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Abstract

The Planetary Data System (PDS) maintains archives of data collected by NASA missions that explore our solar system. The
PDS Cartography and Imaging Sciences Node (Imaging Node) provides access to millions of images of planets, moons, and
other bodies. Given the large and continually growing volume of data, there is a need for tools that enable users to quickly
search for images of interest. Each image archived at the PDS Imaging Node is described by a rich set of searchable metadata
properties, such as the time it was collected and the instrument used. However, users often wish to search on the content of
the image to find those images most relevant to their scientific investigation or individual curiosity.

To enable the content-based search of the large image archives, we utilized machine learning techniques to create convolution
neural network (CNN) classification models. The initial CNN classification results for rover missions (i.e., Mars Science Labora-
tory and Mars Exploration Rover) and orbiter missions (i.e., Mars Reconnaissance Orbiter, Cassini, and Galileo) were deployed
at the PDS Image Atlas (https://pds-imaging.jpl.nasa.gov/search) in 2017. With the content-based search capability, users
of the PDS Image Atlas can search using a list of pre-defined classes and quickly find relevant images. For example, users can
search “Impact ejecta” and find the images containing impact ejecta from the archive of the Mars Reconnaissance Orbiter
mission.

All of the CNN classification models were trained using the transfer learning approach, in which we adapted a CNN model
pretrained on Earth images to classify planetary images. Over the past several years, we employed the following three techniques
to improve the efficiency of collecting labeled data sets, the accuracy of the models, and the interpretability of the classification
results:

First, we used the marginal-probability based active learning (MP-AL) algorithm to improve the efficiency of collecting
labeled data sets.

Second, we used the classifier chain and ensemble approaches to improve the accuracy of the classification results.

Third, we incorporated the prototypical part network (ProtoPNet) architecture to improve the interpretability of the

classification results.


https://pds-imaging.jpl.nasa.gov/search
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/ Step 1: Machine Learning Products Delivery \

Images collected by NASA planetary science missions are curated by the Cartography and Imaging Sciences
Discipline Node (Imaging Node) of the Planetary Data System (PDS). These holdings currently include more
than 39.3 million products that span 22 missions, with targets that include Mars, the Moon, Mercury, Jupiter,
Saturn, Venus, and more. Some example Mars surface images taken by the Curiosity rover of Mars Science

Machine Learning Pipeline Overview

Machine learning products are delivered to the PDS Imaging Node in PDS4 bundles.
The PDS4 bundles are described using PDS4 Information Model! and Machine
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Figure 1. Example Mars images taken by the Curiosity rover of Mars Science Laboratory Mission.

Salient landmark detection Data labeling
(Wagstaff et al., 2012)

Problem: How to effectively find images of interest from 39.3 million images archived at the PDS
Imaging Node? For example, how to find images taken by the Curiosity rover of MSL mission that contain
wheels (the right-most image shown in Figure 1).
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* Support content-based search
* The PDS Image Atlas is publicly accessible at URL
https://pds-imaging.jpl.nasa.gov/search
The next generation PDS Image Atlas will be launched soon
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