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Abstract

As high-resolution global coverage cannot easily be achieved by direct bathymetry, the use of gravity data is an alternative

method to predict seafloor topography. Currently, the commonly used algorithms for predicting seafloor topography are mainly

based on the approximate linear relationship between topography and gravity anomaly. In actual application, it is also necessary

to process the corresponding data according to some empirical methods, which can cause uncertainty in predicting topography.

In this paper, we established analytical observation equations between the gravity anomaly and topography, and obtained the

corresponding iterative solving method based on the least square method after linearizing the equations. Furthermore, the

regularization method and piecewise bilinear interpolation function are introduced into the observation equations to effectively

suppress the high-frequency effect of the boundary sea region and the low-frequency effect of the far sea region. Finally, the

seafloor topography beneath a sea region (117.25°-118.25° E, 13.85°-14.85° N) in the South China Sea is predicted as an actual

application, where gravity anomaly data of the study area with a resolution of 1’x1’ is from the DTU17 model. Comparing the

prediction results with the data of ship soundings from the National Geophysical Data Center (NGDC), the root-mean-square

(RMS) error and relative error can be up to 127.4 m and approximately 3.4%, respectively.

Hosted file

951130_0_art_file_10493631_rm7x11.docx available at https://authorea.com/users/568995/

articles/614606-an-iterative-algorithm-for-predicting-seafloor-topography-from-gravity-

anomalies

1

https://authorea.com/users/568995/articles/614606-an-iterative-algorithm-for-predicting-seafloor-topography-from-gravity-anomalies
https://authorea.com/users/568995/articles/614606-an-iterative-algorithm-for-predicting-seafloor-topography-from-gravity-anomalies
https://authorea.com/users/568995/articles/614606-an-iterative-algorithm-for-predicting-seafloor-topography-from-gravity-anomalies


P
os
te
d
on

22
D
ec

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
67
17
03
77
.7
97
17
47
0/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

2



P
os
te
d
on

22
D
ec

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
67
17
03
77
.7
97
17
47
0/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

3



P
os
te
d
on

22
D
ec

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
67
17
03
77
.7
97
17
47
0/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

4



manuscript submitted to JGR: Solid Earth 

 

An iterative algorithm for predicting seafloor topography from gravity anomalies 1 

Jinhai Yu1, Bang An1*, Huan Xu1*, Zhongmiao Sun2, Yuwei Tian1, Qiuyu Wang1  2 

1Key laboratory of computational Geodynamics, College of Earth and Planetary Sciences, 3 

University of Chinese Academy of Sciences, Beijing 100049, China 4 

2National Key Laboratory of Geoinformation Engineering, Xi’an, 710054, China 5 

Corresponding author: Bang An (anbang19@mails.ucas.ac.cn) and Huan Xu 6 

(xuhuan@ucas.ac.cn)  7 

Key Points: 8 

• An iterative algorithm to predict seafloor topography from gravity anomalies is 9 

theoretically established. Its validity is then verified by numerical simulations and 10 

application in predicting actual seafloor topography.  11 

• Regarding the gravity anomalies, most of its low frequency parts are unrelated to the 12 

local seafloor topography. We proposed an efficient approach to remove that part of 13 

gravity anomalies. 14 

Abstract 15 

As high-resolution global coverage cannot easily be achieved by direct bathymetry, the use of 16 

gravity data is an alternative method to predict seafloor topography. Currently, the commonly used 17 

algorithms for predicting seafloor topography are mainly based on the approximate linear 18 

relationship between topography and gravity anomaly. In actual application, it is also necessary to 19 

process the corresponding data according to some empirical methods, which can cause uncertainty 20 
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in predicting topography. In this paper, we established analytical observation equations between 21 

the gravity anomaly and topography, and obtained the corresponding iterative solving method 22 

based on the least square method after linearizing the equations. Furthermore, the regularization 23 

method and piecewise bilinear interpolation function are introduced into the observation equations 24 

to effectively suppress the high-frequency effect of the boundary sea region and the low-frequency 25 

effect of the far sea region. Finally, the seafloor topography beneath a sea region (117.25°-118.25° 26 

E, 13.85°-14.85° N) in the South China Sea is predicted as an actual application, where gravity 27 

anomaly data of the study area with a resolution of 1′×1′ is from the DTU17 model. Comparing the 28 

prediction results with the data of ship soundings from the National Geophysical Data Center 29 

(NGDC), the root-mean-square (RMS) error and relative error can be up to 127.4 m and 30 

approximately 3.4%, respectively. 31 

Plain Language Summary 32 

The size of submarine mass and its distance from sea level affects gravity on it, which can 33 

make a difference in the gravity observed on sea level. We cut submarine mass into rectangular 34 

prisms one by one, establish and solve the equations between gravity and the height of each cuboid, 35 

and splice each cuboid to obtain topography of submarine mass at last. However, since there are 36 

some errors in gravity data, it is necessary to analyze their sources and propose algorithms to 37 

weaken their influence in order to improve the prediction accuracy of seafloor topography. 38 

1 Introduction 39 

As a natural density interface of the earth, the seafloor topography plays an important role in 40 

many geoscience fields (Baudry and Calmant, 1996; Becker et al., 2009; Hsiao et al., 2011; 41 

Sandwell et al., 2006; Jekeli, 2017; Abulaitijiang et al., 2019). Apart from the direct 42 
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measurement of sea depth by single/multi-beam technology, remote sensing technology and 43 

marine gravity data are also important for the indirect measurement of sea depth (Lyzenga, 1978; 44 

Stumpf et al., 1985; Caballero and Richard, 2020). For multi-beam echosounder, although it 45 

has a high accuracy, the distribution of actual ship soundings data is very sparse due to large time 46 

consumption and high cost (Sanwell and Smith, 1997). For remote sensing technology, the 47 

satellites including Sentinel-2, ICEsat, and others can measure the depth of shallow seas near 48 

islands and reefs with an accuracy of less than 1 m. However, depth prediction by remote sensing 49 

technology is limited as it can only capture the topographic features of sea areas with depths less 50 

than 18 m (Rasheed et al., 2021).  Compared with multi-beam echosounder and remote sensing 51 

technology, marine gravity data is well distributed on the ocean. For example, geoid heights with a 52 

resolution better than 2 km can be obtained by integrating data of many altimetry satellites such as 53 

T/X satellite, Jason satellite, and Cryosat satellite, etc. (Sandwell et al., 2014), from which gravity 54 

data, such as the gravity anomaly and gravity gradients, can be satisfactorily computed 55 

(Andersen, 2020; Yu D C et al., 2021). Therefore, a highly effective method for mapping 56 

seafloor topography is as follows: first, gravity data with a high resolution (e.g., 2 km) can be used 57 

to predict seafloor topography with the same resolution, and the data of sea depths from ship 58 

soundings and remote sensing can then be combined to refine the topography. In fact, using gravity 59 

anomaly to predict seafloor topography can effectively fill the lack of ship sounding data and 60 

improve the overall accuracy of the seafloor topography. 61 

Considering the research status quo of using gravity data to predict seafloor topography, 62 

gravity anomaly has been used as the main type of data (Calmant, 1994; Smith and Sandwell, 63 

1997; Kim et al., 2011). Additionally, vertical gravity gradient data have also been used to a lesser 64 

extent (Hu et al., 2014; Kim and Wessel, 2016; Yang et al., 2018; Xu and Yu, 2022). The 65 
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prediction methods are mainly divided into the spatial and frequency-domain methods. A typical 66 

representative of the spatial method is the gravity-geologic method (GGM) based on the Bouguer 67 

correction formula; namely, the relationship between the gravity generated by an infinite uniform 68 

thick plate and the height of the thick plate is linear; thus, the relationship between the gravity 69 

anomaly and seafloor topography can be fitted by existing ship soundings (Imbrahim and Hinze, 70 

1972; Hwang, 1999; Kim et al., 2011). Essentially, GGM is a fitting method that can be easily 71 

computed, but it cannot predict heavily undulating seafloor topography (Yang et al., 2018). The 72 

frequency-domain method for predict seafloor topography is based on the Parker formula (Parker, 73 

1972) that essentially is a first-order approximate formula omitting the high-order terms of sea 74 

depth. The frequency-domain method needs to consider the flexural isostatic compensation 75 

theory to improve its accuracy; thus, more geophysical parameters are required (Dixon et al., 76 

1983; Baudry et al., 1987). 77 

Parker formula can be summarized as follows. For a local sea surface, it can be approximated 78 

as the O xy−  plane. If z-axis is downward, then the spatial coordinate is O xyz− . Assuming that 79 

{( , );  , }R x y a x a b y b= − ≤ ≤ − ≤ ≤  is a region on the sea surface, ( , )h x y  is the sea depth at 80 

( , )x y  on sea surface, and {( , , );  ( , ) , 0 ( , )}x y z x y R z h x yΩ = ∈ ≤ ≤  is a curved column of seawater 81 

with density wρ  below R; the gravitational potential generated by Ω at ( , )x y R∈  is then 82 

expressed as: 83 

                  2 2 2

1( , ) G d d d
( ) ( )

R wv x y
x y

ρ ξ η ζ
ξ η ζΩ

=
− + − +                   (1) 84 

where G is the Newton gravitational constant. Using Eq. (1) and omitting high-order quantities of 85 

( , )h x y , Parker (1972) derived a linear relationship between Fourier transforms of ( , )Rv x y  and 86 

( , )h x y ; namely, the relationship between ( , )Rv x y and ( , )h x y  in the frequency domain. 87 
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Considering that ( , )Rg x y  is the gravity corresponding to ( , )Rv x y , the relationship between 88 

( , )Rg x y  and ( , )h x y  in the frequency domain can also be deduced (Jekeli, 2017; Zhu, 2007).  89 

Although the Parker formula has been widely used in predicting seafloor topography, the 90 

omitted second-order quantity 2( )O f h⋅  still has a large impact for high frequencies (large f ) 91 

and large sea depth h, where 2 2
1 2f f f= +  and 1 2( , )f f  are frequency-domain variables. Yang 92 

et al. (2018) has pointed out that the Parker formula is less accurate in sea areas with large 93 

variations in the seafloor topography. 94 

The purpose of this paper is to directly compute the gravity ( , )Rg x y  generated by Ω to 95 

establish a rigorous set of observation equations between the gravity anomaly and sea depth 96 

( , )h x y . Subsequently, the solvability and anti-error property of the observation equations are 97 

investigated by numerical simulation. Simultaneously, the spectral characteristics of the measured 98 

gravity anomaly are also analyzed to eliminate disturbances in the gravity anomaly and predict 99 

seafloor topography accurately. Finally, to verify effectiveness of our algorithm, a sea region in the 100 

South China Sea is selected as a test area to predict its seafloor topography. 101 

2 Theory and methods 102 

2.1 Computational formula of gravity 103 

The mathematical expression for the vertical gravity generated by a rectangular prism of 104 

constant density is introduced here (Nagy, 1966; Blakely, 1995; Nagy et al., 2000). We assumed 105 

that 1 2 1 2 1 2{ }( , , );  , ,A x x y y z zξ η ζ ξ η ζ= ≤ ≤ ≤ ≤ ≤ ≤  is a rectangular prism of constant density Aρ  106 

and ( , , )Q Q QQ x y z  is any point outside A. Introducing the notations 107 
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1 1 2 2

1 1 2 2

1 1 2 2

,    
,     
,     

Q Q

Q Q

Q Q

x x x x
y y y y
z z z z

ξ ξ

η η

ζ ζ

 = − = −


= − = −
 = − = −

                          (2) 108 

and 109 

                     2 2 2( ) ( ) ( )Q Q Qr x y zξ η ζ= − + − + −                       (3) 110 

then the vertical gravity at point Q generated by A is 111 

 222

1 1 1

2 2 2 3
( , , ) G d d d

[( ) ( ) ( ) ]

                       G ln( ) ln( ) arctan     

Q
A Q Q Q A

A Q Q Q

A

z
g x y z

x y z

r r
r

ζηξ

ξ η ζ

ζ
ρ ξ η ζ

ξ η ζ

ξηρ ξ η η ξ ζ
ζ

−
=

− + − + −

 
 = + + + − 
  


 (4)

where the vertical gravity represents the derivation of the gravitational potential with respect to the 112 

variable z. 113 

If 1 0z =  in the rectangular prism A and 0Qz = , assuming that 114 

1 2 1 2{( );  , },x x x x y y yR y= ≤ ≤ ≤ ≤  is the rectangular region corresponding to the rectangular prism 115 

A on the sea surface (refer to Fig. 3a), then Eq. (4) can be simplified as  116 

 2( , ,0) G ( , , )A Q Q A R Q Qg x y J x y zρ= ⋅ (5)

where 2z  is the sea depth of A, and  117 

22

1 1

2 2 2 2 2 2
2 2

2 22 2 2 2 2 2 2
2 2

( , , ) ln ln arctan     R Q Q

z z
J x y z z

z z

ηξ

ξ η

η ξ η ξ ξ η ξηξ η
η ξ η ξ ξ η ξ η
+ + + + + +

= + −
+ + + + + +

 

(6)
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Notably, ( , )Q Qx y  in Eqs. (5) and (6) can assume the range of whole local sea surface O xy−118 

. Therefore, Eqs. (5) and (6) are analytical formulas for the gravity on the sea surface generated by 119 

the rectangular prism 1 2 1 2 2{ }( , , );  , , 0A x x y y zξ η ζ ξ η ζ= ≤ ≤ ≤ ≤ ≤ ≤  below the sea surface. The 120 

derivation details and expression form can refer to the work of Nagy et al (2000). 121 

2.2 Establishing the observation equations for sea depth from the gravity anomaly 122 

In the following, the local coordinate system O xyz−  can be established by considering the 123 

local sea surface as O xy−  and the z-axis downward (away from the sea surface). Assuming that 124 

{( , );  , }R x y a x a a y a= − ≤ ≤ − ≤ ≤  is a square area on the sea surface (called the target area), 125 

( , )h x y  is the sea depth at ( , )x y  (to be solved), and {( , , );  ( , ) ,  0 ( , )}x y z x y R z h x yΩ = ∈ ≤ ≤  is the 126 

curved column formed by the region of seawater below R. If seawater in Ω is replaced by rocks 127 

beneath seafloor, then the gravity anomaly at point ( , )Q QQ x y  on R generated by Ω is 128 

 2 2 2 3
( , ) G d d d

[( ) ( ) ]
R Q Q

Q Q

g x y
x y

ζδ ρ ξ η ζ
ξ η ζΩ

= Δ
− + − +  (7)

where w cρ ρ ρΔ = − , and cρ  and wρ  are the average densities of the lithosphere and seawater 129 

respectively. Assuming that t is the step length, and ( , )i jx y  is the partition points of R, wherein 130 

ix i t= ⋅ , jy j t= ⋅ , and a N t= ⋅ . If the length t is small, the curved column below the segmented 131 

subdomain 1 1[ , ] [ , ]ij i i j jR x x y y+ += ×  of R can then be approximated as a prism 132 

1 1{ , ,0 }ij i i j j ijx x x y y y z h+ +Ω = ≤ ≤ ≤ ≤ ≤ ≤ , where ijh  is the average depth of 1 1[ , ] [ , ]i i j jx x y y+ +× . 133 

Using Eq. (5), Eq. (7) can be expressed as 134 

 
1

,
( , ) G ( , , )

ij

N

R Q Q R Q Q ij
i j N

g x y J x y hδ ρ
−

=−

= ⋅ Δ  (8)
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where 
ijRJ  is computed by Eq. (6). If the gravity anomaly ( , )R Q Qg x yδ  on R is obtained in 

135 

advance, then Eq. (8) is the set of observation equations for sea depth ijh . 
136 

Variations of the gravity anomaly on the sea surface are mainly caused by the mass deficit by 137 

the seafloor topography, density anomaly of the lithosphere, and isostatic compensation of mass 138 

below the lithosphere. The mass deficit by seafloor topography significantly contributes to the 139 

gravity anomaly on the sea surface, whereas the contributions of other factors are smoothed by 140 

upward continuation (Fan et al., 2021).  141 

In terms of the magnitudes of the influences, the closer the distance to R, the larger the 142 

influence on the gravity anomaly on R. In the following Fig. 1, the regions that have an effect on 143 

the gravity anomaly on R are divided into the boundary, far, and deep regions, and the methods to 144 

deal with these effects are investigated individually. 145 

 146 

Figure 1. Information and distribution of the gravity anomaly on the sea surface, where Σ and S 147 

represent the Moho surface and seafloor topography, respectively; ˆ,  R R  and D represent the 148 
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corresponding target, boundary and far regions on the sea surface, respectively; w cand ρ ρ  149 

represent the densities of seawater and bedrock, respectively. 150 

2.2.1 Observation equations by considering the boundary region 151 

By extending R outside the boundary by M steps, ˆ {( , );  ( ) , ( ) }R x y M N t x y M N t= − + ≤ ≤ +  is 152 

introduced. Subsequently, R̂ R−  is called the boundary region of R, and the effect of its 153 

topography on solving the sea depth below R is called the boundary effect. By considering the 154 

boundary effect, Eq. (8) can be written as 155 

 
1

ˆ
, ( )

G ( , , ) ( , )     ( , )
ij

N M

R Q Q ij Q Q Q QR
i j N M

J x y h g x y x y Rρ δ
+ −

=− +

Δ = ∈ ，  (9)

where ˆ ( , )Q QRg x yδ  is the gravity anomaly generated by the curved column Ω̂  formed by the 
156 

seawater below R̂ . Eq. (9) is the system of observation equations for sea depth ijh  below R 
157 

after considering the boundary effect. 
158 

We then subdivided the grid points on R, namely, we consider ˆ ˆ( , )p qx y R∈ , where ˆ
2p
ptx = ,159 

ˆ
2p
ptx = , and , 0, 1, , 2p q N= ± ± . If the gravity anomaly ˆ ˆ ˆ( , )p qRg x yδ  is known, the following 160 

equation is obtained 161 

 
1

ˆ
, ( )

ˆ ˆ ˆ ˆG ( , , ) ( , )
ij

N M

R p q ij p qR
i j N M

J x y h g x yρ δ
+ −

=− +

Δ = (10)

where , 0, 1, , 2p q N= ± ± . Notably, the number of equations in Eq. (10) is 2(4 1)N +  and the 162 

number of unknowns is 2(2 2 )N M+ ; thus, N M≥  is required to ensure that Eq. (10) has enough 163 
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equations. As Eq. (10) is nonlinear with respect to the solved variables ijh , linearization must be 164 

conducted. After linearization, the corresponding iterative procedure for ijh  is 165 

 
1 1

( 1) ( ) ( )
ˆ

, ( ) , ( )

( )

( ) ˆ ˆ ˆ ˆG [ ] ( , ) G ( , , )
ˆ ˆ( , , )

ij

ij
N M N M

k k k
ij ij p q p q ijR

i j N M i j N M

k
R p q ij

Rk
ij

h h g x y J x y h
J x y h

h
ρ δ ρ

+ − + −
+

=− + =− +

Δ − = − Δ
∂

∂  (11)

where 0,1,k = , and (0)
ijh  is the iterative initial value of ijh . 166 

2.2.2 Effect of the deep region: correction for the Moho undulation 167 

Fig.1 shows that the effect of the deep region of Earth on the gravity anomaly on R is mainly 168 

derived from the undulation of the Moho surface; hereafter, this effect is simply called the “deep 169 

effect.” In physical geodesy, Venning-Meinesz or the Airy isostatic theory is usually used to 170 

determine the Moho surface. In this paper, the Airy isostatic theory is recommended. Notably, for 171 

a seamount with depth h, if ,   and w c mρ ρ ρ  are the densities of seawater, lithosphere, and upper 172 

mantle, respectively, and L is the height of the Moho surface uplift corresponding to the seamount, 173 

then c w

m c

L hρ ρ
ρ ρ

−
=

−  and 0T L−  represent the depth of the Moho surface from the sea surface below 174 

the seamount (Heiskanen and Moritz, 1967; Calment and Baudry, 1996), where 0 25 kmT =  is 175 

usually chosen. 176 

According to the Airy isostatic theory, the depth 0T L−  of the Moho surface can directly be 177 

derived from the depth h of the seamount. As the depth of the Moho surface from sea surface is 178 

much larger than the depth h of the seamount, the effect of the Moho surface undulation on the 179 

gravity anomaly can easily be reduced with the help of the Airy isostatic theory after the seafloor 180 

topography is preliminarily solved. Therefore, the deep effect, such as the Moho surface 181 

undulation, can be corrected in advance. 182 
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2.2.3 System of observation equations in the general case 183 

If the target area R is extended to whole sea surface S in Eq. (8), and the gravity anomaly 184 

generated by the density difference of seawater with respect to the lithosphere is S gδ , then 185 

considering ( , )x y R∈ , we have 186 

 
1

, ( )
G ( , , ) ( , ) ( , )

ij

N M

R ij S D
i j N M

J x y h g x y g x yρ δ δ
+ −

=− +

Δ = − (12)

where D is the far region (Fig. 1) and D gδ  is the gravity anomaly generated by the density 187 

difference of seawater with respect to the lithosphere below D. Notably, D gδ is the effect of the 188 

far region on the gravity anomaly and is simply called the far effect hereafter. 189 

Generally, assuming that v is the Earth's gravitational potential and Sv  is the gravitational 190 

potential generated by replacing seawater in the ocean with the rock in the lithosphere, we obtain 191 

( )S
S

v vg
z

δ ∂ −
=

∂
 on R. If V is the Somigliana gravitational potential and T v V= −  is the disturbing 192 

potential, we obtain the following on R 193 

 ( )S
S

v VT g
z z

δ ∂ −∂ = +
∂ ∂

 (13)

If the isostatic theory is used to eliminate the effect of the Moho surface, then the deep effect 194 

( )Sv V
z

∂ −
∂

 exhibits characteristics of long waves on the sea surface according to the circle 195 

construction of Earth density (i.e., Earth density is distributed in a laminar pattern). Substituting 196 

Eq. (13) into Eq. (12), then at ( , )x y R∈ , we have 197 

 
1

, ( )

( )( , )G ( , , ) ( , )
ij

N M
S

R ij D
i j N M

v VT x yJ x y h g x y
z z

ρ δ
+ −

=− +

∂ −∂Δ = − −
∂ ∂  (14)
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As the coordinate system O-xyz is locally established near R, T T g
z r

δ∂ ∂= − =
∂ ∂

 on R, where 198 

gδ  is the gravity anomaly based on the Somigliana gravity field, whose data can be obtained by 199 

the known gravity field models, such as EGM2008 or DTU17. Assuming that 200 

( )( , ) ( , ) S
D

v VF x y g x y
z

δ ∂ −= − −
∂

, then at ( , )x y R∈ , we have  201 

 
1

, ( )
G ( , , ) ( , ) ( , )

ij

N M

ij
i j N M

J x y h g x y F x yρ δ
+ −

Ω
=− +

Δ = + (15)

where ( , )F x y  is the long wave (or low frequency) on R and is continuous. If the values of 202 

( , )ij i jF F x y=  at partition points of R are known, then a bilinear interpolation function ˆ ( , )ijF x y  203 

can be obtained using the function values ijF , 1,i jF + , , 1i jF + , and 1, 1i jF + + on each sub rectangle of 204 

ijR . In general, for any ( , )x y R∈ , we assumed that ˆ ˆ( , , ) ( , ) ijF x y F x y=F , where ( , ) ijx y R∈ , and F 205 

is the vector comprising values ijF  at all partition points. Notably, ˆ ( , , )F x y F  is continuous on R 206 

with respect to ( , )x y  and linear with respect to F. Moreover, ˆ ( , , )F x y F  is the piecewise bilinear 207 

interpolation function of ( , )F x y . ( , )F x y  is the long wave on R and its wavelength is much larger 208 

than the step length t to partition R, so ˆ ( , , ) ( , )F x y F x y≈F . Thus, Eq. (15) can finally be expressed 209 

as  210 

 
1

, ( )

ˆG ( , , ) ( , ) ( , , ), ( , )
ij

N M

ij
i j N M

J x y h g x y F x y x y Rρ δ
+ −

Ω
=− +

Δ = + ∈ F  (16)

where ijh and ijF  are the variables to be solved. 211 

So far, we have established three sets of observation equations for predict sea depth ijh , 212 

namely, Eqs. (8), (10), and (16), where Eq. (8) is established by only considering the target region 213 
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R; Eq. (10) is established after considering the boundary effect of R; and Eq. (16) is established 214 

after considering both the boundary effect of R and the far effect. As the observation equations are 215 

nonlinear with respect to the sea depth ijh , they should be linearized for ijh  in actual 216 

computation. For example, Eq. (11) is the result of linearization of Eq. (10). Additionally, Eq. 217 

(16) is linear with respect to the variable F; thus, only the variable ijh  should be linearized in Eq. 218 

(16). 219 

2.3 Regularization method for the solving equations 220 

This paragraph mainly discusses the solvability problem for observation equations. To ensure 221 

that the descriptions are clear, only Eq. (11) is discussed as an example. Introducing matrix 222 

 
( )

( )

,

G
ˆ ˆ( , , )

ij

k
R p q ij

k k
ij pq ij

J x y h
A

h
ρΔ
 ∂
 =
 ∂ 

 (17)

and vector  223 

 
1

( )
ˆ

, ( )

ˆ ˆ ˆ ˆ( , ) G ( , , )
ij

N M
k

k p q p q ijR
i j N M pq

g x y J x y hδ ρ
+ −

Ω
=− +

 
= − Δ 
 

b (18)

and solving for vector k ij ij
h =  h , the iterative matrix form of Eq. (11) is expressed as 224 

 1k k k k kA A+ = +h b h  (19)

As the known data ˆ ˆ ˆ( , )p qRg x yδ  in Eqs. (11) or (19) are given only on R, and the sea depths ijh  to 225 

be solved (where , ( ), ,0, , 1i j N M N M= − + + −  ) contain the sea depths of the boundary 226 

region in addition to those of R, directly solving Eq. (19) may lead to poor solvability of the 227 
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3 3=2.7 10 kg/mcρ ×  and 3 3=1.03 10 kg/mwρ × , respectively, namely, 3 31.67 10  kg/mρΔ = − × . 243 

Notably, the smaller the step length of partition for the target region R, the higher is the accuracy of 244 

the solved sea depth beneath R. However, as the gravity anomaly on the sea surface in the actual 245 

calculation has a resolution of 1′×1′, the step length is always chosen as 2 kmt =  in simulation 246 

computations. Additionally, as the boundary effect is considered, the extension number M in R̂  247 

should be chosen carefully. According to discussions by Yu and Xu (2021), we choose that 248 

10M = , namely, R̂  is obtained by extending R outward for 20 km. 249 

We then selected a sea area of 96 km×96 km in the South China Sea as R̂ ; its internal sea 250 

area of 56×56 km is the target region R, and the seafloor topography beneath R̂  is chosen from 251 

the GEBCO_22 bathymetric model. After gridding R̂  by a step length of 2 km, the seafloor 252 

topography beneath R̂  is shown in Fig. 3a. This implies that the number of partitions for R is 253 

14N = . According to the GEBCO_22 model, the maximum undulation of the seafloor 254 

topography below R is 610.0 m. Subsequently, this seafloor topography is placed at sea depth H 255 

below R̂ , and the gravity anomaly R̂gδ  generated by it can then be computed. Fig. 3b shows the 256 

distribution of R̂gδ  on R̂  where 6 kmH = . We aimed to solve the seafloor topography 257 

beneath R from R̂gδ  on R using Eq. (11) or (20), and then compare it with the “real seafloor 258 

topography” beneath R. Notably, H is the maximum sea depth of the seafloor topography. 259 
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Figure 4. (a) RMS errors of the prediction results corresponding to different α values for H = 6 289 

km. The orange and blue dotted lines represent the iterative convergence curves for no error and 290 

1 mGal random error, respectively; (b) Prediction results corresponding to different H values 291 

after α is fixed to 1. 292 

3.3 Anti-error characteristics of the linearized systems of equations 293 

This paragraph discusses the anti-error characteristics of Eq. (11) or (20) where 1=α  is 294 

chosen. As the gravity anomaly on R mainly results from satellite altimetric data, it contains some 295 

error. In the following computations, two kinds of errors are added to the gravity anomaly R̂gδ  on 296 

R: the one is the systematic error ε and the other is the random error with a mean value of zero and 297 

standard deviation δ. Subsequently, the seafloor topography beneath R is solved using Eq. (20). 298 

Furthermore, compared to the real seafloor topography beneath R, the RMS errors of the solved 299 

seafloor topography can be computed, and their distributions for different maximum depths H are 300 

shown in Figs. 5a and 5b, where Figs. 5a and 5b correspond to the systematic and random errors, 301 

respectively. Figs. 5a and 5b show that: (i) the systematic error in R̂gδ  has less influence on the 302 

solved seafloor topography compared to the random error; and (ii) the anti-error ability 303 

continuously weakens with increasing sea depth. This is because the deeper the seafloor, the 304 

smoother the gravity it generates on the sea surface, and the lower is its signal-to-noise ratio for the 305 

same size of error. For example, for maximum depth H = 6 km, the RMS errors of the simulation 306 

results for the systematic and random errors are 177.0 m and 221.0 m, respectively, when errors in 307 

R̂gδ  are both 5 mGal, indicating that the systematic error has less influence on predict topography. 308 

Additionally, from the statistical results of the random error with an error of 5 mGal in R̂gδ  (Fig. 309 

5b), all the error ratios of the solved bathymetries are less than 4%, which fully satisfies the 310 
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Although the average value Dgδ  is approximately equal to the far effect ( , )Dg x yδ , the 354 

piecewise bilinear interpolation function ˆ ( , , )F x y F  is still recommended owing to the presence of 355 

another term (i.e., the deep effect) in Eq. (15). 356 

4 Actual Application 357 

4.1 Target region and datasets 358 

A region of the South China Sea at latitudes 13.85°-14.85° N and longitudes 117.25°-118.25° 359 

E is selected as the target region R and is then divided into four parts as shown in Fig. 8a. The 360 

underwater topography of each part is solved from the gravity anomaly using Eq. (20), and the 361 

whole seafloor topography beneath R can be obtained by splicing four parts together. The 362 

advantage of such partition is that the boundary effect can be satisfactorily controlled, thereby 363 

weakening the complexity in solving the observation equations. 364 

The gravity anomaly used in this paper is chosen from the DTU17 model (Andersen and 365 

Knudsen, 2019) and has a resolution of 1′×1′ (Fig. 8a); its accuracy is roughly between 1.50 and 366 

5.69 mGal in the South China Sea region (Fan et al., 2020). The GEBCO_2022 global topography 367 

model published by the International Hydrographic Organization (IHO) is used to evaluate our 368 

predicted seafloor topography; its topography under the target region is shown in Fig. 8b. 369 

Additionally, the data from National Geophysical Data Center (NGDC) with 2512 ship-survey 370 

depth points in the target region (Fig. 8c) are also used to evaluate our results 371 

(www.ngdc.noaa.gov/maps/bathymetry). The GEBCO_2022 global topography model indicates 372 

that the maximum and minimum depths in the target region are 4340.0 and 3404.0 m, respectively, 373 

and the complexity of the topographic relief is high (Fig. 8b); thus, it is appropriate to choose such 374 

seafloor topography as the target object. 375 
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Figure 10. (a) Comparison between the gravity anomaly of the DTU17 and that obtained in our 412 

result by forward computation along the line labeled HU939013. (b) Comparison between 413 

ship-survey depths and our predicted depths along the line labeled HU939013.  414 

Notably, the known bathymetry data must first be applied to examine the accuracy of the 415 

predicted seafloor topography. However, for a certain region on the sea surface, the bathymetry 416 

data is mainly obtained along the ship route; thus, its distribution may be relatively sparse in the 417 

region. Therefore, using only the bathymetry data as a standard in examining the accuracy of 418 

seafloor topography is not comprehensive. Notably, Eq. (8) indicated the relationship between 419 

the sea depth and gravity anomaly on the sea surface; thus, the gravity anomaly on the sea 420 

surface can also be used as an auxiliary standard to evaluate the accuracy of the seafloor 421 

topography. Dixon et al. (1983) verified that the part of gravity anomaly with wavelengths larger 422 

than 30 km is mainly controlled by the far topography, and only the high frequency part with 423 

wavelengths less than 30 km can be used to examine accuracy of the seafloor topography.  424 

Now, the gravity anomalies on the target region R can be obtained by forward computations 425 

for the solved seafloor topography and the corresponding GEBCO_ 22 topography model 426 

respectively, and their RMS differences to the DTU17 gravity anomaly are computed after 427 

subtracting the DTU17 gravity anomaly and filtering out the low-frequency parts with 428 

wavelengths larger than 30 km (Luis, 2006). Notably, such RMS differences can be considered 429 

as a match degree with respect to the DTU17, namely, the smaller the RMS difference, the better 430 

the matching of the seafloor topography with DTU17. By computations, the RMS differences to 431 

the DTU17 on R for the solved topography and GEBCO_22 model are 1.0 mGal and 1.8 mGal 432 

respectively, which implies that our result is a better match with the DTU 17 gravity field model 433 
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than that obtained by the GEBCO-22 bathymetry model. Therefore, the solved topography is 434 

better than one from the GEBCO-22 bathymetry model on R to some extent. 435 

Finally, we indicate that the seafloor topography solved in this paper only uses the gravity 436 

anomaly on the target region R, and does not employ any known ship survey data. Additionally, 437 

the measured sea depth data along the ship route can be regarded as a local index to examine the 438 

seafloor topography, whereas the matching degree with the gravity anomaly can be regarded as 439 

an overall index in the target region. 440 

5 Discussion and Conclusions 441 

In this paper, the grid step length is 2 km, implying that the topography undulations within 442 

an area of 2 km×2 km are represented by the average depth, which means that the topography 443 

undulations within 2 km×2 km cannot be identified (Xu and Yu, 2022). Hopefully, the next 444 

generation of Surface Water and Ocean Topography (SWOT) satellites may revolutionize the 445 

improvement of marine gravity anomalies with a spatial resolution of 1 km (Bouman et al., 446 

2011; Morrow et al., 2019; Yu J H et al., 2021). This may significantly improve the prediction 447 

accuracy of seafloor topography. In all, it is important for improving the accuracy of topography 448 

prediction to obtain gravity data with higher resolutions and higher accuracies.  449 

The advantages of the analytical iterative method established in this paper are as follows: 450 

first, we directly utilize the original gravity anomaly data without filtering or separating the 451 

long/short-waves; second, it is not required to introduce the isostatic response function with 452 

empirical parameters. The only prerequisite is to weaken the influence of the boundary and far 453 

region effects to solve the equations together, which can simplify the calculation. 454 
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In summary, we develop a new analytical iterative method to predict topography by 455 

building a set of observation equations using the gravity anomaly. Based on numerical 456 

simulation experiments, we analyze the accuracy of the prediction results by refining the error 457 

sources and investigating the corresponding error weakening methods. In all, the main research 458 

results of this paper can be summarized as follows: first, based on the gravity expression of a 459 

single rectangular prism, we establish a system of observation equations between the topography 460 

and gravity anomaly, and the solvability of the equations is verified by numerical simulation. 461 

Second, the disturbance elements are mainly divided as the boundary, far and deep effects, and 462 

the regularization algorithm and piecewise bilinear interpolation function are used to process the 463 

disturbance factors, respectively. Third, the algorithm proposed in this paper is applied to the 464 

actual sea area, and the ship soundings are used to verify the accuracy of the prediction results. 465 

The RMS error of the prediction topography reaches 127.4 m in the sea region with an average 466 

depth of 4025.3 m, and the relative accuracy of the prediction reached 3.16%. 467 
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