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Abstract

United States Federal Emergency Management Agency provides model-output localized flood grids that are useful in charac-

terizing flood hazards for properties located in the Special Flood Hazard Area (SFHA - areas expected to experience a 1% or

greater annual chance of flooding). But these flood grids are often unavailable or fail to include return periods for particular

applications, such as understanding flood risk of properties during the 70-year useful building life cycle. Furthermore, due to

the unavailability of higher-return-period flood grids, the flood risk of properties located outside the SFHA cannot be quan-

tified. Here, we present a method to estimate the flood hazard for U.S. properties that are located both inside and outside

the SFHA. The flood hazard is characterized by the Gumbel extreme value distribution to project flood elevations to extreme

flood events for which an entire area is assumed to be submerged. Spatial interpolation techniques impute elevation values in

the extreme flood elevation surfaces and therefore can estimate the flood hazard for areas outside the SFHA. The proposed

method can improve the assessment of flood risk for properties located in both inside and outside the SFHA and therefore,

the decision-making process regarding flood insurance purchases, mitigation strategies, and long-term planning for enhanced

resilience to one of the world’s most ubiquitous natural hazards.

1



Results
Data Cleaning

The data cleaning process is run on the 121,215 cells in the study area. Data cleaning identifies 32 cells with flood depth 

(D) equal to zero (no cells have negative D), 3,575 cells for which a shorter return period D equals or exceeds a longer 

return period D, and 2,365 cells for which a positive shorter return period D is accompanied by a “null” longer return 

period D (Table 1). The original D values in these 5,972 cells (4.9% of the initial cells) are thus unused in the analysis 

because they fail one or more of these data cleaning tests.  

A Data-driven Spatial Approach to Characterize Flood Hazard 

Introduction
The overarching goal of this research is to characterize flood hazards at locations both inside and outside the Specilal

Flood Hazard Area. More specifically, the research addresses the question, “If no modeled flood data exist for some or all 

return periods, what are the flood characteristics?” To that end, this research introduces a method for describing flood 

hazards whereby the flood is characterized using the Gumbel extreme value distribution, and flood elevations are 

projected at higher return periods. The gaps in flood surfaces due to limited data are filled by spatial interpolation 

techniques. These filled elevation values are then used to estimate floods for the locations inside the shaded or unshaded 

X Zones.

The contribution of this research is the development of a novel method to estimate flood hazard characteristics based on 

existing hydrologic-modeled flood surfaces. Ultimately, this technique will help government agencies and community 

officials to formulate policies and homeowners to make more informed decisions regarding insurance purchase, 

mitigation strategy, and long-term planning.

Study Area and Data
A frequently-flooded residential neighborhood in Metairie, Louisiana (Jefferson Parish), bounded by the area shown in 

Figure 3, is used for this case study. This site is chosen primarily because of the availability of model-output flood depth 

grids for four return periods – 10, 50, 100, and 500 years – developed at a scale of 3.048 m x 3.048 m, by FEMA through 

its Risk Mapping, Assessment and Planning (Risk MAP) program. Although recent research has noted issues with FEMA 

methodologies and has enhanced flood characterization, these data are considered here due to the wide availability in 

the United States. The grid cells located within SFHA have at least two flood depth values (i.e., 100– and 500-year return 

periods) for which the Gumbel distribution can be fit initially. For the grid cells located in shaded-X zone (i.e., only 500-

year flood depth is available) or unshaded-X zone (i.e., no flood information available), spatial interpolation is conducted 

to characterize flood in these grids. The study area consists of 44 census blocks with a total area of approximately 1.126 

km2. The mean elevation in this below-sea-level, levee-protected area is –5.5 feet with a standard deviation of 0.71 and a 

range of –9.0 to –2.9 feet. 

Summary and Conclusion
The specific findings of the case study include that:

• the presented method is able to characterize flood hazards in areas of low to moderate flood risk; for example, 100-

year 𝐷 were predicted for cells with known 100-year 𝐷 with RMSE of 0.15 feet

• spatial interpolation of extrapolated surfaces functioned well, regardless of technique; for example, 500-year 𝐷 were 

imputed using spatial interpolation for cells with known 500-year 𝐷 with RMSE of 1.73 inches

• using 10-, 50-, and 100-year 𝐷 as predictors, the estimated 500-year 𝐷 had an RMSE of 0.39 feet while the estimated 

100- and 500-year 𝐷 had an RMSE of 0.20 and 0.47 feet, respectively, when using 10- and 50-year 𝐷 as predictors
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Methods
The method consists of extrapolating flood depths using the Gumbel extreme value distribution at the locations where a 

Gumbel fit is possible because flood depths for at least two return periods are known. Extreme return periods are 

selected where most of the study area is assumed to be submerged (Figure 1). Then, spatial interpolation techniques, 

including moving average, inverse distance weighting, natural neighbor, and kriging, are used to estimate the flood 

elevation for the extreme return periods at grid cells for which no data-derived distribution can be fit confidently. It is 

necessary to use flood elevation rather than flood depth for spatial interpolation because flood depth cannot be 

smoothed across space, while flood elevation is generally insensitive to differences in surface elevation. The imputed 

extreme-return-period flood elevations are then fit with the Gumbel distribution and used to estimate flood depth for 

locations that are unflooded at shorter return periods to verify that negative values, confirming that the surface is not 

flooded at that return period) are returned. Through this method, the flood depth vs. annual non-exceedance probability 

relationships are established for all locations in the study area, which can then be used to develop flood hazard estimates 

that are more reasonable to expect within the useful life of the building or settlement. The overall schematic summary of 

the flood hazard characterization method is shown in Figure 2.

Figure 1: Schematic representation of the concept behind the flood depth surface estimating method.

Figure 3: Study area in Metairie, Louisiana.

Gumbel Model Fitting

Descriptive statistics for the scale (α) and location (u) parameters are shown in Table 2. Once the α and u parameters are 

corrected for all cells, they are used to extrapolate D for the 5,000-, 10,000-, 15,000-, and 20,000-year return periods in 

their respective cells. The smallest possible moving-average window that interpolates all flood elevation values at 

extreme return periods is 31x31 cells. Descriptive statistics for the spatially interpolated and smoothed Gumbel 

parameters are shown in Table 3. A negative value is found for u in every cell. The Risk MAP-modeled 500-year D

spuriously exceeds the spatially interpolated 5,000-year depth in 36 cells (0.03% of the study area), so correction 

procedures are implemented. 

Validation

Table 4 shows the descriptive statistics and root-mean-square error (RMSE) of the difference between estimated and Risk 

MAP-modeled data for cells having at least two non-null D values. These results verify that a relatively small amount of 

error is introduced in the estimation procedure, if it can be assumed that the Risk MAP data are “correct.” For cells having 

only a 500-year Risk MAP-modeled D, the relative correspondence between the spatially interpolated estimated 500-year 

D and that from Risk MAP is calculated by spatial interpolation technique. Because of the strong correspondence across 

spatial interpolation methods, values are expressed in inches (Table 5). Results suggest that the selection of spatial 

interpolation technique has little impact on the results.

Discussion
This method offers a means for circumventing the ever-present dilemma of how to ensure high-quality modeling to 

support planning for preventing, mitigating, and/or adapting to future flood events when little measured data are 

available, for locations where advanced hydrological and hydraulic modeling has been conducted to determine estimate D

at multiple return periods. In the case study area in Metairie, Louisiana, only approximately 5 percent of the cells failed 

the “data cleaning” tests, which suggests that the modeled data are reasonable. Nearly all of the spurious data occurred 

when shorter return period D exceeds longer return period D or longer return period D is null. 

If it can be assumed that the Risk MAP-modeled data are the “correct” values, the Gumbel distribution-generated flood 

parameters are shown to be remarkably stable for simulating and imputing D for various return periods. The fact that u

remains negative in all cases verifies that the correction algorithm succeeded in ensuring that all terrestrial cells are not

submerged under normal conditions. The much smaller standard deviation for α than for u is likely an artifact of the 

small, homogeneously-elevated study area. As α represents the slope of the Gumbel fit line, each cell in the study area 

will have a similar relationship between D and P. This contrasts with u, which can have a wider range of values, suggesting 

that some cells are more susceptible to flooding than others, even within the same neighborhood. 

Validation and sensitivity analysis confirm that the method is relatively insensitive to the spatial interpolation technique 

chosen, at least for this study area. The relatively small errors, as evidenced by the small RMSE values (see Table 4), even 

for 500-year D and even when D values for only two return periods are known, are interpreted as evidence that the 

procedure is successful. The Gumbel distribution is deemed to provide an acceptable result. However, the present work 

does not consider the uncertainty in the Gumbel parameters. Moreover, the relatively small RMSE values, even between 

estimated vs. modeled 500-year D and even when D values for only two return periods are known, imply that D can be 

estimated relatively accurately and precisely. Such estimates can provide engineers and planners with useful information 

for enhancing infrastructure to accommodate low-frequency, large-magnitude flood events. Although the method is 

computationally intensive, it can be automated for improved D estimates for any location that is “data rich” regarding D

grids at multiple return periods. Refinements in the modeled data for short or long return periods may allow for further 

improved understanding of infrastructure needs for accommodating floodwaters. .

Limitation and Future Work
Flood hazard estimation is, by necessity, based on such a limited number of data points, but the availability of model 

output at only a small number of locations and return periods necessitates use of this technique. Moreover, the rounding 

of original FEMA-modeled values to the tenth of a foot restricts the precision with which the results can be presented. 

This method was applied to a relatively limited geographical extent with homogeneous topography. Future work should 

evaluate the performance of the method across a larger geographical extent with more heterogeneous topography. In 

addition, the effect of climate change on flood hydroclimatology is not considered. Changing climate may alter the log-

linear shape of the Gumbel distribution, particularly if forecasts of increasing frequency of extreme precipitation events 

prove to be accurate. Likewise, differences in local land cover may cause differences in the Gumbel parameters for D as a 

function of return period and in generating a continuous surface using the spatial interpolation techniques. Despite the 

fact that caution should be exercised in the interpretation of results for these and other reasons, the approach offers an 

advantageous “next step” in planning for, forecasting, and mitigating the world’s most destructive natural hazard. 
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Figure 2: Schematic summary of the flood hazard characterization method.

Data Cleaning Rule Number of Cells
10-year flood depth ≤ 0 13
50-year flood depth ≤ 0 16

100-year flood depth ≤ 0 1
500-year flood depth ≤ 0 2

10-year flood depth ≥ 50-year flood depth 776
10-year flood depth ≥ 100-year flood depth 0
10-year flood depth ≥ 500-year flood depth 2
50-year flood depth ≥ 100-year flood depth 530
50-year flood depth ≥ 500-year flood depth 4

100-year flood depth ≥ 500-year flood depth 2,263
10-year flood depth ≥ 0 and 50-year flood depth is NULL 7

10-year flood depth ≥ 0 and 100-year flood depth is NULL 0
10-year flood depth ≥ 0 and 500-year flood depth is NULL 0
50-year flood depth ≥ 0 and 100-year flood depth is NULL 4
50-year flood depth ≥ 0 and 500-year flood depth is NULL 1

100-year flood depth ≥ 0 and 500-year flood depth is NULL 2,353

Total 5,972

Gumbel 
Parameter

Mean Standard 
Deviation

Minimum Maximum

𝛼 0.24 0.08 0.08 0.82
𝑢 –0.33 0.37 –3.16 0.00

Gumbel 
Parameter

Mean Standard 
Deviation 

Minimum Maximum

𝛼 0.28 0.22 0.07 2.08
𝑢 –1.72 1.41 –12.96 –0.39

Table 1: Number of cells in the study area removed by 

each data cleaning criterion. Table 2: Descriptive statistics of α and u for the location 

(cells) flooded by more than one return period.

Table 3: Descriptive statistics for α and u, after implementing 

a 31x31 moving average and a 3x3 smoothing.

Mean (ft.) Standard Deviation 
(ft.)

Minimu
m (ft.)

Maximu
m (ft.)

RMSE 
(ft.)

10-year 0.17 0.21 –0.25 1.58 0.27
50-year –0.01 0.09 –0.33 0.53 0.09

100-year 0.13 0.07 –0.00 0.85 0.15
500-year –0.10 0.11 –0.95 0.57 0.14

Interpolation Technique
Mean 
(in.)

Standard Deviation 
(in.)

Minimu
m (in.)

Maximu
m (in.)

RMSE 
(in.)

Moving Average and Smoothing –1.14 1.30 –11.43 6.90 1.73
Inverse Distance Weighting –1.12 1.32 –11.43 6.92 1.73

Natural Neighbor –1.11 1.33 –11.43 6.92 1.73
Ordinary Kriging –1.12 1.32 –11.43 6.93 1.73

Table 4: Descriptive statistics and root-mean-square error 

for Risk MAP-modeled minus predicted D, for cells having 

two or more originally-modeled D from among 10-, 50-, 

100-, and 500-year return periods.

Table 5: Descriptive statistics and root-mean-square error for Risk 

MAP-modeled minus predicted 500-year D, for cells having only 

500-year return period flood depth, by moving average (31x31) 

and smoothing (3x3), inverse distance weighting, natural neighbor, 

and ordinary kriging.

Sensitivity Analysis

The sensitivity analysis quantifies the rationality of using Gumbel extreme value distribution even as the number of 

known points decreases to two (Table 6). Results suggest that, not surprisingly, the increased magnitudes of the 500-year 

D leave a wider range from which the estimate can deviate from the actual D. Also, it is not surprising that the largest 

standard deviation of this modeled-vs.-estimated difference occurs for predicting the 500-year D when D is known at only 

two return periods. Nevertheless, even in such cases, the RMSE falls within a half-foot. 

Table 6: Descriptive statistics and root-mean-square error of the difference (∆) between 

the Gumbel model-based flood depth (D) estimation and Risk MAP-modeled D, when 

using D at known return periods to predict D at another known return period.

Scenario Mean (ft.) Standard 
Deviation 

(ft.)

Minimum 
(ft.)

Maximum (ft.) RMSE 
(ft.)

∆ 500-year depth using 10-, 
50-, and 100-year depth as 

predictors
0.32 0.22 –0.26 1.87 0.39

∆ 100-year depth using 10-
and 50-year depth as 

predictors
–0.02 0.20 –0.46 1.09 0.20

∆ 500-year depth using 10-
and 50-year depth as 

predictors
0.28 0.38 –0.46 2.65 0.47


