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Abstract

Application of Supervised Machine Learning Classification Techniques 
for Preprocessing Passive Seismic Earthquake Data
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Classification Techniques

Introduction

Results and Discussions

P-Receiver Functions (P-RFs) often employ the analysis of hundreds
of thousands of seismograms to passively image Earth’s crust and
upper mantle structure. This study compared the performance of 6
supervised machine learning classification techniques in quality
checking seismograms. Quality checking seismograms prior to
computing P-RFs is very vital in distinguishing between usable ones
and non-usable ones. 372,087 seismograms covering the region of
California were high-pass filtered and low-pass filtered at 0.02 Hz and
0.5 Hz respectively after which 8 features were computed. All the
seismograms were then quality-checked manually to generate
labeled data. The labeled data was partitioned into training set and
test set which were used to train and evaluate the 6 classification
techniques, respectively. Out of the 6 techniques evaluated, the
Decision Tree had the highest accuracy of 97.2% and therefore had
the best performance. The accuracy of all other techniques was
above 94% except the Discriminant Analysis which had a low
accuracy of 75.2%. The Decision Tree, however, had much more
trouble classifying non-usable seismograms correctly than the usable
ones due to overlap in features between the two response classes.

• P-Receiver Functions (P-RFs) are routinely used to passively image
crust and upper mantle structure by deconvolving the horizontal
component by the vertical component of hundreds of thousands
of seismograms to isolate the P-to-S converted phases.

• Prior to computing the P-RFs, as a preprocessing step, it is crucial
to quality check the seismograms to ascertain that the desired
earthquake signal (the first P-arrival in this case) is not masked by
background noise. By so doing, we can distinguish between usable
events and non-usable events (see figure 1).

• Quality checking the hundreds of thousands of seismograms has
traditionally been done manually by visually inspecting each of the
seismograms, one at a time, to determine the usable events.
However, this approach is very laborious, time-consuming, and
may be prone to human errors.

• In this study, the goal is to employ machine learning (ML) to
automate the process of quality checking the seismograms.
Specifically, we seek to classify the seismograms into usable and
non-usable using 6 supervised ML classification techniques. We
also seek to compare the performance of the techniques to
determine which works best.

Data

The data consists of 372,087 seismograms from earthquakes of
magnitude 5.8 and above and great circle arc of 30o – 90o between
event and station. The seismograms are from 1990 to 2021 and
cover the region of California between latitudes 31o and 42o N and
longitudes 113o and 125o W.

Feature Extraction and Generation

Both peak signal-to-noise ratio and standard deviation of signal-to-
noise ratio were computed from seismograms high pass filtered at
0.02 HZ (StoN_peak_high, StoN_std_high) and then low pass filtered
at 0.5 Hz (StoN_peak_low, StoN_std_low). Four (4) additional features,
tot_SN, tot_SN_high, tot_SN_low, and tot_SN_peak were computed.
Figure 2 shows the distribution of the features.

Six (6) supervised ML classification techniques (figure 4) were trained
using the training set. These are: K Nearest Neighbor (KNN), Decision
Tree (DT), Naïve Bayes (NB), Discriminant Analysis (DA), Support
Vector Machine (SVM), and Artificial Neural Network (ANN)

The KNN uses a group of K seismograms, known as the nearest
neighbors, whose classes are known, to classify a seismogram whose
class is unknown. The optimum value of K was found to be 1. The DT
classifies an unknown seismogram by choosing the best possible split
iteratively for each feature based on a given criterion until no further
splits can improve the criterion. Both the NB and DA assume that the
seismograms in each response class are statistical samples from
normal probability distributions. While the NB classifies an unknown
seismogram by computing the probability that it comes from a given
response class, the DA does so by determining the location of a
boundary between the response classes where probabilities are
equal. The SVM classifies an unknown seismogram by finding the
best hyperplane that separates the response classes in the feature
space. The ANN classifies an unknown seismogram by iteratively
adjusting the connections (the weight value) between neurons in the
hidden layer(s) through trial and error. The ANN used in this study
consisted of 3 hidden layers each containing 10, 12 and 10 neurons.

Figure 7: Coordinate plot for true positive non-usable seismograms
and false negative non-usable seismograms. These represent non-
usable seismograms (0) that were correctly classified as non-usable
seismograms (0) and non-usable seismograms (0) that were
misclassified as usable seismograms (1), respectively.

Evaluation of Classification Techniques

The 6 ML classification techniques were evaluated using the test set
(figures 5, 6, and 7). From figure 5, DT had the highest accuracy of
97.2% and had the best performance. This was followed by ANN
(97.0%), SVM (96.6%), KNN (96.5%), NB (94.8%) and DA (75.2%) which
had a low accuracy. From figure 6, The false negative rate for
response classes 0 and 1 are 5% and 3.6% respectively. This implies
that the DT had more trouble classifying non-usable seismograms
than the usable ones. From figure 7, It is evident that the
misclassification of non-usable seismograms occurred due to overlap
in features between the two response classes; the features are not
able to distinguish between the two classes. Hence, engineering new
features or using a different classifier in an ensemble manner may be
a probable solution to resolve the confusion.

Methodology

Figure 1: A vertical component seismogram in which the desired
earthquake signal (first P-arrival) is (left) masked by background noise
and (right) not masked by background noise. The seismogram on the
right is usable for P-RF analysis while the one the left is not. Signal
time window is between 29 and 40 seconds whereas noise time
window is between 5 and 20 seconds. In blue is the original unfiltered
seismogram whereas in black, the seismogram is filtered between
0,02 Hz and 0.5 Hz.

Figure 2: A Kernel Density Estimation plot showing the distribution of
all 8 features. Values for all features are mostly centered between
0.5 and 10 with the majority being centered at 1.

Generation of Labeled Data

All the 372,087 seismograms were quality-checked manually to
generate labeled data. The usable and non-usable seismograms were
designated a response class output of 1 and 0, respectively. Figure 3
shows a coordinate plot of the features.

Figure 3: A coordinate plot of the features grouped by the response 
class output. From the plot, there is always some amount of overlap
between features of the two response output classes. That means,
although the two classes can be separated, there is bound to be
some confusion i.e., the machine learning techniques are bound to
be confused when doing classification in the area/region of overlap .

Figure 4: Supervised ML classification techniques employed in this
study; (a) KNN (b) NB (c) DT (d) DA (e) SVM and (f) ANN

Partitioning of Labeled Data into Training Set and Test Set

The labeled data was partitioned into training set and test in the ratio
7:3, respectively. The training set and test set were used to train and
evaluate the ML techniques, respectively. The features of both training
set and test set were scaled to a mean of 0 and a standard deviation of
1 prior to training and evaluating the ML techniques.

Figure 5: Bar chart showing the accuracy of the 6 classification
techniques.

Figure 6: Confusion matrix for the DT, the best technique.

The performance of 6 different supervised machine learning
classification techniques for quality checking seismograms were
evaluated and compared. The Decision Tree classifier gave the best
results with overall accuracy of 97.2%. To improve the accuracy of the
Decision Tree, it is recommended that (i) new features are computed
and (ii) different classifiers are used in an ensemble manner for the
seismograms where misclassification occurred.

Conclusion and Recommendations
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