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Abstract

As high-resolution global coverage cannot easily be achieved by direct bathymetry, the use of gravity data is an alternative
method to predict seafloor topography. Currently, the commonly used algorithms for predicting seafloor topography are mainly
based on the approximate linear relationship between topography and gravity anomaly. In actual application, it is also necessary
to process the corresponding data according to some empirical methods, which can cause uncertainty in predicting topography.
In this paper, we established analytical observation equations between the gravity anomaly and topography, and obtained the
corresponding iterative solving method based on the least square method after linearizing the equations. Furthermore, the
regularization method and piecewise bilinear interpolation function are introduced into the observation equations to effectively
suppress the high-frequency effect of the boundary sea region and the low-frequency effect of the far sea region. Finally, the
seafloor topography beneath a sea region (117.25°-118.25° E, 13.85°-14.85° N) in the South China Sea is predicted as an actual
application, where gravity anomaly data of the study area with a resolution of 1’x1’ is from the DTU17 model. Comparing the
prediction results with the data of ship soundings from the National Geophysical Data Center (NGDC), the root-mean-square
(RMS) error and relative error can be up to 127.4 m and approximately 3.4%, respectively.
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Key Points:

e An iterative algorithm to predict seafloor topography from gravity anomalies is
theoretically established. Its validity is then verified by numerical simulations and

application in predicting actual seafloor topography.

e Regarding the gravity anomalies, most of its low frequency parts are unrelated to the
local seafloor topography. We proposed an efficient approach to remove that part of

gravity anomalies.
Abstract

As high-resolution global coverage cannot easily be achieved by direct bathymetry, the use of
gravity data is an alternative method to predict seafloor topography. Currently, the commonly used
algorithms for predicting seafloor topography are mainly based on the approximate linear
relationship between topography and gravity anomaly. In actual application, it is also necessary to

process the corresponding data according to some empirical methods, which can cause uncertainty
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in predicting topography. In this paper, we established analytical observation equations between
the gravity anomaly and topography, and obtained the corresponding iterative solving method
based on the least square method after linearizing the equations. Furthermore, the regularization
method and piecewise bilinear interpolation function are introduced into the observation equations
to effectively suppress the high-frequency effect of the boundary sea region and the low-frequency
effect of the far sea region. Finally, the seafloor topography beneath a sea region (117.25°-118.25°
E, 13.85°-14.85° N) in the South China Sea is predicted as an actual application, where gravity
anomaly data of the study area with a resolution of 1'x1" is from the DTU17 model. Comparing the
prediction results with the data of ship soundings from the National Geophysical Data Center
(NGDC), the root-mean-square (RMS) error and relative error can be up to 127.4 m and

approximately 3.4%, respectively.
Plain Language Summary

The size of submarine mass and its distance from sea level affects gravity on it, which can
make a difference in the gravity observed on sea level. We cut submarine mass into rectangular
prisms one by one, establish and solve the equations between gravity and the height of each cuboid,
and splice each cuboid to obtain topography of submarine mass at last. However, since there are
some errors in gravity data, it is necessary to analyze their sources and propose algorithms to

weaken their influence in order to improve the prediction accuracy of seafloor topography.

1 Introduction

As a natural density interface of the earth, the seafloor topography plays an important role in
many geoscience fields (Baudry and Calmant, 1996; Becker et al., 2009; Hsiao et al., 2011;

Sandwell et al., 2006; Jekeli, 2017; Abulaitijiang et al., 2019). Apart from the direct
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measurement of sea depth by single/multi-beam technology, remote sensing technology and
marine gravity data are also important for the indirect measurement of sea depth (Lyzenga, 1978;
Stumpf et al., 1985; Caballero and Richard, 2020). For multi-beam echosounder, although it
has a high accuracy, the distribution of actual ship soundings data is very sparse due to large time
consumption and high cost (Sanwell and Smith, 1997). For remote sensing technology, the
satellites including Sentinel-2, ICEsat, and others can measure the depth of shallow seas near
islands and reefs with an accuracy of less than 1 m. However, depth prediction by remote sensing
technology is limited as it can only capture the topographic features of sea areas with depths less
than 18 m (Rasheed et al., 2021). Compared with multi-beam echosounder and remote sensing
technology, marine gravity data is well distributed on the ocean. For example, geoid heights with a
resolution better than 2 km can be obtained by integrating data of many altimetry satellites such as
T/X satellite, Jason satellite, and Cryosat satellite, etc. (Sandwell et al., 2014), from which gravity

data, such as the gravity anomaly and gravity gradients, can be satisfactorily computed

(Andersen, 2020; Yu D C et al., 2021). Therefore, a highly effective method for mapping
seafloor topography is as follows: first, gravity data with a high resolution (e.g., 2 km) can be used
to predict seafloor topography with the same resolution, and the data of sea depths from ship
soundings and remote sensing can then be combined to refine the topography. In fact, using gravity
anomaly to predict seafloor topography can effectively fill the lack of ship sounding data and

improve the overall accuracy of the seafloor topography.

Considering the research status quo of using gravity data to predict seafloor topography,
gravity anomaly has been used as the main type of data (Calmant, 1994; Smith and Sandwell,
1997; Kim et al., 2011). Additionally, vertical gravity gradient data have also been used to a lesser

extent (Hu et al., 2014; Kim and Wessel, 2016; Yang et al., 2018; Xu and Yu, 2022). The
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prediction methods are mainly divided into the spatial and frequency-domain methods. A typical
representative of the spatial method is the gravity-geologic method (GGM) based on the Bouguer
correction formula; namely, the relationship between the gravity generated by an infinite uniform
thick plate and the height of the thick plate is linear; thus, the relationship between the gravity
anomaly and seafloor topography can be fitted by existing ship soundings (Imbrahim and Hinze,
1972; Hwang, 1999; Kim et al., 2011). Essentially, GGM is a fitting method that can be easily
computed, but it cannot predict heavily undulating seafloor topography (Yang et al., 2018). The
frequency-domain method for predict seafloor topography is based on the Parker formula (Parker,
1972) that essentially is a first-order approximate formula omitting the high-order terms of sea
depth. The frequency-domain method needs to consider the flexural isostatic compensation
theory to improve its accuracy; thus, more geophysical parameters are required (Dixon et al.,

1983; Baudry et al., 1987).

Parker formula can be summarized as follows. For a local sea surface, it can be approximated
as the O—xy plane. If z-axis is downward, then the spatial coordinate is O—xyz . Assuming that
R={(x,y); —a<x<a,~b<y<b} is a region on the sea surface, /#(x,y) is the sea depth at
(x,¥) onseasurface,and Q={(x,,2); (x,y)€ R,0<z<h(x,y)} isa curved column of seawater
with density p, below R; the gravitational potential generated by Q at (x,y)€ R is then

expressed as:

1
AT =G, ' d&édnd
v (x,3)=Gp Iy\/(g‘—x)2+(77—y)2+g”2 &dndd (1)

where G is the Newton gravitational constant. Using Eq. (1) and omitting high-order quantities of
h(x,y), Parker (1972) derived a linear relationship between Fourier transforms of v, (x,») and

h(x,y) ; namely, the relationship between v,(x,y) and h(x,») in the frequency domain.
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Considering that g,(x,») is the gravity corresponding to v;(x,y), the relationship between

gx(x,y) and %(x,y) in the frequency domain can also be deduced (Jekeli, 2017; Zhu, 2007).

Although the Parker formula has been widely used in predicting seafloor topography, the

omitted second-order quantity O(f -h*) still has a large impact for high frequencies (large f)

and large sea depth 4, where f=./f>+f; and (f,,f,) arefrequency-domain variables. Yang

et al. (2018) has pointed out that the Parker formula is less accurate in sea areas with large

variations in the seafloor topography.

The purpose of this paper is to directly compute the gravity g,(x,y) generated by Q to
establish a rigorous set of observation equations between the gravity anomaly and sea depth
h(x,y). Subsequently, the solvability and anti-error property of the observation equations are
investigated by numerical simulation. Simultaneously, the spectral characteristics of the measured
gravity anomaly are also analyzed to eliminate disturbances in the gravity anomaly and predict
seafloor topography accurately. Finally, to verify effectiveness of our algorithm, a sea region in the

South China Sea is selected as a test area to predict its seafloor topography.
2 Theory and methods

2.1 Computational formula of gravity

The mathematical expression for the vertical gravity generated by a rectangular prism of
constant density is introduced here (Nagy, 1966; Blakely, 1995; Nagy et al., 2000). We assumed

that 4A={(&,n,0); x;, <E<x,, 3, <M< y,,z,<{ <z} is a rectangular prism of constant density p,

and Q(x,,¥,,2,) is any point outside 4. Introducing the notations
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&=x —Xp> & =x, —Xo
108 771:)’1_)’Qa 772=y2—yQ (2)

$i=z1-2y, §=2,72,

109 and

110 r=(E=x) + (1= y,) + (£ —2,)’ (3)
111 then the vertical gravity at point Q generated by 4 is

é,_ZQ

4 » Voo =Gp, d&dnd
84(x0:Y9:29) = Gp fﬂ\/[(g-xg)z+(n—yQ)2+(§—zQ)2]3 &dndg
enl? | )
=Gp, fln(f]+r)+771n(§+r)—{arctang—z
5
g

112 where the vertical gravity represents the derivation of the gravitational potential with respect to the

113 variable z.

114 If z=0 in the rectangular prism A4 and z,=0 , assuming that

0

115  R={(x,)); x,<x<x,,y,<y<y,} is the rectangular region corresponding to the rectangular prism

116 A4 on the sea surface (refer to Fig. 3a), then Eq. (4) can be simplified as
gA(anyQ:O):GpA'JR(anyQaZQ) (5)
117 where z, is the sea depth of 4, and

& n

on
2, E +n + 2] Ll ) (6)

N+\E+n +2z; S+{E+1 +2;
Jr(xy,¥9,2,) =[S In +7ln
n+y&+n’ E+\&+1’

— z, arctan
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Notably, (x,,1,) in Egs. (5) and (6) can assume the range of whole local sea surface O —xy
. Therefore, Eqs. (5) and (6) are analytical formulas for the gravity on the sea surface generated by
the rectangular prism A4={(&,7,{); x;, <&<x,,», <n7<y,,0<{ <z} below the sea surface. The

derivation details and expression form can refer to the work of Nagy et al (2000).

2.2 Establishing the observation equations for sea depth from the gravity anomaly

In the following, the local coordinate system O-xyz can be established by considering the
local sea surface as O —xy and the z-axis downward (away from the sea surface). Assuming that
R={(x,y); —a<x<a,—a<y<a} is a square area on the sea surface (called the target area),
h(x,y) 1isthe sea depth at (x,y) (tobe solved), and Q={(x,y,z); (x,y)e R, 0<z<h(x,y)} isthe
curved column formed by the region of seawater below R. If seawater in Q is replaced by rocks

beneath seafloor, then the gravity anomaly at point O(x,,y,) on R generated by Q is

4
xQ)2 +(77_yQ)2 +;2]3

5gx(xg,7,) = GAp| i | \/[(5 — dédndd (7)

where Ap=p, -p., and p, and p, are the average densities of the lithosphere and seawater

respectively. Assuming that ¢ is the step length, and (x,,y;) is the partition points of R, wherein
x,=i-t, y;=j-t,and a=N-t.If the length 7 is small, the curved column below the segmented
subdomain R, =[x,,x,,]x[y;,y,,] of R can then be approximated as a prism
Q, ={x, <x<x,,y;Sy<y,,0<z<h}, where h, is the average depth of [x,x, IX[y,,»,,].

Using Eq. (5), Eq. (7) can be expressed as

N-1
08 (%0, 70) =G Ap D Ty (Xp.¥0: 1)) (8)

i,j=—N
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where J, is computed by Eq. (6). If the gravity anomaly Jg,(x,,y,) on R is obtained in

advance, then Eq. (8) is the set of observation equations for sea depth 7, .

Variations of the gravity anomaly on the sea surface are mainly caused by the mass deficit by
the seafloor topography, density anomaly of the lithosphere, and isostatic compensation of mass
below the lithosphere. The mass deficit by seafloor topography significantly contributes to the
gravity anomaly on the sea surface, whereas the contributions of other factors are smoothed by

upward continuation (Fan et al., 2021).

In terms of the magnitudes of the influences, the closer the distance to R, the larger the
influence on the gravity anomaly on R. In the following Fig. 1, the regions that have an effect on
the gravity anomaly on R are divided into the boundary, far, and deep regions, and the methods to

deal with these effects are investigated individually.

Boundary regi

Sea surface gravity anomaly Far region

information and distribution Target sea area

Gravity anomaly

Gravity anomaly data in the image is
from DTU17, and the digital clevation ~ S¢a level
model is from GEBCO22.These data .

are only used for painting Sea water
i h
-19 mGal 47 Custom grid
I
-4.5 Km 2.3

Seafloor topog

Cross section
of the Earth

Figure 1. Information and distribution of the gravity anomaly on the sea surface, where X and S

represent the Moho surface and seafloor topography, respectively; R, R and D represent the
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corresponding target, boundary and far regions on the sea surface, respectively; p, and p,

represent the densities of seawater and bedrock, respectively.

2.2.1 Observation equations by considering the boundary region

By extending R outside the boundary by M steps, R={(x,y); —(M + N)t<x,y <(M +N)t} is

introduced. Subsequently, R — R is called the boundary region of R, and the effect of its
topography on solving the sea depth below R is called the boundary effect. By considering the

boundary effect, Eq. (8) can be written as

N+M-1

GAp D Ty (%o h) = 08,4(x0,70)  (%5,¥p)€ R 9)

i,j=—(N+M)

where 0g,(x,,y,) is the gravity anomaly generated by the curved column ¢ formed by the
seawater below R. Eq. (9) is the system of observation equations for sea depth 7, below R

after considering the boundary effect.

.. . . . A t
We then subdivided the grid points on R, namely, we consider (%,,5,)e R, where x, :% ,

A ¢ . . .
X 2%, and p,q=0,11,---,22N . If the gravity anomaly §g¢ (% ,5,) 1S known, the following

P

equation is obtained

N+M~-1

GAp D" Jy (R,.9,.h)=0g,(%,.3,) (10)

i,j=—(N+M)

where p,q=0,%1,---,#2N . Notably, the number of equations in Eq. (10) is (4N +1)° and the

number of unknowns is (2N +2M )*; thus, N>M is required to ensure that Eq. (10) has enough
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equations. As Eq. (10) is nonlinear with respect to the solved variables 7 , linearization must be

ij

conducted. After linearization, the corresponding iterative procedure for 7%, is

N+M-1 aJR‘ ()’(\: ’)A/ ,hi(,k)) N+M-1
GAp J a‘”h o Ih —h1=6g,(%,,5,)-GAp D, Ty (R,,5,.h") (11)
i,j=—(N+M) ij i,j=—(N+M)

where k=0,1---,and A" is the iterative initial value of %, .

2.2.2 Effect of the deep region: correction for the Moho undulation

Fig. 1 shows that the effect of the deep region of Earth on the gravity anomaly on R is mainly

derived from the undulation of the Moho surface; hereafter, this effect is simply called the “deep
effect.” In physical geodesy, Venning-Meinesz or the Airy isostatic theory is usually used to
determine the Moho surface. In this paper, the Airy isostatic theory is recommended. Notably, for
a seamount with depth 4, if p,, p. and p, are the densities of seawater, lithosphere, and upper
mantle, respectively, and L is the height of the Moho surface uplift corresponding to the seamount,

then L= L Py, and 7, - L represent the depth of the Moho surface from the sea surface below

the seamount (Heiskanen and Moritz, 1967; Calment and Baudry, 1996), where 7, =25 km is

usually chosen.

According to the Airy isostatic theory, the depth 7, —L of the Moho surface can directly be
derived from the depth /4 of the seamount. As the depth of the Moho surface from sea surface is
much larger than the depth /4 of the seamount, the effect of the Moho surface undulation on the
gravity anomaly can easily be reduced with the help of the Airy isostatic theory after the seafloor
topography is preliminarily solved. Therefore, the deep effect, such as the Moho surface

undulation, can be corrected in advance.
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2.2.3 System of observation equations in the general case

If the target area R is extended to whole sea surface S in Eq. (8), and the gravity anomaly
generated by the density difference of seawater with respect to the lithosphere is §,g, then
considering (x,y)e R, we have

N+M-1

GAp D Jy (%,3.h) = 824(x,y) = 52, (x,y) (12)

i,j=—(N+M)

where D is the far region (Fig. 1) and §,¢ is the gravity anomaly generated by the density

difference of seawater with respect to the lithosphere below D. Notably, &

D

g 1s the effect of the

far region on the gravity anomaly and is simply called the far effect hereafter.

Generally, assuming that v is the Earth's gravitational potential and v, is the gravitational

potential generated by replacing seawater in the ocean with the rock in the lithosphere, we obtain

0gy on R. If V'is the Somigliana gravitational potential and 7=v—}" is the disturbing

_a(V_VS)
)

potential, we obtain the following on R

ar_
dz

5g +M (13)
0z

If the isostatic theory is used to eliminate the effect of the Moho surface, then the deep effect

a(vg — o . . .
(Sa—V) exhibits characteristics of long waves on the sea surface according to the circle
/4

construction of Earth density (i.e., Earth density is distributed in a laminar pattern). Substituting

Eq. (13) into Eq. (12), then at (x,»)€ R, we have

N+M—-1 BT ) a _ V
GAp z JRi (x’y’hij):M_é‘gD(X,y)— (VS ) (14)
P = (N+M) oz oz
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As the coordinate system O-xyz is locally established near R, %—T = _E;_T =0g on R, where
4 r

og 1s the gravity anomaly based on the Somigliana gravity field, whose data can be obtained by

the known gravity field models, such as EGM2008 or DTUI17. Assuming that

F(x,y)=—§gD(x,y)—¥, then at (x,y)e R, we have

N+M-1

GAp D Jo (x,3.h)=8g(x,y)+F(x,y) (15)

i,j=—(N+M)
where F(x,y) is the long wave (or low frequency) on R and is continuous. If the values of
F,=F(x,y,;) at partition points of R are known, then a bilinear interpolation function F}(x,y)

and F

i+1, j+1

can be obtained using the function values F, , F on each sub rectangle of

g2 Ty

F

i,j+1°

R, . In general, for any (x,y)e R, we assumed that ﬁ(x,y,F) = ﬁ:.j(x, y) , where (x,y)e R.,and F

)

is the vector comprising values F, at all partition points. Notably, F(x,y,F) is continuous on R

with respect to (x,y) and linear with respect to F. Moreover, F(x,y,F) isthe piecewise bilinear
interpolation function of F(x,y). F(x,y) isthe long wave on R and its wavelength is much larger
than the step length 7 to partition R, so F(x,y,F) = F(x,y) . Thus, Eq. (15) can finally be expressed
as

N+M -1

GAp Y. Jo (6 3.h)=62(x, )+ F(x,0.F),  (x,y)€R (16)

i,j=—(N+M)

where h, and F, are the variables to be solved.

So far, we have established three sets of observation equations for predict sea depth 7, ,

namely, Egs. (8), (10), and (16), where Eq. (8) is established by only considering the target region
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R; Eq. (10) is established after considering the boundary effect of R; and Eq. (16) is established
after considering both the boundary effect of R and the far effect. As the observation equations are

nonlinear with respect to the sea depth £, , they should be linearized for ., in actual

computation. For example, Eq. (11) is the result of linearization of Eq. (10). Additionally, Eq.

(16) is linear with respect to the variable F; thus, only the variable 4, should be linearized in Eq.

(16).

2.3 Regularization method for the solving equations

This paragraph mainly discusses the solvability problem for observation equations. To ensure

that the descriptions are clear, only Eq. (11) is discussed as an example. Introducing matrix

aJ, (ﬁp,j/q,h;.k))
A4, = GAp[ 5 (17)
Y )28
and vector
N+M -1 ‘
b, =[5g,@(x,),yq)—GAp Y Jo, G0 ’)} (18)
i, j=—(N+M) 2
and solving for vector h, = [h,.j lj , the iterative matrix form of Eq. (11) is expressed as
A, =b, +4h, (19)

Asthe knowndata &g, (%,,7,) inEgs. (11) or (19) are given only on R, and the sea depths 4, to

be solved (where i, j=—(N+M),---,0,---,N+M —1) contain the sea depths of the boundary

region in addition to those of R, directly solving Eq. (19) may lead to poor solvability of the
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system of equations. To ensure solvability, a regularization factor « >0 is introduced, namely,

the actual solved system of equations is expressed as
(AkTAk +ab)h,, = AkT (b, +4h,) (20)

where E is the unit matrix. Notably, Eq. (20) has a unique solution h,,, if h, is known.

k+1

Notably, the sea depth below the boundary sea R—R is divergent when iteratively solving
Eq. (20). To ensure convergence of the iterative process, the sea depth below R-R is always
considered as the average of the sea depth below R in each iteration. After this treatment, Eq. (20)
can be solved iteratively. The flow construction of the analytical iterative algorithm is shown in
Fig. 2.

Iteration

U | — y
, .

’ * i i Least square solution . . (k+1)
) ] * \ Calculation coefficient K seafloor topography h. "
seafloor topography h; ] matrix A b ] ATB(ATA + aE) 1 — ij
Selected parameters
Perpwra, M, t

f

Gridded Gravity anomaly
89(xp' ¥q)

T

Gravity anomaly
59

R Input data R Output data

Divergent .
= Observation error

(k+1) _ 5 (k)
h; ] —h; j

Convergent

et

Figure 2. Flow chart of the iterative algorithm for the seafloor topography.

3 Simulation Experiment

3.1 Selection of some parameters

This section discusses the solvability of Eq. (11) or (20) by simulations, namely, by only

considering the boundary effect. In this section, the bedrock and seawater densities are chosen as

SuIsAu0)
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p,=2.7x10°kg/m’ and p,=1.03x10’kg/m’ , respectively, namely, Ap=-1.67x10’ kg/m’ .

Notably, the smaller the step length of partition for the target region R, the higher is the accuracy of
the solved sea depth beneath R. However, as the gravity anomaly on the sea surface in the actual

calculation has a resolution of 1'x1’, the step length is always chosen as #=2km in simulation

A

computations. Additionally, as the boundary effect is considered, the extension number M in R

should be chosen carefully. According to discussions by Yu and Xu (2021), we choose that

M =10, namely, R is obtained by extending R outward for 20 km.

A

We then selected a sea arca of 96 kmx96 km in the South China Sea as R ; its internal sea
area of 56x56 km is the target region R, and the seafloor topography beneath R is chosen from
the GEBCO_22 bathymetric model. After gridding R by a step length of 2 km, the seafloor

topography beneath R is shown in Fig. 3a. This implies that the number of partitions for R is

N =14 . According to the GEBCO 22 model, the maximum undulation of the seafloor
topography below R is 610.0 m. Subsequently, this seafloor topography is placed at sea depth H
below R ,andthe gravity anomaly &g, generated by it can then be computed. Fig. 3b shows the
distribution of dg, on R where H=6km. We aimed to solve the seafloor topography
beneath R from Jg, on R using Eq. (11) or (20), and then compare it with the “real seafloor

topography” beneath R. Notably, H is the maximum sea depth of the seafloor topography.
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96km
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Height(m) Gravity anomaly(mGal)

Figure 3. (a) The 2-km step segmentation seafloor topography beneath the region R , where the
topographic fluctuation is obtained from the GEBCO 22 bathymetry model. (b) The distribution

of the gravity anomaly on the sea surface generated by this topography when H=6 km.

3.2 Selection of regularization factors

First, the maximum depth is chosen as H=6 km. For the different regularization parameter «
(unit: 10™¥s™*m™), the seafloor topography beneath R is solved using Eq. (20) without any error in

dg, and with a random error of 1 mGalin Jg;, respectively. Subsequently, compared to the real

topography, the root mean square (RMS) error can be computed (Fig. 4a). Fig. 4a shows that the

regularization factor a can be appropriately small if there is no error in dg, on R. For example,

when a=107, the solved seafloor topography has an error of less than 1.0 m, which is caused by

the boundary effect. Additionally, if error exists in dg, on R, the value of a cannot be too small;

the reason for this is that the anti-error property of matrix 4, 4, is poor. Notably, the eigenvalues

of A/ A, corresponding to the sea depths below the boundary region can easily be disturbed,
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which can lead to a large error in the sea depths below the boundary region, and thus affect the
accuracy of the bathymetry below R. Therefore, the selection of the regularization factor a must

consider the case of error in the gravity anomaly Jg, . Fig. 4a shows that the optimal value of a

should be between 0.1 and 1.0 in the case of maximum depth H=6 km. Simultaneously, the
optimal value of a varies with the depth H. Generally, the larger the depth H, the smaller is the

optimal value of a.

Fig. 4b shows the RMS error distributions of the solved seafloor topography beneath R for

different maximum depths H in the cases of no error and a random error of 1 mGal in Jg,,

respectively, where o =1 1is fixed. According to the examination rule for accuracy, the error ratio
(i.e., ratio of error to the average sea depth) can usually be used as an index. For example, as the
topographic relief is 610.0 m, the average sea depth is approximately 4695.0 m when H=5 km and
the RMS error is about 40.0 m (yellow curve in Fig. 4b); thus, the error ratio is 0.85%. Fig. 4b
shows that that all the error ratios are less than 1%; thus, choosing the regularization factor o =1

is appropriate.

250 T T T T T T T T 60 b T T T T T T
(a) --m-- H=6km no random error (‘ )" - 0=1 norandom error
200 L H=6km 1 mgal random error | 50 | a=1 1 mgal random error -
40 -
- 150 + 4 _
) E 30t ]
72 7
Z 100t | §
20 4
Sor | 10+ .
e n
0F Hecoenmmleoeleee BB B---® | ok mecnn- | A . e | i
1 1 1 1 1 1 1 1 1 1 1 1 1 1
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a(Regularization parameters) H(km)
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Figure 4. (a) RMS errors of the prediction results corresponding to different o values for H = 6
km. The orange and blue dotted lines represent the iterative convergence curves for no error and
1 mGal random error, respectively; (b) Prediction results corresponding to different H values

after a 1s fixed to 1.

3.3 Anti-error characteristics of the linearized systems of equations

This paragraph discusses the anti-error characteristics of Eq. (11) or (20) where o =1 is
chosen. As the gravity anomaly on R mainly results from satellite altimetric data, it contains some
error. In the following computations, two kinds of errors are added to the gravity anomaly 96€; on
R: the one is the systematic error ¢ and the other is the random error with a mean value of zero and
standard deviation . Subsequently, the seafloor topography beneath R is solved using Eq. (20).
Furthermore, compared to the real seafloor topography beneath R, the RMS errors of the solved
seafloor topography can be computed, and their distributions for different maximum depths H are
shown in Figs. Sa and Sb, where Figs. Sa and Sb correspond to the systematic and random errors,
respectively. Figs. 5a and 5b show that: (i) the systematic error in 9&; has less influence on the
solved seafloor topography compared to the random error; and (ii) the anti-error ability
continuously weakens with increasing sea depth. This is because the deeper the seafloor, the
smoother the gravity it generates on the sea surface, and the lower is its signal-to-noise ratio for the
same size of error. For example, for maximum depth A =6 km, the RMS errors of the simulation
results for the systematic and random errors are 177.0 m and 221.0 m, respectively, when errors in

0g; areboth 5 mGal, indicating that the systematic error has less influence on predict topography.

Additionally, from the statistical results of the random error with an error of 5 mGal in 9g; (Fig.

5b), all the error ratios of the solved bathymetries are less than 4%, which fully satisfies the
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general bathymetry specification necessitating error values of up to 6%. This implies that an
accuracy of 5 mGal for the gravity anomaly on the sea surface can guarantee the demand for the

inversion of seafloor topography.
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Figure 5. (a) Anti-error curves of the systematic error for different depths. (b) Anti-error curves

of random error for different depths.

Meanwhile, to examine the influence of the initial value féo) and the iterative step in solving
Eq. (20), the RMS error of the solved seafloor topography using Eq. (20) are shown in Figs. 6a
and 6b, where no error is added to 9g;. Fig. 6a shows the RMS error convergence curves for
different initial values of hj(-o) in the case of H =6 km; notably, the closer the initial value h;o) is to

the true value, the faster is the convergence of iterations. Fig. 6b shows the relationship between

the number of iterations and the RMS error for different maximum sea depths H by considering
hy(»o) as 100.0 m. Fig. 6b shows that the errors between the solved sea depths and their real values are

negligible by solving Eq. (20) with 5 to 8 iterations. Overall, we concluded that the sea depth



325

326

327

328

329

330

331

332

333

334

335

336

337

338

manuscript submitted to JGR: Solid Earth

obtained from the iterative scheme, as expressed in Eq. (20), rapidly converges to its real value for

seafloor topographies with different depths.
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3.4 Assessment for the far effect

To examine the far effect and illustrate how to control it by a piecewise bilinear interpolation

onR,thearea R shown in Fig. 3a is extended to a square area of 200 km? (Fig. 7a) and the area D

outside R can be referred to as the far region. Furthermore, if the seafloor topography beneath D

is also given by the GEBCO_22 bathymetry model, the far effect on R can then be obtained by

computing the gravity anomaly generated by the seafloor topography beneath D according

maximum depth H. By choosing maximum depth H =6 km and assuming 6g,(x,») to denote the

far effect on R, the difference between Jg,(x,y) and 6£,(x,y) is computed after introducing

the piecewise bilinear interpolation function 6¢,(x,y) presented in Section 2.2.3. The statistical
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results of the difference are shown in Fig. 7b. Hence, the error caused by substituting 6¢,(x,»)

for 0g,(x,y) in Eq. (14) is less than 0.3 mGal on average.

(b)- raw far area effect

1500 4 ey . . .
after bilinear interpolation processing

1200

600 -

3004 I |
0 T T T T

-1 0 1 2 3 4 5 6 7 8 9 10

T T T T Vi g
0 400 800 1200 1600 1800 2400 Gravity Anomaly (mgal)

Height(m)
Figure 7. (a) The simulated topography: R, Rand D represent the corresponding target,
boundary and far regions. (b) Histograms of the difference of the far effect and its bilinear
interpolation on R, where the orange column indicates the distribution of the influence of the
gravity anomaly error caused by the far zone after bidirectional interpolation and the blue

column represents the original far zone contribution error distribution.

Additionally, assuming that g, is the average value of dg,(x,y) on R, the statistical
results from the “blue curve” shown in Fig. 7b indicate that Jg,(x,y)-0g, can be
approximately referred to as the random error with a standard deviation of 0.8 mGal. Therefore,
the term Jdg,(x,y) in Eq. (14) can be also replaced by a constant for simple computation.
Notably, Fig. 7b is created by choosing M =10 when introducing g . Thus, if M is larger, the
far effect dg,(x,y) on R is closer to its average value 0g,. However, as the condition M <N

should be satisfied, the choice of M =10 1is appropriate in this case.
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Although the average value Jg, is approximately equal to the far effect dg,(x,»), the
piecewise bilinear interpolation function F(x, »,F) is still recommended owing to the presence of

another term (i.e., the deep effect) in Eq. (15).

4 Actual Application

4.1 Target region and datasets

A region of the South China Sea at latitudes 13.85°-14.85° N and longitudes 117.25°-118.25°
E is selected as the target region R and is then divided into four parts as shown in Fig. 8a. The
underwater topography of each part is solved from the gravity anomaly using Eq. (20), and the
whole seafloor topography beneath R can be obtained by splicing four parts together. The
advantage of such partition is that the boundary effect can be satisfactorily controlled, thereby

weakening the complexity in solving the observation equations.

The gravity anomaly used in this paper is chosen from the DTU17 model (Andersen and
Knudsen, 2019) and has a resolution of 1'x1’ (Fig. 8a); its accuracy is roughly between 1.50 and
5.69 mGal in the South China Sea region (Fan et al., 2020). The GEBCO 2022 global topography
model published by the International Hydrographic Organization (IHO) is used to evaluate our
predicted seafloor topography; its topography under the target region is shown in Fig. 8b.
Additionally, the data from National Geophysical Data Center (NGDC) with 2512 ship-survey
depth points in the target region (Fig. 8c) are also used to evaluate our results
(www.ngdc.noaa.gov/maps/bathymetry). The GEBCO 2022 global topography model indicates
that the maximum and minimum depths in the target region are 4340.0 and 3404.0 m, respectively,
and the complexity of the topographic relief is high (Fig. 8b); thus, it is appropriate to choose such

seafloor topography as the target object.
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377  Figure 8. (a) The distribution of gravity anomaly from the DTU17 model in the target region and
378 its spatial resolution is 1’x1’, where the red dashed line illustrates the zoning so that the areas a, b,
379  cand d are equally divided. (b) The bathymetry from the GEBCO 2022 model in the target region.

380  (c) The distribution of the ship soundings data downloaded from the NGDC in the target region.

381 4.2 Results and comparisons

382 Based on the algorithm presented in Section 3, the prediction topography is shown in Fig. 9,
383 where the regularization parameter ¢ =1, the density difference Ap =-1.67x10’kg/m’, and the
384 extension step width M =10 for g . The comparison between Figs. 9a and 8a shows a certain
385 similarity between the gravity anomaly and sea depth, which may indicate the suitability of the
386 GGM method to invert the seafloor topography.

387

Now, we analyze the accuracy of the prediction topography. First, compared with the

388 GEBCO 2022 model, the RMS errors of the solved seafloor topographies are listed in the last

389 column of Tab. 1. Second, compared with the NGDC ship-surveyed depths (Fig. 8c), the error

390 distributions are shown in Fig. 9b and the main statistical indexes of our result are presented in
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391 other columns in Tab. 1. As the NGDC data is from the ship survey, they are considered as
392 accurate data. The RMS error of our result to the NGDC data is 127.4 m. Hence, the solved
393 topography is acceptable as ship-survey data are not used in our result.
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395  Figure 9. (a) The prediction topography by the analytic iterative algorithm; the white points are
396  HU939013 ship measurements for subsequent error comparison experiments. (b) The error
397  distribution of the prediction results compared with the ship soundings.
398 Table. 1. Main statistical results of the predicted seafloor topography with known data (unit: m).
Main Max Min Mean Max Abs Sys RMS Relative Model
Indicators depth depth depth error error error error error
Sub-area a 4590.9 3698.2 4063.6 480.4 25.2 140.6 3.45% 148.0
Sub-area b 4531.4 3570.1 4018.3 533.9 17.9 116.8 2.91% 134.3
Sub-area ¢ 4484.8 3608.3 4011.5 437.5 229 144.4 3.59% 153.4
Sub-area d 4473.0 3596.3 4007.6 426.5 13.1 107.8 2.68% 110.8
Region R 4590.9 3570.1 4025.3 533.9 19.8 127.4 3.16% 136.9

399
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In this paragraph, a survey line numbered HU939013 (white dashed points in Fig. 9a) in the
NGDC data is compared with our result. Fig. 10a shows the comparison between the gravity
anomaly of DTU17 and that along the survey line obtained by forward computation from our
predicted seafloor topography, where the maximum absolute, average and RMS differences are
5.3 mGal, 0.4 mGal, and 2.2 mGal, respectively. Fig. 10b shows the comparison of the sea
depths, where the maximum absolute, average, and RMS errors of depths along the survey line
are 146.3 m, 14.9 m, and 73.42 m. Fig. 5b shows the anti-error analysis results; when the
maximum depth is 5 km and the random error is 2.5 mGal, the RMS error of the simulation
result is 79.0 m. The RMS error of the gravity anomaly difference along the survey line is 2.2
m@Gal, and the corresponding RMS error for the prediction depth is 73.4 m. This indicates that

the numerical simulation results can reflect the final prediction accuracy to a certain extent.

30 T T T T T T 1 '3800 T b T T T T T
(a) ( ) % Bathymetric Depth

25 L -3900 % Estimation .
= % s
3 AT o0 . -
] / S W Eqof X X L
Ei1sk £ e : ]l £ s, oSt
= % % HRK X ¥
5 4 &-4200 x ¥ o e -
o * * 74
S10Fs 5 . % Wl
g OFx 4300 8 2 % —— 1
3 X et

Sk X DTU17 T -4400 | -

—®— Estimation
0 L 1 1 1 1 1 il _4500 L 1 1 1 1 1
0 20 40 60 80 100 120 0 20 40 60 80 100 120

Distance(km) Distance(km)



412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

manuscript submitted to JGR: Solid Earth

Figure 10. (a) Comparison between the gravity anomaly of the DTU17 and that obtained in our
result by forward computation along the line labeled HU939013. (b) Comparison between

ship-survey depths and our predicted depths along the line labeled HU939013.

Notably, the known bathymetry data must first be applied to examine the accuracy of the
predicted seafloor topography. However, for a certain region on the sea surface, the bathymetry
data is mainly obtained along the ship route; thus, its distribution may be relatively sparse in the
region. Therefore, using only the bathymetry data as a standard in examining the accuracy of
seafloor topography is not comprehensive. Notably, Eq. (8) indicated the relationship between
the sea depth and gravity anomaly on the sea surface; thus, the gravity anomaly on the sea
surface can also be used as an auxiliary standard to evaluate the accuracy of the seafloor
topography. Dixon et al. (1983) verified that the part of gravity anomaly with wavelengths larger
than 30 km is mainly controlled by the far topography, and only the high frequency part with

wavelengths less than 30 km can be used to examine accuracy of the seafloor topography.

Now, the gravity anomalies on the target region R can be obtained by forward computations
for the solved seafloor topography and the corresponding GEBCO 22 topography model
respectively, and their RMS differences to the DTU17 gravity anomaly are computed after
subtracting the DTU17 gravity anomaly and filtering out the low-frequency parts with
wavelengths larger than 30 km (Luis, 2006). Notably, such RMS differences can be considered
as a match degree with respect to the DTU17, namely, the smaller the RMS difference, the better
the matching of the seafloor topography with DTU17. By computations, the RMS differences to
the DTU17 on R for the solved topography and GEBCO 22 model are 1.0 mGal and 1.8 mGal

respectively, which implies that our result is a better match with the DTU 17 gravity field model
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than that obtained by the GEBCO-22 bathymetry model. Therefore, the solved topography is

better than one from the GEBCO-22 bathymetry model on R to some extent.

Finally, we indicate that the seafloor topography solved in this paper only uses the gravity
anomaly on the target region R, and does not employ any known ship survey data. Additionally,
the measured sea depth data along the ship route can be regarded as a local index to examine the
seafloor topography, whereas the matching degree with the gravity anomaly can be regarded as

an overall index in the target region.

5 Discussion and Conclusions

In this paper, the grid step length is 2 km, implying that the topography undulations within
an area of 2 kmx2 km are represented by the average depth, which means that the topography
undulations within 2 kmx2 km cannot be identified (Xu and Yu, 2022). Hopefully, the next
generation of Surface Water and Ocean Topography (SWOT) satellites may revolutionize the
improvement of marine gravity anomalies with a spatial resolution of 1 km (Bouman et al.,
2011; Morrow et al., 2019; Yu J H et al., 2021). This may significantly improve the prediction
accuracy of seafloor topography. In all, it is important for improving the accuracy of topography

prediction to obtain gravity data with higher resolutions and higher accuracies.

The advantages of the analytical iterative method established in this paper are as follows:
first, we directly utilize the original gravity anomaly data without filtering or separating the
long/short-waves; second, it is not required to introduce the isostatic response function with
empirical parameters. The only prerequisite is to weaken the influence of the boundary and far

region effects to solve the equations together, which can simplify the calculation.
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In summary, we develop a new analytical iterative method to predict topography by
building a set of observation equations using the gravity anomaly. Based on numerical
simulation experiments, we analyze the accuracy of the prediction results by refining the error
sources and investigating the corresponding error weakening methods. In all, the main research
results of this paper can be summarized as follows: first, based on the gravity expression of a
single rectangular prism, we establish a system of observation equations between the topography
and gravity anomaly, and the solvability of the equations is verified by numerical simulation.
Second, the disturbance elements are mainly divided as the boundary, far and deep effects, and
the regularization algorithm and piecewise bilinear interpolation function are used to process the
disturbance factors, respectively. Third, the algorithm proposed in this paper is applied to the
actual sea area, and the ship soundings are used to verify the accuracy of the prediction results.
The RMS error of the prediction topography reaches 127.4 m in the sea region with an average

depth of 4025.3 m, and the relative accuracy of the prediction reached 3.16%.
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