
6.4.2 Water stress	6.6.1 Water ecosystems	More significant water stress increases demand for, and abstraction of, water from water ecosystems and leads to a decrease in water ecosystem extent	(Arroita et al., 2017; Pekel et al., 2016; Rosen et al., 2000)	Increasing water stress correlates with decreasing water ecosystem extent
8.4.2 DMC of crops	15.5.1 Species at risk	Greater consumption of crops promotes increased agricultural production, which increases human disturbance of natural ecosystems and biodiversity, which pushes more species toward extinction	(Foley et al., 2005; Lambertini, 2020)	Increasing consumption of domestically produced crops correlates with increased species extinction risk
8.4.2 DMC of fossil fuels	11.6.2 Air pollution	Greater consumption of fossil fuels involves the combustion of fossil fuels which produces airborne pollutants which reduce air quality	(De Longueville et al., 2014)	Increasing consumption of domestically produced fossil fuels correlates with increased air pollution in cities
8.4.2 DMC of wild catch and harvest	15.5.1 Species at risk	Increased exploitation and consumption of wildlife reduces the population sizes of species and pushes more species toward extinction	(Bradshaw et al., 2009; Butchart et al., 2006; Fa et al., 2003; Nasi et al., 2011; Vliet et al., 2007)	Increasing consumption of wild-caught and harvested species correlates with increased species extinction risk
8.9.1 Tourism	6.6.1 Water ecosystems	Increased tourism increases demand for, and abstraction of, water from water ecosystems and lead to a decrease in water ecosystem extent	(Gössling & Peeters, 2015)	Increasing tourism correlates with decreasing water ecosystem extent
8.9.1 Tourism	15.1.1 Forest area	Increased tourism promotes deforestation through the development of tourism infrastructure	(Gössling & Peeters, 2015)	Increasing tourism correlates with decreasing forest area
8.9.1 Tourism	15.5.1 Species at risk	Increased tourism leads to land use change to develop tourism infrastructure, which disrupts ecosystems. Furthermore, it leads to more significant numbers of people visiting areas of high biodiversity value, which increases biodiversity disturbance and pushes more species toward extinction. Alternatively, nature-based tourism can promote biodiversity conservation.	(Bookbinder et al., 1998; Gössling, 2002)	Increasing tourism correlates with increasing species extinction risk
8.4.2 DMC of crops	15.1.1 Forest area	Greater consumption of crops promotes increased agricultural production, which	(Foley et al., 2005; Geist & Lambin,	Increasing consumption of domestically produced

Environmental pressure indicator	Environmental state indicator	Hypothesised outcomes of environmental pressures, leading to environmental degradation	Evidence for the hypothesised relationship	What our results suggest (green/red shading indicates agreement/disagreement with our hypotheses)
		increases demand for land, which drives deforestation and decreases forest area	2002; Gibbs et al., 2010; Potapov et al., 2017)	crops correlates with increasing forest area
8.4.2 DMC of metal ores and non-metallic minerals	6.6.1 Water ecosystems	Mining uses large quantities of freshwater. Therefore an increase in the DMC of minerals extracted by mining will decrease the extent of water ecosystems.	(Palmer et al., 2010)	Increasing consumption of domestically produced metal ores and non-metallic minerals correlates with increasing water ecosystem extent
8.4.2 DMC of metal ores and non-metallic minerals	15.1.1 Forest area	Mining drives deforestation. Therefore an increase in the DMC of minerals extracted by mining will decrease forest area.	(Potapov et al., 2017; Schueler et al., 2011; Sonter et al., 2014)	Increasing consumption of domestically produced metal ores and non-metallic minerals correlates with increasing forest area
8.4.2 DMC of metal ores and non-metallic minerals	15.5.1 Species at risk	Mining has a negative local effect on biodiversity due to habitat destruction and pollution. Therefore an increase in the DMC of minerals extracted by mining will increase the number of species at risk of extinction.	(Deikumah et al., 2014)	Increasing consumption of domestically produced metal ores and non-metallic minerals correlates with decreasing species extinction risk
8.4.2 DMC of wood	15.1.1 Forest area	Greater consumption of wood resources promotes deforestation, which reduces forest area. Conversely, greater wood consumption promotes the conversion of non-forested land to timber plantations which increases forest area	(Geist & Lambin, 2002; Payn et al., 2015; Potapov et al., 2017)	Increasing consumption of domestically produced wood correlates with increasing forest area
9.a.1 Infrastructure support	6.6.1 Water ecosystems	Support for dam infrastructure will increase the water ecosystem extent due to the creation of reservoirs associated with dams. Alternatively, support for, and construction of, other forms of infrastructure, such as urban development, degrades natural ecosystems and reduces water ecosystems' extent.	(Davis & Froend, 1999; Lehner et al., 2011; Wang et al., 2008; Žganec, 2012; Zhang, 2009)	Increasing financial support for infrastructure correlates with increasing water ecosystem extent.

3.2.1 Water ecosystem extent

The extent of water ecosystems was negatively correlated with water stress (6.4.2) (Table 3), measured as the proportion of freshwater withdrawals to available freshwater resources, and with tourism (8.9.1), measured as the proportion of tourism GDP in a country's total GDP. This result suggests that the extent of water ecosystems declines as freshwater withdrawals and tourism activities increase. On the other hand, the extent of water ecosystems was positively correlated with domestic material consumption (DMC) of crops (8.4.2), DMC of metal ores and non-metallic minerals, and international financial support for infrastructure (9.a.1). This result suggests that the extent of water ecosystems increases as consumption of domestically produced crops increases, perhaps due to increased area used for irrigation, with increasing consumption of

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

domestically produced metal ores and non-metallic minerals, and with increasing financial support for infrastructure, perhaps due to the construction of dams and the reservoirs created by them. **3.2.2** Air pollution (11.6.2) We found a positive correlation between air pollution levels and DMC of fossil fuels (8.4.2) (Table 3), suggesting that air quality in cities declines as consumption of domestically produced fossil fuels increases. 3.2.3 Forest ecosystem extent (15.1.1) Forest ecosystem extent correlated positively with DMC of crops, wood, and metal ores and nonmetallic minerals (8.4.2) (Table 3), suggesting that forest extent increases as consumption of these domestically produced materials increases. Conversely, forest ecosystem extent correlated negatively with tourism (8.9.1), suggesting that forest extent decreases as a country's economic reliance on tourism increases, potentially due to deforestation associated with the tourism industry. There was no significant relationship between forest extent and infrastructure support (9.a.1).3.2.4 Species at risk (15.5.1) We found a negative correlation between the extinction risk of wild species and several environmental pressures (Table 3), including DMC of crops (8.4.2), DMC of wild catch and harvest materials (8.4.2), and tourism (8.9.1). This result suggests that the number of species at risk of extinction increases as consumption of domestically produced crops increases, as the amount of wild materials extracted from a country's territory increases, and as tourism increases. Conversely, there was a positive correlation between species extinction risk and consumption of domestically produced metal ores and non-metallic minerals. Finally, there was no significant relationship between species extinction risk and water stress (6.4.2). 4. Discussion In this study, we use the dataset underlying the SDG monitoring framework to investigate the relationship, across countries, between environmental policies, the state of the environment, the impact of the environment on society, and the pressures that continue to impact the environment. We used a correlation analysis combined with a statistical modelling approach to investigate the correlations between pairs of SDG indicators that we hypothesised to have a relationship based

390	on evidence in the scientific literature and expert opinion. Where the results of the statistical
391	analyses agreed with the scientific rationale, we inferred that this is evidence of a causative
392	relationship between the indicator pairs. Our results highlight where environmental policies may
393	be achieving their intended goals. For example, protecting Key Biodiversity Areas is linked with
394	the increasing extent of forest and water ecosystems. Our results suggest that more effort is
395	required to increase the positive environmental impacts of policies, such as conserving genetic
396	resources to decrease the extinction risk of domesticated species. Surprisingly, our results
397	provide no evidence for the social impacts of the state of the environment, potentially due to the
398	complexity of ecosystems and the difficulty of detecting relationships between the non-market
399	benefits humans derive from the environment and the state of ecosystems. Finally, our results
400	suggest that environmental pressures, including freshwater withdrawals, tourism, and domestic
401	material consumption of crops, fossil fuels, and wild catch and harvest, continue negatively
402	impacting the environment.
403	This study gives us a flavour of the relationships, across countries, between governmental
404	approaches to tackling environmental degradation and the state of the environment to understand
405	where environmental responses may be achieving their intended aims and where they are falling
406	short. For example, a policy response that appears to be working for conserving forest and water
407	ecosystems is protecting important sites for terrestrial and freshwater biodiversity. Indeed there
408	is convincing evidence that protected areas reduce deforestation (Geldmann et al., 2013; Joppa &
409	Pfaff, 2011). However, the impact of protecting freshwater ecosystems is more challenging to
410	understand than in forest ecosystems and there is less evidence of the benefits of protecting
411	freshwater ecosystems (Adams et al., 2015). Our results offer new evidence about the benefits of
412	protected areas on the extent of freshwater ecosystems.
413	Our results also highlight policies that may not be having their desired impact. For example,
414	despite increasing numbers of genetic resources secured in conservation facilities, the proportion
415	of local breeds at risk of extinction is increasing. This result suggests that policymakers must do
416	more to conserve domesticated species from the threat of extinction. Indeed the latest reports
417	from the FAO on this topic highlight numerous shortcomings in the state of genetic resource
418	conservation, including missing risk status assessments for the majority of breeds and a lack of
419	early warning systems for genetic erosion (Scherf et al., 2015). In addition, SDG indicators 2.5.1
420	and 2.5.2 need more data for many countries (Gil et al., 2019). Ultimately, conservation efforts,

421	and the indicators used to monitor them, must be improved to mitigate and monitor the genetic
422	extinction risk of economically and socially valuable species (Gandini & Hiemstra, 2021).
423	Our results regarding the relationship between species extinction risk and environmental
424	responses were sobering yet not unexpected. Only a single environmental response (forest
425	certification) correlated in a direction that suggests that extinction risk is declining in response to
426	an environmental policy, which aligns with empirical evidence that forest certification
427	contributes positively to biodiversity conservation (Lehtonen et al., 2021). However, the extent
428	of protected areas of forest ecosystems, mountain ecosystems, and Key Biodiversity Areas all
429	correlated with an increase in species extinction risk, which aligns with the criticisms that
430	protected areas have fallen short of their conservation goals over the past decade (Maxwell et al.,
431	2020). Regarding the environmental pressures that drive biodiversity loss, our results agree with
432	the contemporary evidence that agricultural land use change and direct exploitation of wildlife
433	remain the main drivers of terrestrial biodiversity declines (Balvanera et al., 2019; Jaureguiberry
434	et al., 2022). Our results highlight that countries need to do more to holistically tackle the
435	multiple drivers of biodiversity loss using environmental policies that are socially just and align
436	with countries' climate change ambitions. At the 15th Conference of Parties to the UN
437	Convention on Biological Diversity, UN Member States agreed to a new set of Goals and
438	Targets to address biodiversity loss and restore natural ecosystems (CBD, 2022a), progress
439	towards which will be tracked by an underlying monitoring framework of indicators (CBD,
440	2022b). Adopting the monitoring framework is a significant achievement as it is the first time an
441	officially agreed monitoring framework has accompanied the CBD's international biodiversity
442	agreements. A rigorous mechanism for tracking countries' progress on biodiversity will push
443	governments to prioritise the effective design and implementation of environmental policies that
444	bend the curve of biodiversity decline.
445	We investigated the environment's social impacts, including the human and economic impacts of
446	natural disasters, food insecurity, health impacts of food access, and drinking water access. We
447	found no evidence for relationships between the state of the environment and its impacts on
448	society. Although alarming, this is somewhat not surprising, considering the complexity of
449	ecosystems and their relationships with the goods and benefits that humans derive from the
450	environment. Ecosystems are characterised by 'feedback loops, non-linearities, and alternative
451	states' (Mace, 2019), which makes it challenging to delineate simple relationships between the

452	state of the environment, the ecological functions that support ecosystem services, and the final
453	environmental goods and benefits that society enjoys. It may also be harder to detect a direct link
454	between humans and environmental goods and benefits at a national scale, (the scale of our
455	analysis in this study), because less people now directly depend on the goods and benefits
456	produced by their local ecosystems. Most people now live in cities(UNDESA, 2019) and
457	consume food and materials that are produced by ecosystems outside their local area, and often
458	far outside their national jurisdictions(Folke et al., 1997). There has also been less research on
459	the social impacts of some types of environmental policies than on their environmental impacts
460	(Johnson et al., 2022). Finally, the methods that are used to produce national statistics can be
461	inappropriate for surveying the population groups that do directly depend on their local
462	ecosystems for food and water such as indigenous communities(Walter & Andersen, 2016).
463	We also investigated environmental pressures, and our results suggest that the human activities
464	that cause environmental degradation, including freshwater withdrawals, tourism, consumption
465	of domestically produced crops, mined minerals, fossil fuels, and wild materials, continue to
466	degrade the environment. Indeed, our findings align with the IPBES global assessment which
467	details freshwater withdrawals, harvesting of materials from nature, mining of fossil fuels,
468	agricultural land-use change, and tourism as direct drivers of environmental change that continue
469	to threaten the state of nature globally (Balvanera et al., 2019). To improve environmental
470	outcomes, countries will need to continue to mitigate these human activities' negative
471	environmental impacts.
472	Policy responses and environmental pressures continue to increase while the state of the
473	environment continues to decline (Lambertini, 2020; UN Environment, 2019), which illustrates
474	that, to improve the environment, national governments need to do more. Existing policies need
475	to do more to achieve their intended goals and require greater stringency or redesign (UN
476	Environment, 2019). Others may need to be implemented correctly or enforced adequately.
477	Moreover, policies must tackle the underlying drivers of environmental change, such as values,
478	technology, demography, the economy, and governance, which often subvert well-meaning
479	environmental policies. Environmental policies need to engage sufficiently with land and sea use
480	policies, including agriculture, fisheries, renewable energy, and transport (European Habitats
481	Forum, 2019). In addition, countries must respond holistically to environmental declines by

482	integrating environmental policies into agriculture, fisheries, and energy policies that drive
483	environmental change.
484	We make some recommendations for future improvements to the SDG monitoring framework.
485	First, indicators on policy responses dominate the environmental dimension of the SDG
486	monitoring framework (50 out of 92 indicators), while only 11 measure the state of the
487	environment (Campbell et al., 2020). We recommend that the framework be supplemented with
488	additional environmental state indicators to better track whether policy responses lead to
489	environmental improvements. Secondly, we recommend that indicator 15.5.1, the Red List Index
490	on wild species extinction risk, is disaggregated into multiple sub-indicators of terrestrial,
491	freshwater, and marine species. Currently, indicator 15.5.1 only includes terrestrial species, so it
492	is unsuitable for assessing the success of indicator 14.5.1 on marine protected areas and sub-
493	indicator 15.1.2 on the protection of freshwater Key Biodiversity Areas. The Red List Index for
494	marine species (see, for example, (Nieto et al., 2015)) and a sub-indicator for freshwater species
495	would be more suitable for monitoring the success of marine and freshwater conservation
496	interventions than indicator 15.5.1 in its current form. Finally, national environmental
497	monitoring agencies should adopt science-based standards for the environmental state indicators
498	to provide clear targets for achievement (Usubiaga-Liaño & Ekins, 2022). Standards for some
499	indicators will be uniform across all countries, such as the WHO's safe air pollution levels
500	(World Health Organization & WHO European Centre for Environment, 2021). The standards of
501	other indicators will need to be country-specific and defined through scientific investigation of
502	environmental thresholds in the unique environmental context of each country.
503	The SDG monitoring framework's data is a valuable resource of indicators for tracking countries'
504	progress toward environmental sustainability. By testing the relationships between indicators of
505	countries' responses to environmental pressures, the state of the environment, and the impacts of
506	the environment on society, we show that governments are making some progress toward
507	sustainable development in some areas, but there are many areas for improvement. If
508	governments wish to maintain nature's contributions to people into perpetuity, they need to
509	improve their policy responses to environmental pressures.

Acknowledgments

510

511	The French Development Agency (Agence Française de Développement, AFD) funded this
512	research through the partnership agreement number 554-2020 between AFD and University
513	College London and financed on the Research Programme for a Pro Nature Economy
514	(ECOPRONAT) number CZZ2687. We thank the United Nations Environment Programme for
515	supporting this study. In addition, we thank the experts who contributed to the stakeholder
516	meetings and online survey that informed the selection of indicator pairs for investigation.
517	Open Research
518	The SDG indicators data used for the study is available in both a private FigShare repository
519	(https://figshare.com/s/83dc27cba88c5c7d91e3) and publicly available on the SDG Indicator
520	Database (<u>www.unstat.un.org/sdgs/dataportal/database</u>). The R software used for the statistical
521	analysis is available at https://www.r-project.org/ (R Core Team, 2021) and the R code used to
522	conduct the statictial analysis will be made publically available on a GitHub repository on
523	publication.
524	References
525	Adams, V. M., Setterfield, S. A., Douglas, M. M., Kennard, M. J., & Ferdinands, K. (2015).
526	Measuring benefits of protected area management: Trends across realms and research
527	gaps for freshwater systems. Philosophical Transactions of the Royal Society B:
528	Biological Sciences, 370(1681). Scopus. https://doi.org/10.1098/rstb.2014.0274
529	Arroita, M., Flores, L., Larrañaga, A., Martínez, A., Martínez-Santos, M., Pereda, O., Ruiz-
530	Romera, E., Solagaistua, L., & Elosegi, A. (2017). Water abstraction impacts stream
531	ecosystem functioning via wetted-channel contraction. Freshwater Biology, 62(2), 243-
532	257. https://doi.org/10.1111/fwb.12864
533	Auld, G., Gulbrandsen, L. H., & McDermott, C. L. (2008). Certification schemes and the
534	impacts on forests and forestry. Annual Review of Environment and Resources, 33(1),
535	187–211.

536	Balvanera, P., Pfaff, A., Viña, A., García-Frapolli, E., Merino, L., Minang, P., Nagabhatla, N.,
537	Hussain, S., & Sidorovich, A. (2019). Chapter 2.1. Status and Trends – Drivers of
538	Change. In Global assessment report of the Intergovernmental Science-Policy Platform
539	on Biodiversity and Ecosystem Services (p. 152). IPBES secretariat.
540	10.5281/zenodo.3831881
541	Barnes, M. D., Craigie, I. D., Harrison, L. B., Geldmann, J., Collen, B., Whitmee, S., Balmford,
542	A., Burgess, N. D., Brooks, T., Hockings, M., & Woodley, S. (2016). Wildlife population
543	trends in protected areas predicted by national socio-economic metrics and body size.
544	Nature Communications, 7(1), Article 1. https://doi.org/10.1038/ncomms12747
545	Bookbinder, M. P., Dinerstein, E., Rijal, A., Cauley, H., & Rajouria, A. (1998). Ecotourism's
546	Support of Biodiversity Conservation. Conservation Biology, 12(6), 1399–1404.
547	https://doi.org/10.1111/j.1523-1739.1998.97229.x
548	Bradshaw, C. J., Sodhi, N. S., & Brook, B. W. (2009). Tropical turmoil: A biodiversity tragedy
549	in progress. Frontiers in Ecology and the Environment, 7(2), 79–87.
550	https://doi.org/10.1890/070193
551	Breuer, A., Janetschek, H., & Malerba, D. (2019). Translating Sustainable Development Goal
552	(SDG) Interdependencies into Policy Advice. Sustainability, 11(7), Article 7.
553	https://doi.org/10.3390/su11072092
554	Bueren, E. van. (2019). Environmental policy. History, Concepts, Instruments, & Examples.
555	Britannica. https://www.britannica.com/topic/environmental-policy
556	Burivalova, Z., Hua, F., Koh, L. P., Garcia, C., & Putz, F. (2017). A Critical Comparison of
557	Conventional, Certified, and Community Management of Tropical Forests for Timber in

558	Terms of Environmental, Economic, and Social Variables. Conservation Letters, 10(1),
559	4–14. https://doi.org/10.1111/conl.12244
560	Butchart, S. H., Akçakaya, H. R., Kennedy, E., & HILTON-TAYLOR, C. (2006). Biodiversity
561	indicators based on trends in conservation status: Strengths of the IUCN Red List Index.
562	Conservation Biology, 20(2), 579–581.
563	Campbell, J., Neuner, J., See, L., Fritz, S., Fraisl, D., Espey, J., & Kim, A. (2020). The role of
564	combining national official statistics with global monitoring to close the data gaps in the
565	environmental SDGs. Statistical Journal of the IAOS 36. https://doi.org/10.3233/SJI-
566	200648
567	Carranza, T., Balmford, A., Kapos, V., & Manica, A. (2014). Protected Area Effectiveness in
568	Reducing Conversion in a Rapidly Vanishing Ecosystem: The Brazilian Cerrado.
569	Conservation Letters, 7(3), 216–223. https://doi.org/10.1111/conl.12049
570	CBD. (2022a). COP15: Nations Adopt Four Goals, 23 Targets for 2030 In Landmark UN
571	Biodiversity Agreement. Convention on Biological Diversity.
572	https://www.cbd.int/article/cop15-cbd-press-release-final-19dec2022
573	CBD. (2022b). Monitoring framework for the Kunming-Montreal global biodiversity framework
574	CONFERENCE OF THE PARTIES TO THE CONVENTION ON BIOLOGICAL
575	DIVERSITY Fifteenth meeting, Montreal, Canada.
576	https://www.cbd.int/doc/c/179e/aecb/592f67904bf07dca7d0971da/cop-15-1-26-en.pdf
577	Chan, K. M. A., Shaw, M. R., Cameron, D. R., Underwood, E. C., & Daily, G. C. (2006).
578	Conservation Planning for Ecosystem Services. PLOS Biology, 4(11), e379.
579	https://doi.org/10.1371/journal.pbio.0040379

580	Coad, L., Leverington, F., Knights, K., Geldmann, J., Eassom, A., Kapos, V., Kingston, N., de
581	Lima, M., Zamora, C., Cuardros, I., Nolte, C., Burgess, N. D., & Hockings, M. (2015).
582	Measuring impact of protected area management interventions: Current and future use of
583	the Global Database of Protected Area Management Effectiveness. Philosophical
584	Transactions of the Royal Society B: Biological Sciences, 370(1681), 20140281.
585	https://doi.org/10.1098/rstb.2014.0281
586	Cohen-Shacham, E., Walters, G., Janzen, C., & Maginnis, S. (Eds.). (2016). Nature-based
587	solutions to address global societal challenges. IUCN International Union for
588	Conservation of Nature. https://doi.org/10.2305/IUCN.CH.2016.13.en
589	Coping with climate change: The roles of genetic resources for food and agriculture. (2015).
590	FAO.
591	Damette, O., & Delacote, P. (2011). Unsustainable timber harvesting, deforestation and the role
592	of certification. Ecological Economics, 70(6), 1211–1219.
593	https://doi.org/10.1016/j.ecolecon.2011.01.025
594	Davis, J. A., & Froend, R. (1999). Loss and degradation of wetlands in southwestern Australia:
595	Underlying causes, consequences and solutions. Wetlands Ecology and Management,
596	7(1), 13–23. https://doi.org/10.1023/A:1008400404021
597	De Longueville, F., Hountondji, Y., Ozer, P., & Henry, S. (2014). The Air Quality in African
598	Rural Environments. Preliminary Implications for Health: The Case of Respiratory
599	Disease in the Northern Benin. Water, Air, & Soil Pollution, 225(11), 2186.
600	https://doi.org/10.1007/s11270-014-2186-4

501	Deikumah, J. P., McAlpine, C. A., & Maron, M. (2014). Mining matrix effects on West African
502	rainforest birds. Biological Conservation, 169, 334–343.
503	https://doi.org/10.1016/j.biocon.2013.11.030
504	Eklund, J., Blanchet, F. G., Nyman, J., Rocha, R., Virtanen, T., & Cabeza, M. (2016).
505	Contrasting spatial and temporal trends of protected area effectiveness in mitigating
506	deforestation in Madagascar. Biological Conservation, 203, 290-297.
507	https://doi.org/10.1016/j.biocon.2016.09.033
508	Enjalbert, J., Dawson, J. C., Paillard, S., Rhoné, B., Rousselle, Y., Thomas, M., & Goldringer, I.
509	(2011). Dynamic management of crop diversity: From an experimental approach to on-
510	farm conservation. Comptes Rendus Biologies, 334(5), 458–468.
511	https://doi.org/10.1016/j.crvi.2011.03.005
512	European Habitats Forum. (2019). The implementation of the EU 2020 Biodiversity Strategy and
513	recommendations for the post 2020 Biodiversity Strategy (p. 8). European Habitats
514	Forum.
515	https://www.iucn.org/sites/dev/files/content/documents/eu_2020_biodiversity_strategy_a
516	nd_recommendations_for_post_2020.pdf
517	Fa, J. E., Currie, D., & Meeuwig, J. (2003). Bushmeat and food security in the Congo Basin:
518	Linkages between wildlife and people's future. Environmental Conservation, 30(1), 71-
519	78. https://doi.org/10.1017/S0376892903000067
520	Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S.,
521	Coe, M. T., Daily, G. C., & Gibbs, H. K. (2005). Global consequences of land use.
522	Science, 309(5734), 570–574.

623	Folke, C., Jansson, Å., Larsson, J., & Costanza, R. (1997). Ecosystem appropriation by cities.
624	Ambio, 26(3), 167–172. Scopus.
625	Fuso Nerini, F., Tomei, J., To, L. S., Bisaga, I., Parikh, P., Black, M., Borrion, A., Spataru, C.,
626	Castán Broto, V., Anandarajah, G., Milligan, B., & Mulugetta, Y. (2018). Mapping
627	synergies and trade-offs between energy and the Sustainable Development Goals. Nature
628	Energy, 3(1), Article 1. https://doi.org/10.1038/s41560-017-0036-5
629	Gandini, G., & Hiemstra, S. J. (2021). Farm animal genetic resources and the COVID-19
630	pandemic. Animal Frontiers, 11(1), 54–56. https://doi.org/10.1093/af/vfaa049
631	Geist, H. J., & Lambin, E. F. (2002). Proximate Causes and Underlying Driving Forces of
632	Tropical Deforestation: Tropical forests are disappearing as the result of many pressures,
633	both local and regional, acting in various combinations in different geographical
634	locations. BioScience, 52(2), 143-150. https://doi.org/10.1641/0006-
635	3568(2002)052[0143:PCAUDF]2.0.CO;2
636	Geldmann, J., Barnes, M., Coad, L., Craigie, I. D., Hockings, M., & Burgess, N. D. (2013).
637	Effectiveness of terrestrial protected areas in reducing habitat loss and population
638	declines. Biological Conservation, 161, 230–238.
639	https://doi.org/10.1016/j.biocon.2013.02.018
640	Gibbs, H. K., Ruesch, A. S., Achard, F., Clayton, M. K., Holmgren, P., Ramankutty, N., &
641	Foley, J. A. (2010). Tropical forests were the primary sources of new agricultural land in
642	the 1980s and 1990s. Proceedings of the National Academy of Sciences, 107(38), 16732-
643	16737. https://doi.org/10.1073/pnas.0910275107

544	Gil, J. D. B., Reidsma, P., Giller, K., Todman, L., Whitmore, A., & van Ittersum, M. (2019).
545	Sustainable development goal 2: Improved targets and indicators for agriculture and food
546	security. Ambio, 48(7), 685-698. https://doi.org/10.1007/s13280-018-1101-4
547	Gössling, S. (2002). Global environmental consequences of tourism. Global Environmental
548	Change, 12(4), 283-302. https://doi.org/10.1016/S0959-3780(02)00044-4
549	Gössling, S., & Peeters, P. (2015). Assessing tourism's global environmental impact 1900–2050.
550	Journal of Sustainable Tourism, 23(5), 639–659.
551	https://doi.org/10.1080/09669582.2015.1008500
552	Gray, C. L., Hill, S. L. L., Newbold, T., Hudson, L. N., Börger, L., Contu, S., Hoskins, A. J.,
553	Ferrier, S., Purvis, A., & Scharlemann, J. P. W. (2016). Local biodiversity is higher
554	inside than outside terrestrial protected areas worldwide. Nature Communications, 7(1),
555	Article 1. https://doi.org/10.1038/ncomms12306
556	IAEG-SDGs. (2020). SDG Indicator changes (15 October 2018 and onward). Tier Classification
557	for Global SDG Indicators. https://unstats.un.org/sdgs/iaeg-sdgs/tier-classification/
558	IEA, IRENA, UNSD, World Bank, & WHO. (2022). Tracking SDG 7: The Energy Progress
559	Report. World Bank.
660	International Council for Science (ICSU). (2017). A Guide to "SDG" Interactions: From Science
661	to Implementation (p. 12). International Council for Science (ICSU).
562	http://pure.iiasa.ac.at/id/eprint/14591/
563	IUCN. (2012). Natural Solutions: Protected Areas Maintaining Essential Water Supplies. IUCN.
664	https://www.iucn.org/sites/dev/files/import/downloads/natsols_water_flyer_final.pdf
665	Jaureguiberry, P., Titeux, N., Wiemers, M., Bowler, D. E., Coscieme, L., Golden, A. S., Guerra,
666	C. A., Jacob, U., Takahashi, Y., Settele, J., Díaz, S., Molnár, Z., & Purvis, A. (2022). The

667	direct drivers of recent global anthropogenic biodiversity loss. Science Advances, 8(45),
668	eabm9982. https://doi.org/10.1126/sciadv.abm9982
669	Johnson, B. A., Kumar, P., Okano, N., Dasgupta, R., & Shivakoti, B. R. (2022). Nature-based
670	solutions for climate change adaptation: A systematic review of systematic reviews.
671	Nature-Based Solutions, 2, 100042. https://doi.org/10.1016/j.nbsj.2022.100042
672	Joppa, L. N., & Pfaff, A. (2011). Global protected area impacts. Proceedings of the Royal
673	Society B: Biological Sciences, 278(1712), 1633–1638.
674	https://doi.org/10.1098/rspb.2010.1713
675	Jordan, A., Wurzel, R. K. W., & Zito, A. R. (2003). 'New' Instruments of Environmental
676	Governance: Patterns and Pathways of Change. <i>Environmental Politics</i> , 12(1), 1–24.
677	https://doi.org/10.1080/714000665
678	Kalonga, S. K., Midtgaard, F., & Klanderud, K. (2016). Forest certification as a policy option in
679	conserving biodiversity: An empirical study of forest management in Tanzania. Forest
680	Ecology and Management, 361, 1-12. https://doi.org/10.1016/j.foreco.2015.10.034
681	Kristensen, P. (2004). The DPSIR Framework. The 27-29 September 2004 workshop on a
682	comprehensive / detailed assessment of the vulnerability of water resources to
683	environmental change in Africa using river basin approach, Nairobi, Kenya.
684	https://wwz.ifremer.fr/dce/content/download/69291/913220//DPSIR.pdf
685	Lambertini, M. (2020). Living Planet Report 2020: Bending the Curve of Biodiversity Loss.
686	http://www.deslibris.ca/ID/10104983
687	Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P.,
688	Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J. C., Rödel, R., Sindorf,
689	N., & Wisser, D. (2011). High-resolution mapping of the world's reservoirs and dams for

590	sustainable river-flow management. Frontiers in Ecology and the Environment, 9(9),
591	494–502. https://doi.org/10.1890/100125
592	Lehtonen, E., Gustafsson, L., Lõhmus, A., & von Stedingk, H. (2021). What does FSC forest
593	certification contribute to biodiversity conservation in relation to national legislation?
594	Journal of Environmental Management, 299. Scopus.
595	https://doi.org/10.1016/j.jenvman.2021.113606
596	Mace, G. M. (2019). The ecology of natural capital accounting. Oxford Review of Economic
597	Policy, 35(1), 54–67. https://doi.org/10.1093/oxrep/gry023
598	Maxwell, S. L., Cazalis, V., Dudley, N., Hoffmann, M., Rodrigues, A. S. L., Stolton, S.,
599	Visconti, P., Woodley, S., Kingston, N., Lewis, E., Maron, M., Strassburg, B. B. N.,
700	Wenger, A., Jonas, H. D., Venter, O., & Watson, J. E. M. (2020). Area-based
701	conservation in the twenty-first century. <i>Nature</i> , 586(7828), 217–227. Scopus.
702	https://doi.org/10.1038/s41586-020-2773-z
703	Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: Synthesis. Island
704	Press.
705	Nasi, R., Taber, A., & Van Vliet, N. (2011). Empty forests, empty stomachs? Bushmeat and
706	livelihoods in the Congo and Amazon Basins. International Forestry Review, 13(3), 355-
707	368. https://doi.org/10.1505/146554811798293872
708	Nieto, A., Ralph, G. M., Comeros-Raynal, M., Heessen, H., & Rijnsdorp, A. (2015). European
709	Red List of marine fishes. Publications Office of the European Union.
710	OECD. (2011). Better Policies to Support Eco-innovation. OECD Publishing.
711	https://www.oecd.org/environment/consumption-innovation/betterpoliciestosupporteco-
712	innovation.htm

713 Palmer, M. A., Bernhardt, E. S., Schlesinger, W. H., Eshleman, K. N., Foufoula-Georgiou, E., 714 Hendryx, M. S., Lemly, A. D., Likens, G. E., Loucks, O. L., Power, M. E., White, P. S., 715 & Wilcock, P. R. (2010). Mountaintop Mining Consequences. Science, 327(5962), 148– 716 149. https://doi.org/10.1126/science.1180543 717 Payn, T., Carnus, J.-M., Freer-Smith, P., Kimberley, M., Kollert, W., Liu, S., Orazio, C., 718 Rodriguez, L., Silva, L. N., & Wingfield, M. J. (2015). Changes in planted forests and 719 future global implications. Forest Ecology and Management, 352, 57–67. 720 https://doi.org/10.1016/j.foreco.2015.06.021 721 Pekel, J.-F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of 722 global surface water and its long-term changes. *Nature*, 540(7633), Article 7633. 723 https://doi.org/10.1038/nature20584 724 Potapov, P., Hansen, M. C., Laestadius, L., Turubanova, S., Yaroshenko, A., Thies, C., Smith, 725 W., Zhuravleva, I., Komarova, A., Minnemeyer, S., & Esipova, E. (2017). The last 726 frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. 727 Science Advances, 3(1), e1600821. https://doi.org/10.1126/sciadv.1600821 728 Pradhan, P., Costa, L., Rybski, D., Lucht, W., & Kropp, J. P. (2017). A Systematic Study of 729 Sustainable Development Goal (SDG) Interactions. Earth's Future, 5(11), 1169–1179. 730 https://doi.org/10.1002/2017EF000632 731 PwC. (2016). Navigating the SDGs: A business guide to engaging with the UN Global Goals (p. 732 96). Price Waterhouse Cooper. 733 https://www.pwc.com/gx/en/sustainability/publications/PwC-sdg-guide.pdf 734 R Core Team. (2021). R: A language and environment for statistical computing. R Foundation 735 for Statistical Computing. https://www.R-project.org/

736	Rametsteiner, E., & Simula, M. (2003). Forest certification—An instrument to promote
737	sustainable forest management? Journal of Environmental Management, 67(1), 87–98.
738	https://doi.org/10.1016/S0301-4797(02)00191-3
739	Rosen, C., Tunstall, D., White, R., Ottke, C., Revenga, C., Rohweder, M., Murray, S., Kassem,
740	K., Kura, Y., Sebastian, K., Henninger, N., Reid, W. V., Lenton, R., McNeil, C.,
741	Schmidt, R., Becker, S., Lewis, K., Claasen, D., Singh, A., Axelrod, E. (2000). A
742	Guide to World Resources 2000–2001: People and Ecosystems: The Fraying Web of Life.
743	UNDP-UNEP-World Bank.
744	Scharlemann, J. P. W., Brock, R. C., Balfour, N., Brown, C., Burgess, N. D., Guth, M. K.,
745	Ingram, D. J., Lane, R., Martin, J. G. C., Wicander, S., & Kapos, V. (2020). Towards
746	understanding interactions between Sustainable Development Goals: The role of
747	environment-human linkages. Sustainability Science. https://doi.org/10.1007/s11625-
748	020-00799-6
749	Scherf, B. D., Pilling, D., & Commission on Genetic Resources for Food and Agriculture.
750	(2015). The second report on the state of the world's animal genetic resources for food
751	and agriculture. http://www.fao.org/3/a-i4787e.pdf
752	Schueler, V., Kuemmerle, T., & Schröder, H. (2011). Impacts of Surface Gold Mining on Land
753	Use Systems in Western Ghana. AMBIO, 40(5), 528-539.
754	https://doi.org/10.1007/s13280-011-0141-9
755	Schwartz, T., & Goubran, S. (2020). An Introduction to the Current Landscape: Environmental
756	Policy and the Economy. In Environmental policy: An economic perspective. Hoboken,
757	New Jersey; West, Sussex, England: Wiley Blackwell.
758	http://onlinelibrary.wiley.com/doi/epub/10.1002/9781119402619

/59	Shanley, P. (2002). Tapping the green market: Management and certification of non-timber
760	forest products. Earthscan Publications; Library Hub Discover.
761	http://ebookcentral.proquest.com/lib/abdn/detail.action?docID=429917
762	Sonter, L. J., Moran, C. J., Barrett, D. J., & Soares-Filho, B. S. (2014). Processes of land use
763	change in mining regions. Journal of Cleaner Production, 84, 494-501.
764	https://doi.org/10.1016/j.jclepro.2014.03.084
765	Turral, H., Svendsen, M., & Faures, J. M. (2010). Investing in irrigation: Reviewing the past and
766	looking to the future. Agricultural Water Management, 97(4), 551–560.
767	https://doi.org/10.1016/j.agwat.2009.07.012
768	UN Environment. (2019). Global Environment Outlook—GEO-6: Healthy Planet, Healthy
769	People. Un Environment. https://doi.org/10.1017/9781108627146
770	UNDESA. (2019). World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420).
771	United Nations, Department of Economic and Social Affairs, Population Division.
772	UNEP. (2019). Measuring Progress: Towards Achieving the Environmental Dimension of the
773	SDGs. United Nations Environment Programme.
774	UNEP. (2021). Measuring Progress: Environment and the SDGs. United Nations Environment
775	Programme. https://www.unep.org/resources/publication/measuring-progress-
776	environment-and-sdgs
777	United Nations. (2015). Transforming our World: The 2030 Agenda for Sustainable
778	Development. General Assembly Resolution A/RES/70/1.
779	https://sustainabledevelopment.un.org/post2015/transformingourworld/publication
780	Usubiaga-Liaño, A., & Ekins, P. (2022). Are we on the right path? Measuring progress towards
781	environmental sustainability in European countries. Sustainability Science.

782 van Kuijk, M., Putz, F., & Zagt, R. (2009). Effects of forest certification on biodiversity. 783 Tropenbos International. 784 https://www.tropenbos.org/resources/publications/effects+of+forest+certification+on+bio 785 diversity 786 Vliet, N. van, Nasi, R., Emmons, L., Feer, F., Mbazza, P., & Bourgarel, M. (2007). Evidence for 787 the local depletion of bay duiker Cephalophus dorsalis, within the Ipassa Man and 788 Biosphere Reserve, north-east Gabon. African Journal of Ecology, 45(3), 440–443. 789 Walter, M., & Andersen, C. (2016). *Indigenous statistics: A quantitative research methodology*. 790 Routledge. 791 Wang, X., Ning, L., Yu, J., Xiao, R., & Li, T. (2008). Changes of urban wetland landscape 792 pattern and impacts of urbanization on wetland in Wuhan City. Chinese Geographical 793 Science, 18(1), 47–53. https://doi.org/10.1007/s11769-008-0047-z 794 Watson, R. T., Baste, I. A., Larigauderie, A., Leadley, P., Pascual, U., Baptiste, B., Demissew, 795 S., Dziba, L., Erpul, G., Fazel, A. M., Fischer, M., Hernández, A. M., Karki, M., Mathur, 796 V., Pataridze, T., Pinto, I. S., Stenseke, M., Török, K., & Vilá, B. (2019). The global 797 assessment report on biodiversity and ecosystem services. Summary for policymakers. 798 IPBES Secretariat. https://ipbes.net/global-assessment 799 Weitz, N., Carlsen, H., Skånberg, K., Dzebo, A., & Viaud, V. (2019). SDGs and the environment 800 in the EU: A systems view to improve coherence (p. 36). Stockholm Environment 801 Institute. https://www.sei.org/wp-content/uploads/2019/10/sei-2019-pr-weitz-sdg-802 synergies-eu-env.pdf

803	World Health Organization & WHO European Centre for Environment. (2021). WHO global air
804	quality guidelines: Particulate matter (PM2. 5 and PM10), ozone, nitrogen dioxide,
805	sulfur dioxide and carbon monoxide. World Health Organization.
806	Žganec, K. (2012). The effects of water diversion and climate change on hydrological alteration
807	and temperature regime of karst rivers in central Croatia. Environmental Monitoring and
808	Assessment, 184(9), 5705-5723. https://doi.org/10.1007/s10661-011-2375-1
809	Zhang, Q. (2009). The South-to-North Water Transfer Project of China: Environmental
810	Implications and Monitoring Strategy1. JAWRA Journal of the American Water
811	Resources Association, 45(5), 1238–1247. https://doi.org/10.1111/j.1752-
812	1688.2009.00357.x
813	

1 The SDG monitoring framework provides limited evidence that environmental

- 2 policies are delivering multiple ecological and social benefits
- 3 Fairbrass, A.J.^{1*}, O'Sullivan², A., Campbell, J.³, Ekins, P.¹
- 4 ¹ Institute for Sustainable Resources, University College London, London, UK.
- 5 ² Energy Institute, University College London, London, UK.
- 6 ³ United Nations Environment Programme, Nairobi, Kenya.
- 7 Corresponding author: Alison Fairbrass (alison.fairbrass.10@ucl.ac.uk)
- **8 Key Points:**

15

- The state of the environment globally continues to decline despite increasing
 environmental policy responses.
- The SDG indicators provide no evidence that environmental policies deliver secondary social benefits.
- Protected areas and sustainable forest certification are linked with environmental improvements, mainly in forest and water ecosystems.

16	Abstract
17	The Sustainable Development Goals (SDGs) provide targets for humanity to achieve sustainable
18	development by 2030. A monitoring framework of 248 environmental, social, and economic
19	indicators, reported nationally by 193 UN Member States, tracks progress. The framework
20	includes 92 environmental indicators, most of which refer to environmental policies. The SDG
21	monitoring framework provides data to assess whether, across countries, environmental policies
22	are: 1. Addressing environmental pressures, 2. Linked to environmental improvements, and 3.
23	Linked with societal benefits delivered by healthy environments. We use statistical analysis and
24	a generalized linear modeling approach to test for correlations between SDG indicators related to
25	environmental policies, environmental pressures, the state of the environment, and social impacts
26	delivered by healthy environments. Our results show that environmental policies, particularly
27	protected areas and sustainable forest certification, are linked with environmental improvements,
28	mainly in forest and water ecosystems. However, we find no evidence that environmental
29	improvements are linked with positive social impacts. Finally, environmental pressures,
30	including freshwater withdrawal, domestic material consumption, and tourism, are linked with
31	environmental degradation. Environmental policy responses are generally increasing across
32	countries. Despite this, the state of the environment globally continues to decline. Governments
33	must focus on understanding why environmental policies have not been sufficient to reverse
34	environmental decline, particularly concerning the pressures that continue to degrade the
35	environment. To better track progress towards sustainable development, we recommend that the
36	SDG monitoring framework is supplemented with additional indicators on the state of the
37	environment.
38	Plain Language Summary
39	Governments implement environmental policies to reduce ecological degradation and sustain
40	environmental benefits to humans, such as food and clean water. The Sustainable Development
41	Goals (SDGs) call for all countries to commit to pathways that lead to sustainable development.
42	Progress towards achieving the Goals is reported by governments using 231 indicators. The SDG

indicators track the implementation of environmental policies, the state of the environment, and

environmental benefits such as food security and drinking water access. Using the data

underlying the SDG indicators reported by governments to date, we investigate whether the

43

44

45

implementation of environmental policies correlates with improvements in the environment and 46 47 the provision of environmental benefits to humans. Results show that most environmental 48 policies are not associated with environmental improvements; worse, we find no evidence that 49 environmental policies lead to more human benefits. However, we see two types of 50 environmental policies, protected areas and sustainable forest certification, that lead to increasing 51 the size of forest and water ecosystems which are essential for sustaining the lives of plants, 52 animals, and humans that rely on them. Our findings highlight that governments must improve 53 their use of environmental policies to achieve environmental improvements and the benefits 54 humans derive from the environment. 55 1. Introduction 56 In September 2015, the United Nations Sustainable Development Summit adopted an 57 international framework to guide development efforts, entitled Transforming our World: the 58 2030 Agenda for Sustainable Development (United Nations, 2015). The Agenda is built around 59 17 Sustainable Development Goals (SDGs), divided into 169 targets, which are a call to action 60 from all countries to move the world onto a sustainable development trajectory. An underlying 61 monitoring framework composed of 231 unique indicators (a further thirteen are repeated under 62 different targets) tracks progress toward the goals and targets. The environmental dimension of 63 the SDG monitoring framework is composed of 92 indicators (UNEP, 2021). These indicators 64 encompass a range of topics, such as sustainable consumption, ocean acidification, and 65 environmental education, and a range of environments, such as marine, freshwater, and mountain 66 ecosystems. A dataset underlies the SDG monitoring framework and is composed of indicators 67 reported to the UN by the Member States or derived by the UN from global datasets when 68 nationally produced indicators are unavailable. However, some indicators still need more data, as 69 discussed further below. 70 Environmental policies are intended to reduce environmental damage, incentivise positive 71 environmental behaviour, and guide practices toward a more sustainable future (Schwartz & 72 Goubran, 2020). The umbrella term 'environmental policy' encapsulates various environmental 73 policy types, including regulatory instruments, market-based instruments, voluntary agreements, 74 and information provision (Jordan et al., 2003). In addition, innovation policy may also be used 75 to improve the environment (OECD, 2011). Most recently, a class of policy instruments called

76	'Nature-based solutions' has been defined as 'actions to protect, sustainably manage and restore
77	natural or modified ecosystems that address societal challenges effectively and adaptively,
78	simultaneously providing human well-being and biodiversity benefits' (Cohen-Shacham et al.,
79	2016).
80	The SDG monitoring framework uses SDG indicators to track the national use of environmental
81	policy instruments. For example, indicator 15.8.1 covers legislation about invasive alien species
82	(a regulatory instrument), indicator 15.4.1 covers the protection of mountain biodiversity (a
83	Nature-based Solution), and indicator 12.1.1 covers sustainable consumption policies (the
84	indicator does not specify instrument type).
85	If the aim of environmental policies is 'to prevent or reduce harmful effects of human activities
86	on ecosystems' (Bueren, 2019) and to 'address societal challengesby providing human well-
87	being benefits' (Cohen-Shacham et al., 2016), we should expect that environmental
88	improvements would follow the use of environmental policies. In addition, environmental
89	improvements would also benefit human society via ecosystem services. Indeed, the natural
90	environment provides various services that benefit humans, such as providing food and fibre,
91	mitigating the effects of extreme weather events, and cultural connections to nature (Millennium
92	Ecosystem Assessment, 2005). In this study, we use the SDG monitoring framework data to
93	investigate, at the national scale, the relationships between the use of environmental policies, the
94	state of the environment, and the provision of environmental benefits to society.
95	The DPSIR indicator framework describes the interactions between society and the environment
96	(Kristensen, 2004; UN Environment, 2019). The framework provides a structure to understand
97	the causal links between 'driving forces' [D] (economic sectors, human activities), 'pressures'
98	[P] (emissions, waste, resource use), environmental 'states' [S] (physical, chemical, and
99	biological), 'impacts' [I] (on ecosystems, human health, and functions), and political 'responses'
100	[R] (policies, and other actions at different levels). In this study, we investigate whether the SDC
101	monitoring framework's data provides evidence for relationships, at a national level, between
102	political 'responses,' the 'state' of the environment, and the 'impacts' of the environment on
103	society. In addition, we investigate relationships between environmental 'pressures' (UN
104	Environment, 2019) and environmental 'state' indicators to highlight which environmental
105	pressures require increased policy attention to reduce their harmful impacts. Finally, this
106	investigation allows us to leverage the SDG monitoring framework data to investigate whether

107	national environmental policies are delivering their primary objective of improving the state of
108	the environment and their secondary objective of reducing the negative impacts of environmental
109	degradation on people.
110	Several studies have already investigated the relationships between the Goals and Targets of the
111	SDGs (Breuer et al., 2019; Fuso Nerini et al., 2018; International Council for Science (ICSU),
112	2017; PwC, 2016; Scharlemann et al., 2020; Weitz et al., 2019). However, only one study has
113	investigated the relationships between the SDG indicators underlying the entire SDG monitoring
114	framework (Pradhan et al., 2017). This study took SDG indicators in pairs for all countries and,
115	given the availability of time-series data, calculated correlations between the indicator pairs
116	using Spearman's rank. We go beyond the Pradhan et al. study in two ways. Firstly, we weed out
117	all indicator pairs where there is no evidence in the scientific literature of likely correlation or
118	causation along the DPSIR (Driving forces to Pressures to States to Impacts to Responses) chain
119	Then, the indicator pairs are selected on this basis, which both aids our interpretation of our
120	results and strengthens the probability that any correlations may have at least some causal
121	elements. Secondly, we used a modelling approach to investigate the relationship between
122	indicator pairs, rather than a correlation test as used by Pradhan et al A modelling approach
123	enables us to control for potentially confounding factors that may influence the SDG indicators,
124	such as economic development, demographics, or geolocation of a country (Breuer et al., 2019).
125	
126	Therefore, this study uses the SDG monitoring framework data to investigate whether national
127	environmental policies deliver their intended primary environmental and secondary social
128	benefits and identify which environmental pressures require increased political attention. First,
129	we apply the DPSIR framework to identify SDG indicators representing environmental
130	'pressures,' policy 'responses,' environmental 'states,' and social 'impacts.' Secondly, we identify
131	plausible relationships between indicators of environmental pressures, environmental policy
132	responses, the state of the environment, and secondary societal impacts. Finally, we use
133	statistical tests and multivariate analysis to test relationships between SDG indicators while
134	controlling for confounding factors of countries' development and geographic status. Leveraging
135	the dataset underlying the SDG monitoring framework, our approach allows us to ask the
136	questions:

- Are environmental policies correlated with improvements in the state of the environment? These results will suggest where political efforts have the desired impact on the environment.

 Are improvements in the state of the environment correlated with reductions in the impacts of
- Are improvements in the state of the environment correlated with reductions in the impacts of poor environmental quality on society? These results will highlight where environmental policies can deliver additional societal benefits.
- *Is there evidence of negative impacts from environmental pressures on the state of the*143 *environment?* These results will highlight where additional efforts need to focus.

2. Materials and Methods

2.1. Classifying SDG indicators and assessing data availability

We classified the 231 unique SDG indicators and their underlying sub-indicators into one of four groups (Table 1). Some SDG indicators are composed of a single indicator, and others are disaggregated into sub-indicators. For example, SDG indicator 2.5.1 'Secure genetic resources for food' is produced by aggregating two underlying sub-indicators: 1. The number of local breeds for which sufficient genetic resources are stored for reconstitution, and 2. Plant breeds for which sufficient genetic resources are stored. In contrast, SDG 6.6.1 includes sub-indicators related to water body extent, wetland extent, and mangrove extent, which are used without aggregation. In addition to our classification, Table 1 shows the smaller number of indicators with sufficient data to carry out our analysis.

Table 1. Classification and data availability of the SDG indicators and sub-indicators

Class	Number of unique indicators (and sub-indicators)	Number of unique indicators (and sub-indicators) with sufficient data to include in the analysis
Environmental policy responses	50 (85)	22 (38)
Environmental states	11 (36)	5 (9)
Social impacts	16 (44)	11 (31)
Environmental pressures	20 (41)	18 (38)

Data collection efforts to support the SDG monitoring framework vary significantly across the Targets and Indicators (UNEP, 2019). Tier 3 indicators still need an agreed methodology for collecting data; Tier 2 indicators are not yet supported by regular data collection (IAEG-SDGs,

160	2020). This means many SDG environmental indicators do not have the necessary datasets for
161	robust statistical analysis.(UNEP, 2019). Therefore, we assessed the data availability of each
162	SDG indicator and sub-indicator. In order to be included in our analysis, an indicator or sub-
163	indicator must have data for at least two years since 2000 by at least 20 countries (Table 1).
164	Between January and June 2020, we extracted the data underlying the SDG indicators from the
165	UN's SDG Indicators Database. However, some underlying data was unavailable on the SDG
166	Indicators Database, and we sourced this additional data from UNEP in July 2020.
167	2.1.1 Group 1: Environmental policy responses
168	We identified 50 unique SDG indicators related to environmental policies that cover issues such
169	as sustainable agricultural management, renewable energy use, and action plans for
170	sustainability. In addition, the SDG monitoring framework contains sufficient data to include 22
171	environmental policy indicators in this analysis.
172	2.1.2 Group 2: Environmental states
173	We identified 11 SDG indicators that relate to the state of the environment. These state of the
174	environment indicators measure the quality and quantity of water resources, marine
175	eutrophication, plastic concentration and acidity, fish stocks, forest cover, land degradation,
176	green land cover in mountain ecosystems, and extinction risk of wild and domesticated species.
177	The SDG monitoring framework contains sufficient data to include five environmental state
178	indicators in this analysis.
179	2.1.3 Group 3: Social impacts
180	We identified 16 SDG indicators that relate to the social impacts of the environment. These
181	social impacts indicators include the human and economic impacts of natural disasters, food, and
182	water access, and mortality attributed to air pollution. The SDG monitoring framework contains
183	sufficient data to include 11 social impact indicators in this analysis.
184	2.1.4 Group 4: Environmental pressures
185	We identified 20 SDG indicators related to environmental pressures. These environmental
186	pressure indicators include water stress, domestic material consumption (DMC), tourism, and
187	infrastructure development. The DMC indicator comprises numerous material-specific sub-
188	indicators including, but not limited to, DMC of wood, minerals, fossil fuels, crops, wild catch,

and harvested materials. The SDG monitoring framework contains sufficient data to include 18 environmental pressure indicators in this analysis.

2.2. Identifying potential synergies between indicator pairs

The IPBES Global Assessment (Watson et al., 2019) provides a global evidence review of the environmental and social effects of environmental pressures and policy responses; for example, the direct environmental impacts of sustainability certification schemes on forest ecosystems and the secondary social impacts on access to non-timber forest products (Shanley, 2002). For the indicators with sufficient data to include in our analysis (Table 1), we identify potential relationships between pairs of SDG indicators and their sub-indicators using this evidence base. To investigate the relationship between environmental 'pressures,' policy 'responses,' environmental 'states,' and social 'impacts' we identify 618 potential relationships between SDG indicators and their underlying sub-indicators. We detail these potential relationships in the Supplementary Information. We supplemented the evidence presented in IPBES Global Assessment through consultation with experts from various environmental and social stakeholder groups. This consultation on selecting SDG indicator relationships took the form of an online meeting held on 21-22 April 2020 and an online survey held from 29 May to 13 June 2020. We provide the minutes of this meeting and an overview of the responses received from experts to the online survey in the Supplementary Information.

2.3.Determining how to interpret SDG indicators to identify improvements in environmental and social conditions

A good indicator has a clear relationship to the situation about which it is reporting. Of the environmental state and social impact indicators that we include in this investigation, we identify when they are showing improvements in the state of the environment and the social impacts of the environment (Figure 1). In terms of improving environmental and social conditions, some indicators would increase (e.g., forest area and schools with drinking water access), and other indicators would decrease (e.g., air pollution and food insecurity). Different correlation directions indicate desirable relationships between environmental pressure, environmental policy, environmental state, and social impact indicators. Environmental state indicators that show improvement when they increase should show a **positive correlation** with environmental policy indicators, e.g., an *increase* in forest areas should correlate positively with *increasing* the

220	protection of forest ecosystems. Conversely, environmental indicators that show improvement
221	when they decrease should show a negative correlation with environmental policy indicators,
222	e.g., decreasing domestic species extinction risk should correlate negatively with increasing
223	conservation of domestic species' genetic resources.
224	Environmental state indicators will tend to be negatively affected by environmental pressures,
225	with the direction of the correlation depending on whether improvement in each indicator is
226	represented by an increase or a decline.
227	Finally, the desirable correlation between an environmental state and a social impact indicator
228	would suggest that social impacts are improving alongside improvements in the state of the
229	environment. Again, the desirable direction of the correlation depends on whether improvement
230	is associated with increasing or decreasing values of each indicator.

Direction of correlation in response to:

What we want to see	Increasing environmental policies	Decreasing environmental pressures
ent		
Decreasing proportion of local breeds classified as being at risk of extinction	•	0
Increasing extent of water-related ecosystems	•	•
Decreasing levels of fine particular (e.g. PM2.5 and PM10) matter in cities	•	•
Increasing forest area	0	•
Increasing Red List Index indicates decreasing species extinction risk	0	•
	Decreasing proportion of local breeds classified as being at risk of extinction Increasing extent of water-related ecosystems Decreasing levels of fine particular (e.g. PM2.5 and PM10) matter in cities Increasing forest area Increasing Red List Index indicates	What we want to see environmental policies ent Decreasing proportion of local breeds classified as being at risk of extinction Increasing extent of water-related ecosystems Decreasing levels of fine particular (e.g. PM2.5 and PM10) matter in cities Increasing forest area Increasing Red List Index indicates

Direction of correlation in response to an environmental state indicator that shows improvement when values are:

SDG	Indicators	What we want to see	Increasing	Decreasing
Social imp	act			
1.5.1	Disasters: human impacts	Decreasing human impacts of disasters	•	•
1.5.2	Disasters: economic impacts	Decreasing economic impacts of disasters	•	•
2.1.1	Undernourishment	Decreasing prevalence of undernourishment	•	•
2.1.2	Food insecurity	Decreasing prevalence of moderate or severe food insecurity	•	0
2.2.2	Children wasted	Decreasing prevalence of children wasted	•	•
2.2.2	Children overweight	Decreasing prevalence of children overweight	•	•
4.a.1	Schools drinking water access	Increasing proportion of schools offering access to drinking water	•	•

231232

233

234

235

236

237

238

Figure 1. The desirable direction of correlation between indicators (plus sign indicates a positive correlation, minus sign indicates a negative correlation) that show improvement in the state of the environment in response to increasing environmental policies and decreasing environmental pressures (upper table) and the social impacts of the state of the environment (lower table).

2.4. Investigating relationships between indicator pairs

We used generalized linear regression modelling (GLRM) to investigate whether there is evidence for a statistically significant relationship between our chosen indicator pairs within our

239	model, controlling for two potentially confounding factors, population, and GDP. This
240	methodology adapts the analysis we present in (UNEP, 2021), in which we combined a GLRM
241	and correlation test to investigate SDG indicator interactions. Here we report only the results of
242	our investigation of SDG indicator interactions using a GLRM approach. In addition, this
243	approach enables us to investigate correlations while considering some confounding factors that
244	a correlation test does not.
245	A GLRM produces a correlation coefficient, the sign of which indicates a positive or negative
246	direction of the relationship between the two indicators. For example, one of our indicator pairs
247	is clean fuels and air quality, both of which may change due to a change in GDP. A GLRM
248	allows us to separate the different potential influences on our indicator variables, making it more
249	likely that any correlation between the two indicators is not the result of some other factor. In
250	addition to GDP and population, we included a fixed effect in our regressions to account for
251	regional or other differences between the countries.
252	There are several points to note about our approach: 1. The GLRM approach is characterized by
253	the assumption that the relationship between two indicators is linear. Therefore, any non-linear
254	associations between the two indicators will not be captured adequately by the GLRM. 2. We
255	applied a log transformation to several indicators to control for the substantial differences
256	between some countries. The log transformation is appropriate to the data underlying the
257	indicators because the values are generally positive, such as percentages and square kilometres.
258	The log transformation also mitigates the impact of outliers by compressing the data. 3. We
259	needed at least two data points at different times to estimate the relationships between our
260	indicators 4. Finally, for each indicator pair we investigated, our analysis was limited to the
261	number of countries reporting data for both indicators.
262	2.4.1 Generalised linear regression model (GLRM)
263	The complete model formulation is as follows:
264	$\log(Y) = \beta_1 \log(X) + \beta_2 \log(pop) + \beta_3 \log(GDP) + I_{region}$
265	Where:
266	Y: an indicator of either the environmental state OR a social impact
267	X: an indicator of either the environmental pressure OR an environmental policy OR the
268	environmental state
269	pop and GDP: national population and GDP for each year, the potential confounding factors

- 270 I_{region}: a fixed effect variable for each country or geographical region
- β1, β2, and β3: maximum likelihood estimates of the model coefficients. These measure the
- 272 relationship between each independent variable in the model and the dependent Y variable.
- We conducted a hypothesis test on the coefficient of interest (β 1) to assess whether there is
- 274 evidence of a relationship between a pair of indicators (using a significance level of $\alpha = 0.05$)
- after accounting for the influence of the potential confounding factors. The GLRM model also
- 276 calculates the R2 value, which shows how much of the variance in the dependent variable it
- captures. We did not consider regressions with an R2 of less than 0.2, which was our minimum
- 278 goodness of fit threshold. We conducted all statistical analyses using R software (R Core Team,
- 279 2021).

280

288

289

290

3. Results

- We identified significant correlations between the indicators on the state of the environment,
- with the indicators on environmental policies and pressures—some correlations aligned with our
- 283 hypotheses, and others contrasted with our hypotheses. However, we identified no significant
- correlations between the indicators on the state of the environment and the social impacts of the
- environment. Therefore, the Results section presents only the findings of the analysis of the
- environmental policy, pressure, and state indicators, and no findings on the social impact
- indicators, as we found no significant relationships with these indicators.

3.1. Relationships between environmental policies, the state of the environment

- Table 2. The environmental policy indicators that correlate significantly with the environmental state indicators. Correlations that show environmental improvement are presented in the upper
- 291 half of the table. Correlations that show environmental degradation are presented in the lower
- 292 half of the table. The middle column describes the causal relationship between environmental
- 293 policies and environmental improvements based on scientific evidence. The right-hand column
- 294 describes how to interpret the results of the statistical analysis.

Environmental policy indicator	Environmental state indicator	Hypothesised outcomes of environmental policy, leading to environmental improvements	Evidence for the hypothesised relationship	What our results suggest (green/red shading indicates agreement/disagreement with our hypotheses)
7.2.1 Renewable energy	11.6.2 Outdoor air pollution in cities	Greater reliance on clean fuels leads to less combustion of dirty fuels, which reduces the amount of air pollutants produced and leads to improvements in air quality	(IEA et al., 2022, p. 7)	Increasing renewable energy use correlates with decreasing levels of fine particulate matter in cities

Environmental policy indicator	Environmental state indicator	Hypothesised outcomes of environmental policy, leading to environmental improvements	Evidence for the hypothesised relationship	What our results suggest (green/red shading indicates agreement/disagreement with our hypotheses)
7.2.1 Renewable energy	15.1.1 Forest area	Greater reliance on clean fuels reduces reliance on wood resources for energy which leads to less deforestation and a greater extent of forest ecosystems	(IEA et al., 2022, p. 7)	Increasing renewable energy use correlates with increasing forest area
15.1.2 Protection of Key Biodiversity Areas (KBAs)	6.6.1 Water ecosystems	Protection of KBAs reduces the abstraction of water from protected water ecosystems and leads to an increase in water ecosystem extent	(Chan et al., 2006; IUCN, 2012)	Increasing protection of KBAs is correlated with increasing water ecosystem extent
15.1.2 Protection of Key Biodiversity Areas (KBAs)	15.1.1 Forest area	Protection of KBAs reduces deforestation in protected forest ecosystems and leads to an increase in forest area	(Carranza et al., 2014; Geldmann et al., 2013)	Increasing protection of KBAs is correlated with increasing forest area
15.2.1 Sustainable forest certification	15.1.1 Forest area	Sustainable forest certification reduces unsustainable deforestation, which increases forest area	(Auld et al., 2008; Damette & Delacote, 2011; Potapov et al., 2017; Rametsteiner & Simula, 2003)	Increasing sustainable forest certification is correlated with increasing forest area
15.2.1 Sustainable forest certification	15.5.1 Species at risk	Sustainable forest certification reduces human disturbance of biodiversity in forest ecosystems which leads to a reduction in the number of species threatened with extinction	(Burivalova et al., 2017; Kalonga et al., 2016; van Kuijk et al., 2009)	Increasing sustainable forest certification is correlated with increasing Red List Index, which indicates decreasing species extinction risk
15.2.1 Protected forest area	15.1.1 Forest area	Protection of forest ecosystems reduces unsustainable deforestation, which increases forest area	(Carranza et al., 2014; Eklund et al., 2016)	Increasing the protection of forests correlates with increasing forest area
2.5.1 Secure genetic resources for food	2.5.2 Local breeds extinction	Conservation of genetic resources reduces the extinction risk of domesticated species	(Coping with Climate Change, 2015; Enjalbert et al., 2011)	Increasing conservation of genetic resources for food correlates with an increasing proportion of local breeds at risk of extinction
6.a.1 Investment in water and sanitation	6.6.1 Water ecosystems	Investment catalyses improved water resource management which reduces demand for, and abstraction of, water from water ecosystems and leads to an increase in water ecosystem extent	(Turral et al., 2010)	Increasing investment in water and sanitation correlates with decreasing water ecosystem extent
7.1.2 Primary reliance on clean fuels	11.6.2 Air pollution	Greater reliance on clean fuels and technologies leads to less non-renewable resource combustion, which reduces the amount of air pollutants produced and leads to improvements in air quality	(IEA et al., 2022, p. 7)	Increasing reliance on clean fuels correlates with increasing levels of fine particulate matter in cities
15.1.2 Protection of Key Biodiversity Areas (KBAs)	15.5.1 Species at risk	Protection of KBAs reduces human disturbance of biodiversity, which leads to a reduction in the number of species threatened with extinction	(Barnes et al., 2016; Butchart et al., 2006; Coad et al., 2015; Geldmann et al., 2013; Gray et al., 2016)	Increasing protection of KBAs is correlated with decreasing Red List Index, which indicates an increasing species extinction risk
15.2.1 Sustainable	15.5.1 Species at risk	Sustainable forest management reduces human disturbance of biodiversity in forest ecosystems	(Burivalova et al., 2017)	Increasing the forests under sustainable long-

Environmental policy indicator	Environmental state indicator	Hypothesised outcomes of environmental policy, leading to environmental improvements	Evidence for the hypothesised relationship	What our results suggest (green/red shading indicates agreement/disagreement with our hypotheses)
forest long-term management		which leads to a reduction in the number of species threatened with extinction		term management correlates with decreasing Red List Index, which indicates an increasing species extinction risk
15.2.1 Protected forest area	15.5.1 Species at risk	Protection of forest ecosystems reduces human disturbance of biodiversity in forest ecosystems which leads to a reduction in the number of species threatened with extinction	(Barnes et al., 2016; Butchart et al., 2006; Coad et al., 2015; Geldmann et al., 2013; Gray et al., 2016)	Increasing protection of forests correlates with decreasing Red List Index, which indicates an increasing species extinction risk
15.4.1 Mountain protected areas	15.5.1 Species at risk	Protection of mountain ecosystems reduces human disturbance of biodiversity in mountain ecosystems which leads to a reduction in the number of species threatened with extinction	(Barnes et al., 2016; Butchart et al., 2006; Gray et al., 2016)	Increasing protection of mountain ecosystems correlates with decreasing Red List Index, which indicates an increasing species extinction risk
15.8.1 Invasive alien species	15.5.1 Species at risk	National legislation and adequate resourcing for the prevention or control of invasive alien species leads to a reduction in the negative impacts of invasive alien species on biodiversity and a reduction in the number of species threatened with extinction	(Butchart et al., 2006)	Increasing prevention and management of alien invasive species correlates with decreasing Red List Index, which indicates increasing species extinction risk.

3.1.1 Extinction risk of local breeds (2.5.2)

The extinction risk of local breeds was positively correlated with policies to secure genetic resources for food (2.5.1) (Table 2), suggesting that despite increasing numbers of genetic resources secured in conservation facilities, the proportion of local breeds at risk of extinction is going up.

3.1.2 Water ecosystem extent (6.6.1)

We found a positive correlation between the protection of important sites for terrestrial and freshwater biodiversity (15.1.2) and the extent of water ecosystems (Table 2). On the other hand, we found a negative correlation between water ecosystem extent and the value of development assistance for water supply and sanitation (6.a.1), suggesting that increased spending on water and sanitation is related to decreasing water ecosystem extent. Furthermore, there was no significant relationship between water ecosystem extent and water use efficiency (6.4.1).

3.1.3 Air pollution (11.6.2)

Air pollution, measured as levels of outdoor fine particulate matter in cities, was positively correlated with the proportion of the population with primary reliance on clean fuels and technology (7.1.2) (Table 2). This result suggests that despite the increasing use of clean fuels and technologies, urban air pollution levels continue to increase. Conversely, air pollution was negatively correlated with the share of renewable energy in a country's total final energy consumption (7.2.1), suggesting that there may be a link between renewable energy use and air

consumption (7.2.1), suggesting that there may be a link between renewable energy use and air

316 pollution in cities.

3.1.4 Forest ecosystem extent (15.1.1)

The extent of forest ecosystems was positively correlated with the share of renewable energy in a country's total final energy consumption (7.2.1) (Table 2). This result suggests a relationship between increasing renewable energy use and increasing forest area, perhaps due to decreasing deforestation linked to the use of timber for energy production. We found no significant correlation between forest ecosystem extent and population with primary reliance on clean fuels and technology (7.1.2). However, forest ecosystem extent was positively correlated with the protection of important sites for terrestrial and freshwater biodiversity (15.1.2), the extent of forests certified under an independently verified certification scheme (15.2.1), and the area of forest that is protected (15.2.1). These results suggest that protected area policies and forest certification schemes are related to increasing forest ecosystem extent.

3.1.5 Species at risk (15.5.1)

We found a negative correlation between the extinction risk of wild species and several environmental policy indicators (Table 2), including the protection of important sites for terrestrial and freshwater biodiversity (15.1.2), the extent of protected forest ecosystems (15.2.1), the extent of protection of mountain ecosystems (15.4.1), implementation of long-term forest management plans (15.2.1), and the prevention or control of Invasive Alien Species (15.8.1). These results suggest that despite implementing these environmental policies, several of which have the primary objective of conserving biodiversity, the number of species at risk of extinction continues to increase. Only the extent of forests certified under an independently verified certification scheme (15.2.1) correlated positively with decreased species extinction risk. There was no significant relationship between species extinction risk and the protection of marine ecosystems (14.5.1). We must highlight that SDG indicator 15.5.1, based on the IUCNs Red List

Index, does not include marine species. Therefore the link between this indicator and marine protected areas (indicator 14.5.1) is tenuous.

3.2. Relationships between environmental pressures and the state of the environment

Table 3. The environmental pressure indicators that correlate significantly with the environmental state indicators. Correlations that show environmental degradation are presented in the upper half of table. Correlations that show environmental improvements are presented in the lower half of table. The middle column describes the causal relationship between the environment and society based on scientific evidence. The right-hand column describes how to interpret the results of the statistical analysis.

Environmental pressure indicator	Environmental state indicator	Hypothesised outcomes of environmental pressures, leading to environmental degradation	Evidence for the hypothesised relationship	What our results suggest (green/red shading indicates agreement/disagreement with our hypotheses)
6.4.2 Water stress	6.6.1 Water ecosystems	More significant water stress increases demand for, and abstraction of, water from water ecosystems and leads to a decrease in water ecosystem extent	(Arroita et al., 2017; Pekel et al., 2016; Rosen et al., 2000)	Increasing water stress correlates with decreasing water ecosystem extent
8.4.2 DMC of crops	15.5.1 Species at risk	Greater consumption of crops promotes increased agricultural production, which increases human disturbance of natural ecosystems and biodiversity, which pushes more species toward extinction	(Foley et al., 2005; Lambertini, 2020)	Increasing consumption of domestically produced crops correlates with increased species extinction risk
8.4.2 DMC of fossil fuels	11.6.2 Air pollution	Greater consumption of fossil fuels involves the combustion of fossil fuels which produces airborne pollutants which reduce air quality	(De Longueville et al., 2014)	Increasing consumption of domestically produced fossil fuels correlates with increased air pollution in cities
8.4.2 DMC of wild catch and harvest	15.5.1 Species at risk	Increased exploitation and consumption of wildlife reduces the population sizes of species and pushes more species toward extinction	(Bradshaw et al., 2009; Butchart et al., 2006; Fa et al., 2003; Nasi et al., 2011; Vliet et al., 2007)	Increasing consumption of wild-caught and harvested species correlates with increased species extinction risk
8.9.1 Tourism	6.6.1 Water ecosystems	Increased tourism increases demand for, and abstraction of, water from water ecosystems and lead to a decrease in water ecosystem extent	(Gössling & Peeters, 2015)	Increasing tourism correlates with decreasing water ecosystem extent
8.9.1 Tourism	15.1.1 Forest area	Increased tourism promotes deforestation through the development of tourism infrastructure	(Gössling & Peeters, 2015)	Increasing tourism correlates with decreasing forest area
8.9.1 Tourism	15.5.1 Species at risk	Increased tourism leads to land use change to develop tourism infrastructure, which disrupts ecosystems. Furthermore, it leads to more significant numbers of people visiting areas of high biodiversity value, which increases biodiversity disturbance and pushes more species toward extinction. Alternatively, nature-based tourism can promote biodiversity conservation.	(Bookbinder et al., 1998; Gössling, 2002)	Increasing tourism correlates with increasing species extinction risk
8.4.2 DMC of crops	15.1.1 Forest area	Greater consumption of crops promotes increased agricultural production, which	(Foley et al., 2005; Geist & Lambin,	Increasing consumption of domestically produced

Environmental pressure indicator	Environmental state indicator	Hypothesised outcomes of environmental pressures, leading to environmental degradation	Evidence for the hypothesised relationship	What our results suggest (green/red shading indicates agreement/disagreement with our hypotheses)
		increases demand for land, which drives deforestation and decreases forest area	2002; Gibbs et al., 2010; Potapov et al., 2017)	crops correlates with increasing forest area
8.4.2 DMC of metal ores and non-metallic minerals	6.6.1 Water ecosystems	Mining uses large quantities of freshwater. Therefore an increase in the DMC of minerals extracted by mining will decrease the extent of water ecosystems.	(Palmer et al., 2010)	Increasing consumption of domestically produced metal ores and non-metallic minerals correlates with increasing water ecosystem extent
8.4.2 DMC of metal ores and non-metallic minerals	15.1.1 Forest area	Mining drives deforestation. Therefore an increase in the DMC of minerals extracted by mining will decrease forest area.	(Potapov et al., 2017; Schueler et al., 2011; Sonter et al., 2014)	Increasing consumption of domestically produced metal ores and non-metallic minerals correlates with increasing forest area
8.4.2 DMC of metal ores and non-metallic minerals	15.5.1 Species at risk	Mining has a negative local effect on biodiversity due to habitat destruction and pollution. Therefore an increase in the DMC of minerals extracted by mining will increase the number of species at risk of extinction.	(Deikumah et al., 2014)	Increasing consumption of domestically produced metal ores and non-metallic minerals correlates with decreasing species extinction risk
8.4.2 DMC of wood	15.1.1 Forest area	Greater consumption of wood resources promotes deforestation, which reduces forest area. Conversely, greater wood consumption promotes the conversion of non-forested land to timber plantations which increases forest area	(Geist & Lambin, 2002; Payn et al., 2015; Potapov et al., 2017)	Increasing consumption of domestically produced wood correlates with increasing forest area
9.a.1 Infrastructure support	6.6.1 Water ecosystems	Support for dam infrastructure will increase the water ecosystem extent due to the creation of reservoirs associated with dams. Alternatively, support for, and construction of, other forms of infrastructure, such as urban development, degrades natural ecosystems and reduces water ecosystems' extent.	(Davis & Froend, 1999; Lehner et al., 2011; Wang et al., 2008; Žganec, 2012; Zhang, 2009)	Increasing financial support for infrastructure correlates with increasing water ecosystem extent.

3.2.1 Water ecosystem extent

The extent of water ecosystems was negatively correlated with water stress (6.4.2) (Table 3), measured as the proportion of freshwater withdrawals to available freshwater resources, and with tourism (8.9.1), measured as the proportion of tourism GDP in a country's total GDP. This result suggests that the extent of water ecosystems declines as freshwater withdrawals and tourism activities increase. On the other hand, the extent of water ecosystems was positively correlated with domestic material consumption (DMC) of crops (8.4.2), DMC of metal ores and non-metallic minerals, and international financial support for infrastructure (9.a.1). This result suggests that the extent of water ecosystems increases as consumption of domestically produced crops increases, perhaps due to increased area used for irrigation, with increasing consumption of

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

domestically produced metal ores and non-metallic minerals, and with increasing financial support for infrastructure, perhaps due to the construction of dams and the reservoirs created by them. **3.2.2** Air pollution (11.6.2) We found a positive correlation between air pollution levels and DMC of fossil fuels (8.4.2) (Table 3), suggesting that air quality in cities declines as consumption of domestically produced fossil fuels increases. 3.2.3 Forest ecosystem extent (15.1.1) Forest ecosystem extent correlated positively with DMC of crops, wood, and metal ores and nonmetallic minerals (8.4.2) (Table 3), suggesting that forest extent increases as consumption of these domestically produced materials increases. Conversely, forest ecosystem extent correlated negatively with tourism (8.9.1), suggesting that forest extent decreases as a country's economic reliance on tourism increases, potentially due to deforestation associated with the tourism industry. There was no significant relationship between forest extent and infrastructure support (9.a.1).3.2.4 Species at risk (15.5.1) We found a negative correlation between the extinction risk of wild species and several environmental pressures (Table 3), including DMC of crops (8.4.2), DMC of wild catch and harvest materials (8.4.2), and tourism (8.9.1). This result suggests that the number of species at risk of extinction increases as consumption of domestically produced crops increases, as the amount of wild materials extracted from a country's territory increases, and as tourism increases. Conversely, there was a positive correlation between species extinction risk and consumption of domestically produced metal ores and non-metallic minerals. Finally, there was no significant relationship between species extinction risk and water stress (6.4.2). 4. Discussion In this study, we use the dataset underlying the SDG monitoring framework to investigate the relationship, across countries, between environmental policies, the state of the environment, the impact of the environment on society, and the pressures that continue to impact the environment. We used a correlation analysis combined with a statistical modelling approach to investigate the correlations between pairs of SDG indicators that we hypothesised to have a relationship based

390	on evidence in the scientific literature and expert opinion. Where the results of the statistical
391	analyses agreed with the scientific rationale, we inferred that this is evidence of a causative
392	relationship between the indicator pairs. Our results highlight where environmental policies may
393	be achieving their intended goals. For example, protecting Key Biodiversity Areas is linked with
394	the increasing extent of forest and water ecosystems. Our results suggest that more effort is
395	required to increase the positive environmental impacts of policies, such as conserving genetic
396	resources to decrease the extinction risk of domesticated species. Surprisingly, our results
397	provide no evidence for the social impacts of the state of the environment, potentially due to the
398	complexity of ecosystems and the difficulty of detecting relationships between the non-market
399	benefits humans derive from the environment and the state of ecosystems. Finally, our results
400	suggest that environmental pressures, including freshwater withdrawals, tourism, and domestic
401	material consumption of crops, fossil fuels, and wild catch and harvest, continue negatively
402	impacting the environment.
403	This study gives us a flavour of the relationships, across countries, between governmental
404	approaches to tackling environmental degradation and the state of the environment to understand
405	where environmental responses may be achieving their intended aims and where they are falling
406	short. For example, a policy response that appears to be working for conserving forest and water
407	ecosystems is protecting important sites for terrestrial and freshwater biodiversity. Indeed there
408	is convincing evidence that protected areas reduce deforestation (Geldmann et al., 2013; Joppa &
409	Pfaff, 2011). However, the impact of protecting freshwater ecosystems is more challenging to
410	understand than in forest ecosystems and there is less evidence of the benefits of protecting
411	freshwater ecosystems (Adams et al., 2015). Our results offer new evidence about the benefits of
412	protected areas on the extent of freshwater ecosystems.
413	Our results also highlight policies that may not be having their desired impact. For example,
414	despite increasing numbers of genetic resources secured in conservation facilities, the proportion
415	of local breeds at risk of extinction is increasing. This result suggests that policymakers must do
416	more to conserve domesticated species from the threat of extinction. Indeed the latest reports
417	from the FAO on this topic highlight numerous shortcomings in the state of genetic resource
418	conservation, including missing risk status assessments for the majority of breeds and a lack of
419	early warning systems for genetic erosion (Scherf et al., 2015). In addition, SDG indicators 2.5.1
420	and 2.5.2 need more data for many countries (Gil et al., 2019). Ultimately, conservation efforts,

421	and the indicators used to monitor them, must be improved to mitigate and monitor the genetic
422	extinction risk of economically and socially valuable species (Gandini & Hiemstra, 2021).
423	Our results regarding the relationship between species extinction risk and environmental
424	responses were sobering yet not unexpected. Only a single environmental response (forest
425	certification) correlated in a direction that suggests that extinction risk is declining in response to
426	an environmental policy, which aligns with empirical evidence that forest certification
427	contributes positively to biodiversity conservation (Lehtonen et al., 2021). However, the extent
428	of protected areas of forest ecosystems, mountain ecosystems, and Key Biodiversity Areas all
429	correlated with an increase in species extinction risk, which aligns with the criticisms that
430	protected areas have fallen short of their conservation goals over the past decade (Maxwell et al.,
431	2020). Regarding the environmental pressures that drive biodiversity loss, our results agree with
432	the contemporary evidence that agricultural land use change and direct exploitation of wildlife
433	remain the main drivers of terrestrial biodiversity declines (Balvanera et al., 2019; Jaureguiberry
434	et al., 2022). Our results highlight that countries need to do more to holistically tackle the
435	multiple drivers of biodiversity loss using environmental policies that are socially just and align
436	with countries' climate change ambitions. At the 15th Conference of Parties to the UN
437	Convention on Biological Diversity, UN Member States agreed to a new set of Goals and
438	Targets to address biodiversity loss and restore natural ecosystems (CBD, 2022a), progress
439	towards which will be tracked by an underlying monitoring framework of indicators (CBD,
440	2022b). Adopting the monitoring framework is a significant achievement as it is the first time an
441	officially agreed monitoring framework has accompanied the CBD's international biodiversity
442	agreements. A rigorous mechanism for tracking countries' progress on biodiversity will push
443	governments to prioritise the effective design and implementation of environmental policies that
444	bend the curve of biodiversity decline.
445	We investigated the environment's social impacts, including the human and economic impacts of
446	natural disasters, food insecurity, health impacts of food access, and drinking water access. We
447	found no evidence for relationships between the state of the environment and its impacts on
448	society. Although alarming, this is somewhat not surprising, considering the complexity of
449	ecosystems and their relationships with the goods and benefits that humans derive from the
450	environment. Ecosystems are characterised by 'feedback loops, non-linearities, and alternative
451	states' (Mace, 2019), which makes it challenging to delineate simple relationships between the

452	state of the environment, the ecological functions that support ecosystem services, and the final
453	environmental goods and benefits that society enjoys. It may also be harder to detect a direct link
454	between humans and environmental goods and benefits at a national scale, (the scale of our
455	analysis in this study), because less people now directly depend on the goods and benefits
456	produced by their local ecosystems. Most people now live in cities(UNDESA, 2019) and
457	consume food and materials that are produced by ecosystems outside their local area, and often
458	far outside their national jurisdictions(Folke et al., 1997). There has also been less research on
459	the social impacts of some types of environmental policies than on their environmental impacts
460	(Johnson et al., 2022). Finally, the methods that are used to produce national statistics can be
461	inappropriate for surveying the population groups that do directly depend on their local
462	ecosystems for food and water such as indigenous communities(Walter & Andersen, 2016).
463	We also investigated environmental pressures, and our results suggest that the human activities
464	that cause environmental degradation, including freshwater withdrawals, tourism, consumption
465	of domestically produced crops, mined minerals, fossil fuels, and wild materials, continue to
466	degrade the environment. Indeed, our findings align with the IPBES global assessment which
467	details freshwater withdrawals, harvesting of materials from nature, mining of fossil fuels,
468	agricultural land-use change, and tourism as direct drivers of environmental change that continue
469	to threaten the state of nature globally (Balvanera et al., 2019). To improve environmental
470	outcomes, countries will need to continue to mitigate these human activities' negative
471	environmental impacts.
472	Policy responses and environmental pressures continue to increase while the state of the
473	environment continues to decline (Lambertini, 2020; UN Environment, 2019), which illustrates
474	that, to improve the environment, national governments need to do more. Existing policies need
475	to do more to achieve their intended goals and require greater stringency or redesign (UN
476	Environment, 2019). Others may need to be implemented correctly or enforced adequately.
477	Moreover, policies must tackle the underlying drivers of environmental change, such as values,
478	technology, demography, the economy, and governance, which often subvert well-meaning
479	environmental policies. Environmental policies need to engage sufficiently with land and sea use
480	policies, including agriculture, fisheries, renewable energy, and transport (European Habitats
481	Forum, 2019). In addition, countries must respond holistically to environmental declines by

482	integrating environmental policies into agriculture, fisheries, and energy policies that drive
483	environmental change.
484	We make some recommendations for future improvements to the SDG monitoring framework.
485	First, indicators on policy responses dominate the environmental dimension of the SDG
486	monitoring framework (50 out of 92 indicators), while only 11 measure the state of the
487	environment (Campbell et al., 2020). We recommend that the framework be supplemented with
488	additional environmental state indicators to better track whether policy responses lead to
489	environmental improvements. Secondly, we recommend that indicator 15.5.1, the Red List Index
490	on wild species extinction risk, is disaggregated into multiple sub-indicators of terrestrial,
491	freshwater, and marine species. Currently, indicator 15.5.1 only includes terrestrial species, so it
492	is unsuitable for assessing the success of indicator 14.5.1 on marine protected areas and sub-
493	indicator 15.1.2 on the protection of freshwater Key Biodiversity Areas. The Red List Index for
494	marine species (see, for example, (Nieto et al., 2015)) and a sub-indicator for freshwater species
495	would be more suitable for monitoring the success of marine and freshwater conservation
496	interventions than indicator 15.5.1 in its current form. Finally, national environmental
497	monitoring agencies should adopt science-based standards for the environmental state indicators
498	to provide clear targets for achievement (Usubiaga-Liaño & Ekins, 2022). Standards for some
499	indicators will be uniform across all countries, such as the WHO's safe air pollution levels
500	(World Health Organization & WHO European Centre for Environment, 2021). The standards of
501	other indicators will need to be country-specific and defined through scientific investigation of
502	environmental thresholds in the unique environmental context of each country.
503	The SDG monitoring framework's data is a valuable resource of indicators for tracking countries'
504	progress toward environmental sustainability. By testing the relationships between indicators of
505	countries' responses to environmental pressures, the state of the environment, and the impacts of
506	the environment on society, we show that governments are making some progress toward
507	sustainable development in some areas, but there are many areas for improvement. If
508	governments wish to maintain nature's contributions to people into perpetuity, they need to
509	improve their policy responses to environmental pressures.

Acknowledgments

510

511	The French Development Agency (Agence Française de Développement, AFD) funded this
512	research through the partnership agreement number 554-2020 between AFD and University
513	College London and financed on the Research Programme for a Pro Nature Economy
514	(ECOPRONAT) number CZZ2687. We thank the United Nations Environment Programme for
515	supporting this study. In addition, we thank the experts who contributed to the stakeholder
516	meetings and online survey that informed the selection of indicator pairs for investigation.
517	Open Research
518	The SDG indicators data used for the study is available in both a private FigShare repository
519	(https://figshare.com/s/83dc27cba88c5c7d91e3) and publicly available on the SDG Indicator
520	Database (<u>www.unstat.un.org/sdgs/dataportal/database</u>). The R software used for the statistical
521	analysis is available at https://www.r-project.org/ (R Core Team, 2021) and the R code used to
522	conduct the statictial analysis will be made publically available on a GitHub repository on
523	publication.
524	References
525	Adams, V. M., Setterfield, S. A., Douglas, M. M., Kennard, M. J., & Ferdinands, K. (2015).
526	Measuring benefits of protected area management: Trends across realms and research
527	gaps for freshwater systems. Philosophical Transactions of the Royal Society B:
528	Biological Sciences, 370(1681). Scopus. https://doi.org/10.1098/rstb.2014.0274
529	Arroita, M., Flores, L., Larrañaga, A., Martínez, A., Martínez-Santos, M., Pereda, O., Ruiz-
530	Romera, E., Solagaistua, L., & Elosegi, A. (2017). Water abstraction impacts stream
531	ecosystem functioning via wetted-channel contraction. Freshwater Biology, 62(2), 243-
532	257. https://doi.org/10.1111/fwb.12864
533	Auld, G., Gulbrandsen, L. H., & McDermott, C. L. (2008). Certification schemes and the
534	impacts on forests and forestry. Annual Review of Environment and Resources, 33(1),
535	187–211.

536	Balvanera, P., Pfaff, A., Viña, A., García-Frapolli, E., Merino, L., Minang, P., Nagabhatla, N.,
537	Hussain, S., & Sidorovich, A. (2019). Chapter 2.1. Status and Trends – Drivers of
538	Change. In Global assessment report of the Intergovernmental Science-Policy Platform
539	on Biodiversity and Ecosystem Services (p. 152). IPBES secretariat.
540	10.5281/zenodo.3831881
541	Barnes, M. D., Craigie, I. D., Harrison, L. B., Geldmann, J., Collen, B., Whitmee, S., Balmford,
542	A., Burgess, N. D., Brooks, T., Hockings, M., & Woodley, S. (2016). Wildlife population
543	trends in protected areas predicted by national socio-economic metrics and body size.
544	Nature Communications, 7(1), Article 1. https://doi.org/10.1038/ncomms12747
545	Bookbinder, M. P., Dinerstein, E., Rijal, A., Cauley, H., & Rajouria, A. (1998). Ecotourism's
546	Support of Biodiversity Conservation. Conservation Biology, 12(6), 1399–1404.
547	https://doi.org/10.1111/j.1523-1739.1998.97229.x
548	Bradshaw, C. J., Sodhi, N. S., & Brook, B. W. (2009). Tropical turmoil: A biodiversity tragedy
549	in progress. Frontiers in Ecology and the Environment, 7(2), 79–87.
550	https://doi.org/10.1890/070193
551	Breuer, A., Janetschek, H., & Malerba, D. (2019). Translating Sustainable Development Goal
552	(SDG) Interdependencies into Policy Advice. Sustainability, 11(7), Article 7.
553	https://doi.org/10.3390/su11072092
554	Bueren, E. van. (2019). Environmental policy. History, Concepts, Instruments, & Examples.
555	Britannica. https://www.britannica.com/topic/environmental-policy
556	Burivalova, Z., Hua, F., Koh, L. P., Garcia, C., & Putz, F. (2017). A Critical Comparison of
557	Conventional, Certified, and Community Management of Tropical Forests for Timber in

558	Terms of Environmental, Economic, and Social Variables. Conservation Letters, 10(1),
559	4–14. https://doi.org/10.1111/conl.12244
560	Butchart, S. H., Akçakaya, H. R., Kennedy, E., & HILTON-TAYLOR, C. (2006). Biodiversity
561	indicators based on trends in conservation status: Strengths of the IUCN Red List Index.
562	Conservation Biology, 20(2), 579–581.
563	Campbell, J., Neuner, J., See, L., Fritz, S., Fraisl, D., Espey, J., & Kim, A. (2020). The role of
564	combining national official statistics with global monitoring to close the data gaps in the
565	environmental SDGs. Statistical Journal of the IAOS 36. https://doi.org/10.3233/SJI-
566	200648
567	Carranza, T., Balmford, A., Kapos, V., & Manica, A. (2014). Protected Area Effectiveness in
568	Reducing Conversion in a Rapidly Vanishing Ecosystem: The Brazilian Cerrado.
569	Conservation Letters, 7(3), 216–223. https://doi.org/10.1111/conl.12049
570	CBD. (2022a). COP15: Nations Adopt Four Goals, 23 Targets for 2030 In Landmark UN
571	Biodiversity Agreement. Convention on Biological Diversity.
572	https://www.cbd.int/article/cop15-cbd-press-release-final-19dec2022
573	CBD. (2022b). Monitoring framework for the Kunming-Montreal global biodiversity framework
574	CONFERENCE OF THE PARTIES TO THE CONVENTION ON BIOLOGICAL
575	DIVERSITY Fifteenth meeting, Montreal, Canada.
576	https://www.cbd.int/doc/c/179e/aecb/592f67904bf07dca7d0971da/cop-15-1-26-en.pdf
577	Chan, K. M. A., Shaw, M. R., Cameron, D. R., Underwood, E. C., & Daily, G. C. (2006).
578	Conservation Planning for Ecosystem Services. PLOS Biology, 4(11), e379.
579	https://doi.org/10.1371/journal.pbio.0040379

580	Coad, L., Leverington, F., Knights, K., Geldmann, J., Eassom, A., Kapos, V., Kingston, N., de
581	Lima, M., Zamora, C., Cuardros, I., Nolte, C., Burgess, N. D., & Hockings, M. (2015).
582	Measuring impact of protected area management interventions: Current and future use of
583	the Global Database of Protected Area Management Effectiveness. Philosophical
584	Transactions of the Royal Society B: Biological Sciences, 370(1681), 20140281.
585	https://doi.org/10.1098/rstb.2014.0281
586	Cohen-Shacham, E., Walters, G., Janzen, C., & Maginnis, S. (Eds.). (2016). Nature-based
587	solutions to address global societal challenges. IUCN International Union for
588	Conservation of Nature. https://doi.org/10.2305/IUCN.CH.2016.13.en
589	Coping with climate change: The roles of genetic resources for food and agriculture. (2015).
590	FAO.
591	Damette, O., & Delacote, P. (2011). Unsustainable timber harvesting, deforestation and the role
592	of certification. Ecological Economics, 70(6), 1211–1219.
593	https://doi.org/10.1016/j.ecolecon.2011.01.025
594	Davis, J. A., & Froend, R. (1999). Loss and degradation of wetlands in southwestern Australia:
595	Underlying causes, consequences and solutions. Wetlands Ecology and Management,
596	7(1), 13–23. https://doi.org/10.1023/A:1008400404021
597	De Longueville, F., Hountondji, Y., Ozer, P., & Henry, S. (2014). The Air Quality in African
598	Rural Environments. Preliminary Implications for Health: The Case of Respiratory
599	Disease in the Northern Benin. Water, Air, & Soil Pollution, 225(11), 2186.
600	https://doi.org/10.1007/s11270-014-2186-4

501	Deikumah, J. P., McAlpine, C. A., & Maron, M. (2014). Mining matrix effects on West African
502	rainforest birds. Biological Conservation, 169, 334–343.
503	https://doi.org/10.1016/j.biocon.2013.11.030
504	Eklund, J., Blanchet, F. G., Nyman, J., Rocha, R., Virtanen, T., & Cabeza, M. (2016).
505	Contrasting spatial and temporal trends of protected area effectiveness in mitigating
506	deforestation in Madagascar. Biological Conservation, 203, 290-297.
507	https://doi.org/10.1016/j.biocon.2016.09.033
508	Enjalbert, J., Dawson, J. C., Paillard, S., Rhoné, B., Rousselle, Y., Thomas, M., & Goldringer, I.
509	(2011). Dynamic management of crop diversity: From an experimental approach to on-
510	farm conservation. Comptes Rendus Biologies, 334(5), 458–468.
511	https://doi.org/10.1016/j.crvi.2011.03.005
512	European Habitats Forum. (2019). The implementation of the EU 2020 Biodiversity Strategy and
513	recommendations for the post 2020 Biodiversity Strategy (p. 8). European Habitats
514	Forum.
515	https://www.iucn.org/sites/dev/files/content/documents/eu_2020_biodiversity_strategy_a
516	nd_recommendations_for_post_2020.pdf
517	Fa, J. E., Currie, D., & Meeuwig, J. (2003). Bushmeat and food security in the Congo Basin:
518	Linkages between wildlife and people's future. Environmental Conservation, 30(1), 71-
519	78. https://doi.org/10.1017/S0376892903000067
520	Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S.,
521	Coe, M. T., Daily, G. C., & Gibbs, H. K. (2005). Global consequences of land use.
522	Science, 309(5734), 570–574.

623	Folke, C., Jansson, Å., Larsson, J., & Costanza, R. (1997). Ecosystem appropriation by cities.
624	Ambio, 26(3), 167–172. Scopus.
625	Fuso Nerini, F., Tomei, J., To, L. S., Bisaga, I., Parikh, P., Black, M., Borrion, A., Spataru, C.,
626	Castán Broto, V., Anandarajah, G., Milligan, B., & Mulugetta, Y. (2018). Mapping
627	synergies and trade-offs between energy and the Sustainable Development Goals. Nature
628	Energy, 3(1), Article 1. https://doi.org/10.1038/s41560-017-0036-5
629	Gandini, G., & Hiemstra, S. J. (2021). Farm animal genetic resources and the COVID-19
630	pandemic. Animal Frontiers, 11(1), 54–56. https://doi.org/10.1093/af/vfaa049
631	Geist, H. J., & Lambin, E. F. (2002). Proximate Causes and Underlying Driving Forces of
632	Tropical Deforestation: Tropical forests are disappearing as the result of many pressures,
633	both local and regional, acting in various combinations in different geographical
634	locations. BioScience, 52(2), 143-150. https://doi.org/10.1641/0006-
635	3568(2002)052[0143:PCAUDF]2.0.CO;2
636	Geldmann, J., Barnes, M., Coad, L., Craigie, I. D., Hockings, M., & Burgess, N. D. (2013).
637	Effectiveness of terrestrial protected areas in reducing habitat loss and population
638	declines. Biological Conservation, 161, 230–238.
639	https://doi.org/10.1016/j.biocon.2013.02.018
640	Gibbs, H. K., Ruesch, A. S., Achard, F., Clayton, M. K., Holmgren, P., Ramankutty, N., &
641	Foley, J. A. (2010). Tropical forests were the primary sources of new agricultural land in
642	the 1980s and 1990s. Proceedings of the National Academy of Sciences, 107(38), 16732-
643	16737. https://doi.org/10.1073/pnas.0910275107

544	Gil, J. D. B., Reidsma, P., Giller, K., Todman, L., Whitmore, A., & van Ittersum, M. (2019).
545	Sustainable development goal 2: Improved targets and indicators for agriculture and food
546	security. Ambio, 48(7), 685-698. https://doi.org/10.1007/s13280-018-1101-4
547	Gössling, S. (2002). Global environmental consequences of tourism. Global Environmental
548	Change, 12(4), 283-302. https://doi.org/10.1016/S0959-3780(02)00044-4
549	Gössling, S., & Peeters, P. (2015). Assessing tourism's global environmental impact 1900–2050.
550	Journal of Sustainable Tourism, 23(5), 639–659.
551	https://doi.org/10.1080/09669582.2015.1008500
552	Gray, C. L., Hill, S. L. L., Newbold, T., Hudson, L. N., Börger, L., Contu, S., Hoskins, A. J.,
553	Ferrier, S., Purvis, A., & Scharlemann, J. P. W. (2016). Local biodiversity is higher
554	inside than outside terrestrial protected areas worldwide. Nature Communications, 7(1),
555	Article 1. https://doi.org/10.1038/ncomms12306
556	IAEG-SDGs. (2020). SDG Indicator changes (15 October 2018 and onward). Tier Classification
557	for Global SDG Indicators. https://unstats.un.org/sdgs/iaeg-sdgs/tier-classification/
558	IEA, IRENA, UNSD, World Bank, & WHO. (2022). Tracking SDG 7: The Energy Progress
559	Report. World Bank.
660	International Council for Science (ICSU). (2017). A Guide to "SDG" Interactions: From Science
661	to Implementation (p. 12). International Council for Science (ICSU).
562	http://pure.iiasa.ac.at/id/eprint/14591/
563	IUCN. (2012). Natural Solutions: Protected Areas Maintaining Essential Water Supplies. IUCN.
664	https://www.iucn.org/sites/dev/files/import/downloads/natsols_water_flyer_final.pdf
665	Jaureguiberry, P., Titeux, N., Wiemers, M., Bowler, D. E., Coscieme, L., Golden, A. S., Guerra,
666	C. A., Jacob, U., Takahashi, Y., Settele, J., Díaz, S., Molnár, Z., & Purvis, A. (2022). The

667	direct drivers of recent global anthropogenic biodiversity loss. Science Advances, 8(45),
668	eabm9982. https://doi.org/10.1126/sciadv.abm9982
669	Johnson, B. A., Kumar, P., Okano, N., Dasgupta, R., & Shivakoti, B. R. (2022). Nature-based
670	solutions for climate change adaptation: A systematic review of systematic reviews.
671	Nature-Based Solutions, 2, 100042. https://doi.org/10.1016/j.nbsj.2022.100042
672	Joppa, L. N., & Pfaff, A. (2011). Global protected area impacts. Proceedings of the Royal
673	Society B: Biological Sciences, 278(1712), 1633–1638.
674	https://doi.org/10.1098/rspb.2010.1713
675	Jordan, A., Wurzel, R. K. W., & Zito, A. R. (2003). 'New' Instruments of Environmental
676	Governance: Patterns and Pathways of Change. <i>Environmental Politics</i> , 12(1), 1–24.
677	https://doi.org/10.1080/714000665
678	Kalonga, S. K., Midtgaard, F., & Klanderud, K. (2016). Forest certification as a policy option in
679	conserving biodiversity: An empirical study of forest management in Tanzania. Forest
680	Ecology and Management, 361, 1-12. https://doi.org/10.1016/j.foreco.2015.10.034
681	Kristensen, P. (2004). The DPSIR Framework. The 27-29 September 2004 workshop on a
682	comprehensive / detailed assessment of the vulnerability of water resources to
683	environmental change in Africa using river basin approach, Nairobi, Kenya.
684	https://wwz.ifremer.fr/dce/content/download/69291/913220//DPSIR.pdf
685	Lambertini, M. (2020). Living Planet Report 2020: Bending the Curve of Biodiversity Loss.
686	http://www.deslibris.ca/ID/10104983
687	Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P.,
688	Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J. C., Rödel, R., Sindorf,
689	N., & Wisser, D. (2011). High-resolution mapping of the world's reservoirs and dams for

590	sustainable river-flow management. Frontiers in Ecology and the Environment, 9(9),
591	494–502. https://doi.org/10.1890/100125
592	Lehtonen, E., Gustafsson, L., Lõhmus, A., & von Stedingk, H. (2021). What does FSC forest
593	certification contribute to biodiversity conservation in relation to national legislation?
594	Journal of Environmental Management, 299. Scopus.
595	https://doi.org/10.1016/j.jenvman.2021.113606
596	Mace, G. M. (2019). The ecology of natural capital accounting. Oxford Review of Economic
597	Policy, 35(1), 54–67. https://doi.org/10.1093/oxrep/gry023
598	Maxwell, S. L., Cazalis, V., Dudley, N., Hoffmann, M., Rodrigues, A. S. L., Stolton, S.,
599	Visconti, P., Woodley, S., Kingston, N., Lewis, E., Maron, M., Strassburg, B. B. N.,
700	Wenger, A., Jonas, H. D., Venter, O., & Watson, J. E. M. (2020). Area-based
701	conservation in the twenty-first century. <i>Nature</i> , 586(7828), 217–227. Scopus.
702	https://doi.org/10.1038/s41586-020-2773-z
703	Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: Synthesis. Island
704	Press.
705	Nasi, R., Taber, A., & Van Vliet, N. (2011). Empty forests, empty stomachs? Bushmeat and
706	livelihoods in the Congo and Amazon Basins. International Forestry Review, 13(3), 355-
707	368. https://doi.org/10.1505/146554811798293872
708	Nieto, A., Ralph, G. M., Comeros-Raynal, M., Heessen, H., & Rijnsdorp, A. (2015). European
709	Red List of marine fishes. Publications Office of the European Union.
710	OECD. (2011). Better Policies to Support Eco-innovation. OECD Publishing.
711	https://www.oecd.org/environment/consumption-innovation/betterpoliciestosupporteco-
712	innovation.htm

713 Palmer, M. A., Bernhardt, E. S., Schlesinger, W. H., Eshleman, K. N., Foufoula-Georgiou, E., 714 Hendryx, M. S., Lemly, A. D., Likens, G. E., Loucks, O. L., Power, M. E., White, P. S., 715 & Wilcock, P. R. (2010). Mountaintop Mining Consequences. Science, 327(5962), 148– 716 149. https://doi.org/10.1126/science.1180543 717 Payn, T., Carnus, J.-M., Freer-Smith, P., Kimberley, M., Kollert, W., Liu, S., Orazio, C., 718 Rodriguez, L., Silva, L. N., & Wingfield, M. J. (2015). Changes in planted forests and 719 future global implications. Forest Ecology and Management, 352, 57–67. 720 https://doi.org/10.1016/j.foreco.2015.06.021 721 Pekel, J.-F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of 722 global surface water and its long-term changes. *Nature*, 540(7633), Article 7633. 723 https://doi.org/10.1038/nature20584 724 Potapov, P., Hansen, M. C., Laestadius, L., Turubanova, S., Yaroshenko, A., Thies, C., Smith, 725 W., Zhuravleva, I., Komarova, A., Minnemeyer, S., & Esipova, E. (2017). The last 726 frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. 727 Science Advances, 3(1), e1600821. https://doi.org/10.1126/sciadv.1600821 728 Pradhan, P., Costa, L., Rybski, D., Lucht, W., & Kropp, J. P. (2017). A Systematic Study of 729 Sustainable Development Goal (SDG) Interactions. Earth's Future, 5(11), 1169–1179. 730 https://doi.org/10.1002/2017EF000632 731 PwC. (2016). Navigating the SDGs: A business guide to engaging with the UN Global Goals (p. 732 96). Price Waterhouse Cooper. 733 https://www.pwc.com/gx/en/sustainability/publications/PwC-sdg-guide.pdf 734 R Core Team. (2021). R: A language and environment for statistical computing. R Foundation 735 for Statistical Computing. https://www.R-project.org/

736	Rametsteiner, E., & Simula, M. (2003). Forest certification—An instrument to promote
737	sustainable forest management? Journal of Environmental Management, 67(1), 87–98.
738	https://doi.org/10.1016/S0301-4797(02)00191-3
739	Rosen, C., Tunstall, D., White, R., Ottke, C., Revenga, C., Rohweder, M., Murray, S., Kassem,
740	K., Kura, Y., Sebastian, K., Henninger, N., Reid, W. V., Lenton, R., McNeil, C.,
741	Schmidt, R., Becker, S., Lewis, K., Claasen, D., Singh, A., Axelrod, E. (2000). A
742	Guide to World Resources 2000–2001: People and Ecosystems: The Fraying Web of Life.
743	UNDP-UNEP-World Bank.
744	Scharlemann, J. P. W., Brock, R. C., Balfour, N., Brown, C., Burgess, N. D., Guth, M. K.,
745	Ingram, D. J., Lane, R., Martin, J. G. C., Wicander, S., & Kapos, V. (2020). Towards
746	understanding interactions between Sustainable Development Goals: The role of
747	environment-human linkages. Sustainability Science. https://doi.org/10.1007/s11625-
748	020-00799-6
749	Scherf, B. D., Pilling, D., & Commission on Genetic Resources for Food and Agriculture.
750	(2015). The second report on the state of the world's animal genetic resources for food
751	and agriculture. http://www.fao.org/3/a-i4787e.pdf
752	Schueler, V., Kuemmerle, T., & Schröder, H. (2011). Impacts of Surface Gold Mining on Land
753	Use Systems in Western Ghana. AMBIO, 40(5), 528-539.
754	https://doi.org/10.1007/s13280-011-0141-9
755	Schwartz, T., & Goubran, S. (2020). An Introduction to the Current Landscape: Environmental
756	Policy and the Economy. In Environmental policy: An economic perspective. Hoboken,
757	New Jersey; West, Sussex, England: Wiley Blackwell.
758	http://onlinelibrary.wiley.com/doi/epub/10.1002/9781119402619

/59	Shanley, P. (2002). Tapping the green market: Management and certification of non-timber
760	forest products. Earthscan Publications; Library Hub Discover.
761	http://ebookcentral.proquest.com/lib/abdn/detail.action?docID=429917
762	Sonter, L. J., Moran, C. J., Barrett, D. J., & Soares-Filho, B. S. (2014). Processes of land use
763	change in mining regions. Journal of Cleaner Production, 84, 494-501.
764	https://doi.org/10.1016/j.jclepro.2014.03.084
765	Turral, H., Svendsen, M., & Faures, J. M. (2010). Investing in irrigation: Reviewing the past and
766	looking to the future. Agricultural Water Management, 97(4), 551–560.
767	https://doi.org/10.1016/j.agwat.2009.07.012
768	UN Environment. (2019). Global Environment Outlook—GEO-6: Healthy Planet, Healthy
769	People. Un Environment. https://doi.org/10.1017/9781108627146
770	UNDESA. (2019). World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420).
771	United Nations, Department of Economic and Social Affairs, Population Division.
772	UNEP. (2019). Measuring Progress: Towards Achieving the Environmental Dimension of the
773	SDGs. United Nations Environment Programme.
774	UNEP. (2021). Measuring Progress: Environment and the SDGs. United Nations Environment
775	Programme. https://www.unep.org/resources/publication/measuring-progress-
776	environment-and-sdgs
777	United Nations. (2015). Transforming our World: The 2030 Agenda for Sustainable
778	Development. General Assembly Resolution A/RES/70/1.
779	https://sustainabledevelopment.un.org/post2015/transformingourworld/publication
780	Usubiaga-Liaño, A., & Ekins, P. (2022). Are we on the right path? Measuring progress towards
781	environmental sustainability in European countries. Sustainability Science.

782 van Kuijk, M., Putz, F., & Zagt, R. (2009). Effects of forest certification on biodiversity. 783 Tropenbos International. 784 https://www.tropenbos.org/resources/publications/effects+of+forest+certification+on+bio 785 diversity 786 Vliet, N. van, Nasi, R., Emmons, L., Feer, F., Mbazza, P., & Bourgarel, M. (2007). Evidence for 787 the local depletion of bay duiker Cephalophus dorsalis, within the Ipassa Man and 788 Biosphere Reserve, north-east Gabon. African Journal of Ecology, 45(3), 440–443. 789 Walter, M., & Andersen, C. (2016). *Indigenous statistics: A quantitative research methodology*. 790 Routledge. 791 Wang, X., Ning, L., Yu, J., Xiao, R., & Li, T. (2008). Changes of urban wetland landscape 792 pattern and impacts of urbanization on wetland in Wuhan City. Chinese Geographical 793 Science, 18(1), 47–53. https://doi.org/10.1007/s11769-008-0047-z 794 Watson, R. T., Baste, I. A., Larigauderie, A., Leadley, P., Pascual, U., Baptiste, B., Demissew, 795 S., Dziba, L., Erpul, G., Fazel, A. M., Fischer, M., Hernández, A. M., Karki, M., Mathur, 796 V., Pataridze, T., Pinto, I. S., Stenseke, M., Török, K., & Vilá, B. (2019). The global 797 assessment report on biodiversity and ecosystem services. Summary for policymakers. 798 IPBES Secretariat. https://ipbes.net/global-assessment 799 Weitz, N., Carlsen, H., Skånberg, K., Dzebo, A., & Viaud, V. (2019). SDGs and the environment 800 in the EU: A systems view to improve coherence (p. 36). Stockholm Environment 801 Institute. https://www.sei.org/wp-content/uploads/2019/10/sei-2019-pr-weitz-sdg-802 synergies-eu-env.pdf

803	World Health Organization & WHO European Centre for Environment. (2021). WHO global air
804	quality guidelines: Particulate matter (PM2. 5 and PM10), ozone, nitrogen dioxide,
805	sulfur dioxide and carbon monoxide. World Health Organization.
806	Žganec, K. (2012). The effects of water diversion and climate change on hydrological alteration
807	and temperature regime of karst rivers in central Croatia. Environmental Monitoring and
808	Assessment, 184(9), 5705–5723. https://doi.org/10.1007/s10661-011-2375-1
809	Zhang, Q. (2009). The South-to-North Water Transfer Project of China: Environmental
810	Implications and Monitoring Strategy1. JAWRA Journal of the American Water
811	Resources Association, 45(5), 1238–1247. https://doi.org/10.1111/j.1752-
812	1688.2009.00357.x
813	