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Abstract

Floods are often disastrous due to underestimation of the magnitude of rare events. When the occurrence of floods follows a

heavy-tailed distribution the chance of extreme events is sizable. However, identifying heavy-tailed flood behavior is challenging

because of limited data records and the lack of physical support for currently used indices. We address these issues by deriving

a new index of heavy-tailed flood behavior from a physically-based description of streamflow dynamics. The proposed index,

which is embodied by the hydrograph recession exponent, enables inferring heavy-tailed flood behavior from daily flow records.

We test the index in a large set of case studies across Germany. Results show its ability to identify cases with either heavy- or

nonheavy-tailed flood behavior, and to evaluate the tail heaviness. Remarkably, the results are robust also for decreasing the

lengths of data records. The new index thus allows for assessing flood hazards from commonly available data.
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Key Points: 13 

 The hydrograph recession exponent is identified as an index of heavy-tailed flood 14 

behavior. 15 

 The proposed index enables robust identification of heavy-tailed flood behavior in a large 16 

set of case studies and from short data records. 17 

 Unlike other frequently used metrics, the proposed index infers heavy-tailed flood 18 

behaviors from commonly observed discharge dynamics. 19 

 20 
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Abstract 22 

Floods are often disastrous due to underestimation of the magnitude of rare events. When the 23 

occurrence of floods follows a heavy-tailed distribution the chance of extreme events is sizable. 24 

However, identifying heavy-tailed flood behavior is challenging because of limited data records 25 

and the lack of physical support for currently used indices. We address these issues by deriving a 26 

new index of heavy-tailed flood behavior from a physically-based description of streamflow 27 

dynamics. The proposed index, which is embodied by the hydrograph recession exponent, enables 28 

inferring heavy-tailed flood behavior from daily flow records. We test the index in a large set of 29 

case studies across Germany. Results show its ability to identify cases with either heavy- or 30 

nonheavy-tailed flood behavior, and to evaluate the tail heaviness. Remarkably, the results are 31 

robust also for decreasing the lengths of data records. The new index thus allows for assessing 32 

flood hazards from commonly available data. 33 

Plain Language Summary 34 

High flow events often cause severe damages when they occur unexpectedly, i.e., more often and 35 

with larger magnitudes than suggested by historical observations. This is usually the case with 36 

frequency distributions of floods which are heavy-tailed. However, a proper assessment of the tail 37 

behavior solely based on limited data records is difficult and might lead to an erroneous estimation 38 

of the underlying hazard. We start by analyzing runoff generation processes and find that the 39 

hydrograph recession is a proper descriptor of the emergence of heavy-tailed behavior. Our 40 

findings show that the new proposed index allows for (1) detecting cases with heavy-tailed 41 

behavior, (2) comparing severity across cases, and (3) displaying robust results also with short data 42 

records. These results address the main limitations of currently used metrics (which often require 43 

long records and lack physical meaning) and provide information on the characteristic flood hazard 44 

of river basins. 45 

1 Introduction 46 

Floods remain the leading natural hazards worldwide, which directly threaten at least one-fifth of 47 

people’s livelihoods (McDermott, 2022; Rentschler et al., 2022) and have caused enormous and 48 

increasing economic losses (Bevere & Remondi, 2022) in recent years. Floods are often disastrous 49 

because they occur unexpectedly (i.e., underestimated by water resources managers as well as 50 

residents) (Else, 2021; Merz et al., 2021), commonly due to poor estimates of the magnitude of 51 

rare events obtained from available observations. A number of studies in natural and anthropogenic 52 

phenomena use heavy-tailed distributions to describe the extreme behavior of variables (e.g., Katz, 53 

2002; Kondor et al., 2014; Malamud, 2004; Sartori & Schiavo, 2015; Wang et al., 2022) because 54 

it indicates a sizable chance of the occurrence of extreme value. We can better assess the flood 55 

hazards if we may know that floods follow a heavy-tailed distribution, i.e., robustly identify the 56 

heavy-tailed flood behavior (Merz et al., 2022).   57 

A variable distribution's tail heaviness is traditionally estimated graphically or mathematically, 58 

while both have their limitations. In general, graphical methods such as log-log plots (Beirlant et 59 

al., 2004), generalized Hill ratio plots (Resnick, 2007; El Adlouni et al., 2008), and mean excess 60 

functions (Embrechts et al., 1997; Nerantzaki & Papalexiou, 2019) have less objectivity and 61 

efficiency (Cooke et al., 2014). Mathematical methods provide more objective insights into the 62 

estimation of tail behavior. The shape parameters of Generalized Extreme Value (GEV) 63 
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distributions quantify the tail behavior by fitting the parameters of an underlying distribution on 64 

limited records of maxima (Morrison & Smith, 2002; Villarini & Smith, 2010; Papalexiou et al., 65 

2013), and a group of non-parametric metrics evaluates the spread of data (e.g., upper tail ratio 66 

(Lu et al., 2017; Smith et al., 2018; Villarini et al., 2011; Wang et al., 2022), Gini index (Eliazar 67 

& Sokolov, 2010; Rajah et al., 2014), and obesity index (Cooke & Nieboer, 2011; Sartori & 68 

Schiavo, 2015)). These methods often require long records to obtain reliable estimates (Papalexiou 69 

& Koutsoyiannis, 2013). This is a challenge globally and even more challenging when it comes to 70 

analyzing maxima (which is indeed the key to assessing hazards of extreme floods). The bias 71 

caused by the data size restricts the comparability across sites with different record lengths 72 

(Wietzke et al., 2020). In addition, the correctness of the estimation of tail heaviness is influenced 73 

by the underlying physical processes of the case studies (Merz et al., 2022). However, to the best 74 

of our knowledge, physical processes are absent from these frequently used metrics. It is preferable 75 

to have a new index that can robustly estimate with data in different lengths (Bernardara et al., 76 

2008; Merz & Blöschl, 2009) and is based on the physical processes that favor the heavy-tailed 77 

behavior of flood distributions. 78 

We propose a new index of heavy-tailed flood behavior, which can be estimated by common 79 

discharge dynamics. Unlike fitting a statistical distribution to observed series of maxima (which 80 

may not clearly exhibit heavy-tailed behavior due to data scarcity), the index infers the tail 81 

heaviness of floods by examining the intrinsic dynamics of the hydrological system. Reliable 82 

identification of heavy tails by the proposed index is tested in datasets with decreasing lengths in 83 

a great number of case studies with various climate and physiographic features. We leverage 84 

common discharge dynamics to facilitate flood peril assessment and demonstrate its usefulness in 85 

areas with limited records. 86 

2 Identifying tail behavior from hydrological dynamics 87 

We describe key hydrologic dynamics occurring at the catchment scale and the resulting 88 

probability distributions of streamflow and floods by means of the PHysically-based Extreme 89 

Value (PHEV) distribution of river flows (Basso et al., 2021). This framework is grounded on a 90 

well-established mathematical description of precipitation, soil moisture, and runoff generation in 91 

river basins (Laio et al., 2001; Porporato et al., 2004; Botter et al., 2007b, 2009).  Rainfall is 92 

described as a marked Poisson process with frequency 𝜆𝑝[T
−1] and exponentially distributed 93 

depths with average 𝛼 [L]. Soil moisture increases due to rainfall infiltration and decreases due to 94 

evapotranspiration. The latter is represented by a linear function of soil moisture between the 95 

wilting point and an upper critical value expressing the water holding capacity of the root zone. 96 

Runoff pulses occur with frequency 𝜆 < 𝜆𝑝  when the soil moisture exceeds the critical value. 97 

These pulses replenish single catchment storage, which drains according to a nonlinear storage-98 

discharge relation. The related hydrograph recession is described via a power law function with 99 

exponent 𝑎 [−] and coefficient 𝐾 [L1−a/T2−a]  (Brutsaert & Nieber, 1977), which allows for 100 

mimicking the joint effect of different flow components (Basso et al., 2015). Such a description of 101 

runoff generation and streamflow dynamics was successfully tested in a variety of hydro-climatic 102 

and physiographic conditions (Arai et al., 2020; Botter et al., 2007a; Botter et al., 2010; Ceola et 103 
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al., 2010; Doulatyari et al., 2015; Mejía et al., 2014; Müller et al., 2014; Müller et al., 2021; Pumo 104 

et al., 2014; Santos et al., 2018; Schaefli et al., 2013).  105 

PHEV provides a set of consistent expressions for the probability distributions of daily streamflow, 106 

ordinary peak flows (i.e., local flow peaks occurring as a result of streamflow-producing rainfall 107 

events; Zorzetto et al., 2016), and floods (i.e., flow maxima in a certain timeframe; Basso et al., 108 

2021). For example, the probability distribution of daily streamflow 𝑞 can be expressed as (Botter 109 

et al., 2009): 110 

𝑝(𝑞) = 𝐶1 ⋅ 𝑞
−𝑎 (𝑒

−1
𝛼𝐾(2−𝑎)

⋅𝑞2−𝑎

)(𝑒
𝜆

𝐾(1−𝑎)
⋅𝑞1−𝑎

) 111 

( 1 ) 112 

where 𝐶1 is a normalization constant.  113 

Taking the limit of Equation (1) for 𝑞 → +∞ gives indications of the tail behavior of the flow 114 

distribution (Basso et al., 2015). This is determined by the three terms in the equation, namely, one 115 

power law and two exponential functions, which behave differently depending on the value of the 116 

hydrograph recession exponent 𝑎 (Equation 2; notice that 𝑎 > 1 in most natural river basins; Tashie 117 

et al., 2020a).  118 

 119 

( 2 ) 120 

When 1 < 𝑎 < 2, the last term on the right-hand side converges to a constant value of one as q 121 

increases, thereby no more influence on how the distribution decreases toward zero. The first two 122 

terms instead decrease toward zero, affecting how the probability decreases for increasing values 123 

of q. The tail behavior is in this case determined by both a power law and an exponential functions, 124 

indicating that the probability decreases faster than an exponential but slower than a power law. 125 

When 𝑎 > 2, both the exponential terms converge to a constant value of one as q increases, and 126 

thus no more influence on how the probability decreases toward zero. In this case the tail of the 127 

distribution is solely determined by the power law function. Despite being aware that several 128 

definitions of heavy-tailed distribution exist (El Adlouni et al., 2008; Vázquez et al., 2006), in the 129 

remaining of the manuscript we refer to heavy-tailed behavior for the case of distributions which 130 

exhibit a power law tail (i.e., the cases with a > 2). We thus aim to distinguish them from cases 131 

lim
𝑞→+∞

𝑝(𝑞) = lim
𝑞→+∞

 𝐶1 ⋅ 𝑞
−𝑎 (𝑒

−1
𝛼𝐾(2−𝑎)

⋅𝑞2−𝑎

)(𝑒
𝜆

𝐾(1−𝑎)
⋅𝑞1−𝑎

)  

⟼ 0             ⟼ 0                       ⟼ 𝑒0 = 1            for  1 < 𝑎 < 2 

 

⟼ 0             ⟼ 𝑒0 = 1              ⟼ 𝑒0 = 1            for  𝑎 > 2 
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which display a lighter tail because of the simultaneous effect of exponential decay (i.e., the cases 132 

with 1 < a < 2).  133 

From the above derivations, the hydrograph recession exponent emerges as a key index of the tail 134 

behavior of streamflow distributions, which shall be heavy-tailed for values of a > 2. The same 135 

analysis applies to infer the tail behavior of the probability distributions of ordinary peak flows 136 

(Botter et al., 2009) and floods (Basso et al., 2016) (see supporting information Text S1). 137 

Remarkably, we find that the same critical value of the recession exponent indicates the emergence 138 

of heavy-tailed behavior also in peak flow and flood distributions. We therefore propose the 139 

hydrograph recession exponent a as an index for identifying heavy-tailed flood behavior, and test 140 

its capability to correctly predict such behavior in Section 4. 141 

Recent studies showed that the hydrograph recession exponent is a convincing descriptor of the 142 

geomorphological signature of drainage areas (Biswal & Marani, 2010, 2014; Biswal & Kumar, 143 

2014; Ghosh et al., 2016; Mutzner et al., 2013). The river network structure primarily defines how 144 

the geometry of saturated (Mutzner et al., 2013) and unsaturated areas (Biswal & Marani, 2010) 145 

of a river basin change over the draining process, which essentially determines the streamflow 146 

dynamics at the outlet. Despite being aware of the influences of seasonal climate (Jachens et al., 147 

2020; Tashie et al., 2019), the geomorphological structure of the contributing river network has 148 

been demonstrated as the major determinator of the hydrograph recession exponent (Biswal & 149 

Kumar, 2014; Ghosh et al., 2016). We thus refer to the hydrograph recession exponent for a 150 

hydrogeomorphological index of heavy-tailed flood behavior.  151 

3 Data and parameter estimation 152 

To test the proposed hydrogeomorphological index of heavy-tailed flood behavior (i.e., the 153 

hydrograph recession exponent a), we use streamflow records with daily time resolution of 98 154 

gauges across Germany (Figure S1). The analyzed river basins encompass a variety of climate and 155 

physiographic settings (Tarasova et al., 2020), while not being heavily affected by anthropogenic 156 

flow regulation and snow dynamics across seasons. Their areas range from 110 to 23,843 km2 with 157 

a median value of 1,195 km2. The minimum, median, and maximum lengths of the streamflow 158 

records are 35, 58, and 63 years (inbetween 1951 – 2013). We perform all analyses on a seasonal 159 

basis (winter: December–February, spring: March–May, summer: June–August, fall: September–160 

November) to account for the seasonality of the hydrograph recessions and flood distributions 161 

(Durrans et al., 2003; Tashie et al., 2020b). This results in an overall number of 386 case studies 162 

used in our study. 163 

We estimated 𝑎 as the median value of the exponents of power law functions fitted to 𝑑𝑞 𝑑𝑡⁄ − 𝑞 164 

pairs of each hydrograph recession observed in the daily flow series (Jachens et al., 2020; Biswal, 165 

2021). Notice that the proposed indicator of heavy-tailed flood behavior is thus estimated based 166 

on commonly available daily discharge observations. 167 

The identification of case studies with either heavy- or nonheavy-tailed behavior resulting from 168 

the proposed index must be evaluated against a suitable benchmark. This is obtained by means of 169 

a state-of-the-art approach to fit power law functions to empirical distributions and evaluate their 170 

plausibility for the analyzed data (Clauset et al., 2009). The fitted exponent is here noted as 𝑏. We 171 

analyze three types of empirical data, namely daily streamflow, ordinary peaks, and monthly 172 
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maxima (Fischer & Schumann, 2016; Malamud & Turcotte, 2006), and obtain estimates of the 173 

fitted exponent b for each case. These results will be used to validate the capabilities of the 174 

proposed hydrogeomorphological index to infer heavy-tailed flood behavior from the analysis of 175 

hydrograph recessions. 176 

4 Results and discussion  177 

We examine if power law distributions fitted to the empirical distributions of daily streamflow, 178 

ordinary peaks, and monthly maxima well describe the observed data for the case studies identified 179 

as having heavy-tailed behavior (i.e., a > 2) according to the hydrogeomorphological index (Figure 180 

1). First, we identify the case studies with either heavy- (a > 2; red) or nonheavy (a < 2; green) -181 

tailed behavior based on the hydrogeomorphological index. Then, we use the Kolmogorov-182 

Smirnov (KS) statistic 𝜅 to evaluate the reliability of the fitted power law function in describing 183 

the data (κ∈[0,∞], κ=0 denotes the highest reliability). The KS statistic 𝜅 indicates how likely the 184 

data are to be drawn from a power law. Figures 1a-1c show that the histograms of the number of 185 

case studies are significantly skewed toward lower values of 𝜅 for all cases of daily streamflows, 186 

ordinary peak flows, and monthly flow maxima with a > 2 (red histograms), whereas this is not 187 

true for cases with a < 2 (green histograms). Statistical significance of the skewnesses was 188 

evaluated through the Jarque–Bera test at a significance level of 0.05. The result essentially 189 

indicates that data from case studies which are identified with heavy-tailed behavior according to 190 

the hydrogeomorphological index (a>2, red) are indeed more likely to come from power law 191 

distributions. 192 

We further estimate the accuracy of the hydrogeomorphological index based on the fraction of 193 

case studies that are correctly identified by the hydrogeomorphological index among all heavy-194 

tailed cases. To define the number of cases with heavy tails based on the available observations, 195 

we choose a threshold value of 𝜅 to determine whether the data are reliably described by power 196 

law functions. Mathematically, the accuracy can be expressed as 𝑃𝑎>2(𝜅 < 𝜅𝑟) = 𝑁𝑝(𝑎 > 2) 𝑁𝑝⁄ , 197 

where 𝜅𝑟  is the imposed threshold of 𝜅 , 𝑁𝑝  is the number of case studies whose 𝜅 < 𝜅𝑟 , and 198 

𝑁𝑝(𝑎 > 2) is the number of case studies with 𝑎 > 2 among the 𝑁𝑝 case studies. Higher accuracy 199 

essentially means that a higher fraction of heavy-tailed cases (as defined by fitted power laws and 200 

a set 𝜅𝑟 threshold) are correctly identified by means of the hydrogeomorphological index. Notice 201 

that the smaller the 𝜅𝑟 threshold, the more reliable the description of power law distributions for 202 

data. The blue frame and dot in figures 1a and 1d display an example of defined reliability and the 203 

corresponding accuracy. 204 

Figures 1d-1f display the accuracy of the hydrogeomorphological index as a function of the 205 

reliability threshold 𝜅𝑟. In all three cases (daily streamflows, ordinary peak flows, and monthly 206 

flow maxima), the accuracy values increase with the reliability level of the power law function 207 

fitted on observed data. This means that the hydrogeomorphological index shows higher accuracy 208 

for case studies where the empirical distributions of observed data are more consistent with power 209 

laws. In other words, the proposed hydrogeomorphological index, which is estimated as the 210 
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hydrograph recession exponent from commonly available daily flow records, is a robust indicator 211 

of heavy-tailed flood behavior. 212 

 213 

Figure 1. Accuracy of the proposed hydrogeomorphological index. (a)-(c) Number of analyzed case 214 

studies as a function of the KS statistic 𝜅 of empirically fitted power law distributions (the latter is a measure 215 

of how reliable the power law is as a model for the given data: the lower 𝜅, the more reliable the power law 216 

model). Case studies are identified with either heavy- (𝑎 > 2, red histograms) or nonheavy (𝑎 < 2, green 217 

histograms) –tailed behavior based on the hydrograph recession exponent 218 

𝑎 estimated from daily flow records, which is proposed as a hydrogeomorphological index of heavy-219 

tailed streamflow and flood behavior. (d)-(f) Accuracy of the hydrogeomorphological index as a function 220 

of decreasing thresholds of 𝜅𝑟 (i.e., increasing reliability of empirical power laws). The accuracy 𝑃𝑎>2(𝜅 <221 

𝜅𝑟) is essentially the fraction of the red area under a specified threshold of 𝜅 (as explanatorily shown by 222 

the blue frames and dots in panels a and d). The values of the KS statistic 𝜅  are derived from records of (a, 223 

d) daily streamflows, (b, e) ordinary peak flows, and (c, f) monthly flow maxima. 224 

We further employ the goodness-of-fit testing procedure proposed by Clauset et al. (2009) 225 

(supporting information Text S2) to identify case studies for which the representation of daily 226 

streamflow, ordinary peak flows, and monthly maxima by means of power law distributions is 227 

convincingly supported by the available data. We refer to these case studies as ‘confirmed heavy-228 

tailed cases’ (Figure 2, black dots). Conversely, we term the remaining ones as 'uncertain cases' 229 

(Figure 2, gray). The latter label denotes that the distribution underlying the available observations 230 

may or may not be a power law but, statistically speaking, we cannot be conclusive due to data 231 

scarcity. 232 

Figure 2 shows the empirical power law exponent 𝑏 as a function of the hydrogeomorphological 233 

index of heavy-tailed flow behavior 𝑎. Red markers display the median values of 𝑎 and 𝑏 (squares), 234 

the interquartile intervals of 𝑏 (vertical bars), and the binning ranges of 𝑎 (horizontal bars, equal 235 
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number of case studies in each bin), highlighting the correlation between the empirical power law 236 

exponent 𝑏 and the hydrograph recession exponent 𝑎 for confirmed heavy-tailed cases (black dots) 237 

in all three cases (i.e., daily streamflows, ordinary peak flows, and monthly flow maxima). We 238 

also test the correlation by calculating their distance correlation (Székely et al., 2007), which is 239 

valid for both potential linear and nonlinear associations between two random variables. We find 240 

that 𝑎 and 𝑏 are significantly correlated at a significance level of 0.05 in all three cases with 241 

distance (Spearman) correlation coefficients of 0.45, 0.44, and 0.81 (0.42, 0.46, and 0.60) for daily 242 

streamflows, ordinary peak flows, and monthly flow maxima. The last high value of correlation is 243 

likely affected by the existence of two clusters of black dots in Figure 2c. Nonetheless, the 244 

existence of a statistically significant correlation between the empirical power law exponent and 245 

the hydrogeomorphological index (confirmed for all panels a,b,c) confirms that the latter not only 246 

can be used to identify heavy-tailed flood behavior but also to evaluate the degree of the tail 247 

heaviness of the underlying distributions.  248 

Figure 2c is of particular interest because it shows a common issue in the practice of flood hazard 249 

assessment. The power law is a plausible representation of the empirical distribution of monthly 250 

maxima in some cases (black dots) that are characterized by large values of the recession exponent 251 

𝑎  and are therefore classified as having heavy-tailed behavior according to the 252 

hydrogeomorphological index. In other cases (gray dots), conclusive evidence of possible heavy-253 

tailed flood behavior cannot be drawn from the limited observations of monthly maxima. However, 254 

the hydrogeomorphological index retains its capability to provide estimates of the tail heaviness 255 

based on the value of the hydrograph recession exponent and classifies the case studies as heavy-256 

tailed. Such a classification is deemed robust, provided that the predictions of the 257 

hydrogeomorhological index are confirmed by observations in cases (panels a and b) where data 258 

size is not a limitation (i.e., for daily streamflow and ordinary peak flows). The ability of the 259 

hydrogeomorphological index to infer the tail heaviness of flood distributions by examining the 260 

intrinsic dynamics of the hydrological system constitutes an advantage of the approach, that is 261 

especially useful in the very common cases when the tail of the flood distribution cannot be known 262 

from limited observations of maxima only.  263 

 264 

 265 

Figure 2. Empirical power law exponent 𝒃 as a function of the hydrogeomorphological index of 266 

heavy-tailed behavior 𝒂. Case studies are classified into groups of confirmed heavy-tailed (black dots) 267 

and uncertain (gray dots) cases on the basis of the goodness-of-fit testing procedure (Clauset et al., 2009). 268 

The former denotes cases for which a power law provides a reliable description of the empirical data 269 

distribution, while the latter denotes cases whose data cannot convincingly support such a distribution. Red 270 

markers highlight the correlation between the empirical power law exponent b and the hydrograph recession 271 

exponent a for confirmed heavy-tailed cases in the case of (a) daily streamflows (n=121 case studies), (b) 272 

ordinary peak flows (n=116), and (c) monthly flow maxima (n=34).  Red markers display the median values 273 
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of a and b (squares), the interquartile intervals of b (vertical bars), and the binning ranges of a (horizontal 274 

bars, equal number of case studies in each bin). 275 

In Figure 3, we test the index stability of the categorization of case studies into heavy/nonheavy-276 

tailed flood behavior for decreasing data lengths. We benchmark the hydrogeomorphological 277 

index (i.e., the hydrograph recession exponent 𝑎) against two other frequently used metrics of 278 

heavy tails in hydrological studies: (1) the upper tail ratio (UTR) (Lu et al., 2017; Smith et al., 279 

2018; Villarini et al., 2011; Wang et al., 2022) and (2) the shape parameter 𝜉  of the GEV 280 

distribution (Morrison & Smith, 2002; Papalexiou et al., 2013; Villarini & Smith, 2010). The UTR 281 

is derived as the ratio of the maximum record to the 0.9 quantiles of floods (Smith et al., 2018), 282 

and the 𝜉 is estimated using the python package OpenTURNS 1.16 (Baudin et al., 2017). We 283 

compute both using data of monthly flow maxima. For all three indices (𝑎, 𝑈𝑇𝑅, and 𝜉), we 284 

estimate the index for decreasing data lengths from 35 (bounded by the shortest record length in 285 

the dataset) to 2 years in each case study. The index for each test length is calculated based on the 286 

median value of the estimates derived from 30 random fragments (with the assigned test length) 287 

of the entire record. 288 

To have the reference of the stability of the categorization, we use the entire data record computing 289 

the values of the hydrogeomorphological index and the GEV shape parameter (notations with an 290 

asterisk in Figure 3, i.e., 𝑎∗ and 𝜉∗). Each case study is categorized as either having (red) or not 291 

(green) the heavy-tailed behavior by the criteria of heavy (nonheavy) tails for the 292 

geomorphological index as 𝑎∗ > 2 (𝑎∗ < 2) or for the GEV shape parameter as 𝜉∗ > 0 (𝜉∗ ≤ 0) 293 

(Godrèche et al., 2015). For the UTR, however, there is no specific threshold for the identification 294 

of heavy/nonheavy tails, but a larger value indicates a heavier tail.  295 

The categorization of the hydrogeomorphological index is consistent across the test data length 296 

(Figure 3a). Specifically, the index estimates retain beyond 2 for most heavy-tailed cases (red) and 297 

below 2 for most nonheavy-tailed cases (green) when the data length decreases. The vertical 298 

shaded bar and line show the 0.25–0.75 and 0.05–0.95 quantile ranges of the index estimates across 299 

case studies. Besides the consistent categorization, the index estimates vary in a narrow range over 300 

the test data length both for the median value (i.e., from 2.64 to 2.92 for heavy-tailed cases and 301 

from 1.84 to 2.0 for nonheavy-tailed cases) and for the variation (e.g., the coefficient of variation 302 

ranges from 0.29 to 0.33 for heavy-tailed cases and from 0.29 to 0.33 for nonheavy-tailed cases). 303 

The small fluctuation of the variation across the test data length implies that the variation in index 304 

estimates is primarily caused by case study heterogeneity rather than decreasing data length. These 305 

results essentially confirm the stability of the hydrogeomorphological index for decreasing data 306 

lengths. 307 

In contrast, the upper tail ratio shows pronounced instability for decreasing data lengths (Figure 308 

3b). The median value of the index estimates ranges from 1.32 to 2.36, and the coefficient of 309 

variation ranges from 0.15 to 0.64, indicating that the tail heaviness is underestimated as data 310 

length decreases, in agreement with Smith et al. (2018) and Wietzke et al. (2020). The differential 311 

variation for decreasing data length denotes an apparent bias in the index estimates caused by the 312 

short data in addition to the heterogeneity across case studies.  313 

Figure 3c shows the categorization of tail behavior based on the estimates of the GEV shape 314 

parameters. When the test data length is above five years, case studies with index estimates in the 315 
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interquartile range (the vertical shaded bar) are consistent in the categorization of heavy/nonheavy-316 

tailed behavior. When the data length is below five years, the underestimation of tail heaviness 317 

exists. Meanwhile, the index estimate changes slightly in its median but evidently in its coefficient 318 

of variation across the test data length. The former (latter) ranges from 0.39 to 0.52 (0.37 to 1.03) 319 

for the heavy-tailed cases and keeps 0 (--; the coefficient of variation is not applied for data with 320 

zero mean) for the nonheavy-tailed cases. These results show that the GEV shape parameter may 321 

still be considered a practical index for the heavy/nonheavy-tailed categorization because most 322 

applications have data that are more than five years. Nonetheless, the bias in the variation of index 323 

estimates across data length and the apparent underestimation in cases with very limited data point 324 

to the dependence on data lengths, in agreement with Papalexiou and Koutsoyiannis (2013). 325 

We demonstrate the hydrogeomorphological index is robust in cases with limited data, i.e., it is 326 

stable in the categorization of heavy/nonheavy-tailed flood behavior for decreasing data lengths. 327 

Given that most data records worldwide are relatively short (Lins, 2008), this is a valuable tool to 328 

infer the tail behavior of streamflow in river basins. Moreover, given that generally all available 329 

records are too short of estimating the tail behavior of maxima (e.g., floods), this approach is even 330 
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more valuable because it allows scientists or engineers to estimate the heavy-tailed flood behavior 331 

and assess the hazards from common discharge dynamics.  332 

 333 

Figure 3. Stability of the categorization of case studies into heavy/nonheavy-tailed flood behavior for 334 

decreasing data lengths. Estimates of three different indices of tail behavior as a function of data length. 335 

(a) Hydrograph recession exponent 𝑎 (i.e., the proposed hydrogeomorphological index of this study). Two 336 

frequently used metrics of heavy tails in hydrological studies: (b) the upper tail ratio 𝑈𝑇𝑅, and (c) the shape 337 
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parameter 𝜉 of the GEV distribution. Dots display the median values of the estimates for 386 case studies; 338 

vertical shaded bars and lines respectively show the 0.25-0.75 and 0.05-0.95 quantile ranges of the estimates. 339 

The entire data record was used for computing the reference values of the hydrograph recession exponent 340 

𝑎∗ and the GEV shape parameter 𝜉∗ and categorizing each case study as either having (red) or not (green) 341 

the heavy-tailed behavior. 342 

5 Conclusions  343 

The hydrograph recession exponent is identified as an index of heavy-tailed flood behavior from 344 

a physically-based description of hydrological dynamics. It is essentially a 345 

hydrogeomorphological index of heavy-tailed flood behavior because it originates from the 346 

geomorphological structure of the contributing river basin. We show that the proposed 347 

hydrogeomorphological index enables the identification of heavy/nonheavy-tailed flood behavior 348 

and the evaluation of the tail heaviness across case studies. Remarkably, it leverages the 349 

information of common discharge dynamics and shows robust identification of tail behavior for 350 

decreasing data length. We demonstrate all these capabilities in a large set of case studies across 351 

Germany on a seasonal basis, featuring the diversity in climatic and physiographic conditions. The 352 

hydrogeomorphological index addresses the limitations of other frequently used indices (e.g., lack 353 

of physical support, low effectiveness/ineffectiveness in cases with limited data) and allows for 354 

robust identification of heavy-tailed flood behavior, which is particularly useful in assessing 355 

hazards of extreme floods in data-scarce areas. 356 
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Key Points: 13 

 The hydrograph recession exponent is identified as an index of heavy-tailed flood 14 

behavior. 15 

 The proposed index enables robust identification of heavy-tailed flood behavior in a large 16 

set of case studies and from short data records. 17 

 Unlike other frequently used metrics, the proposed index infers heavy-tailed flood 18 

behaviors from commonly observed discharge dynamics. 19 

 20 

  21 



manuscript submitted to Geophysical Research Letters 

 

Abstract 22 

Floods are often disastrous due to underestimation of the magnitude of rare events. When the 23 

occurrence of floods follows a heavy-tailed distribution the chance of extreme events is sizable. 24 

However, identifying heavy-tailed flood behavior is challenging because of limited data records 25 

and the lack of physical support for currently used indices. We address these issues by deriving a 26 

new index of heavy-tailed flood behavior from a physically-based description of streamflow 27 

dynamics. The proposed index, which is embodied by the hydrograph recession exponent, enables 28 

inferring heavy-tailed flood behavior from daily flow records. We test the index in a large set of 29 

case studies across Germany. Results show its ability to identify cases with either heavy- or 30 

nonheavy-tailed flood behavior, and to evaluate the tail heaviness. Remarkably, the results are 31 

robust also for decreasing the lengths of data records. The new index thus allows for assessing 32 

flood hazards from commonly available data. 33 

Plain Language Summary 34 

High flow events often cause severe damages when they occur unexpectedly, i.e., more often and 35 

with larger magnitudes than suggested by historical observations. This is usually the case with 36 

frequency distributions of floods which are heavy-tailed. However, a proper assessment of the tail 37 

behavior solely based on limited data records is difficult and might lead to an erroneous estimation 38 

of the underlying hazard. We start by analyzing runoff generation processes and find that the 39 

hydrograph recession is a proper descriptor of the emergence of heavy-tailed behavior. Our 40 

findings show that the new proposed index allows for (1) detecting cases with heavy-tailed 41 

behavior, (2) comparing severity across cases, and (3) displaying robust results also with short data 42 

records. These results address the main limitations of currently used metrics (which often require 43 

long records and lack physical meaning) and provide information on the characteristic flood hazard 44 

of river basins. 45 

1 Introduction 46 

Floods remain the leading natural hazards worldwide, which directly threaten at least one-fifth of 47 

people’s livelihoods (McDermott, 2022; Rentschler et al., 2022) and have caused enormous and 48 

increasing economic losses (Bevere & Remondi, 2022) in recent years. Floods are often disastrous 49 

because they occur unexpectedly (i.e., underestimated by water resources managers as well as 50 

residents) (Else, 2021; Merz et al., 2021), commonly due to poor estimates of the magnitude of 51 

rare events obtained from available observations. A number of studies in natural and anthropogenic 52 

phenomena use heavy-tailed distributions to describe the extreme behavior of variables (e.g., Katz, 53 

2002; Kondor et al., 2014; Malamud, 2004; Sartori & Schiavo, 2015; Wang et al., 2022) because 54 

it indicates a sizable chance of the occurrence of extreme value. We can better assess the flood 55 

hazards if we may know that floods follow a heavy-tailed distribution, i.e., robustly identify the 56 

heavy-tailed flood behavior (Merz et al., 2022).   57 

A variable distribution's tail heaviness is traditionally estimated graphically or mathematically, 58 

while both have their limitations. In general, graphical methods such as log-log plots (Beirlant et 59 

al., 2004), generalized Hill ratio plots (Resnick, 2007; El Adlouni et al., 2008), and mean excess 60 

functions (Embrechts et al., 1997; Nerantzaki & Papalexiou, 2019) have less objectivity and 61 

efficiency (Cooke et al., 2014). Mathematical methods provide more objective insights into the 62 

estimation of tail behavior. The shape parameters of Generalized Extreme Value (GEV) 63 
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distributions quantify the tail behavior by fitting the parameters of an underlying distribution on 64 

limited records of maxima (Morrison & Smith, 2002; Villarini & Smith, 2010; Papalexiou et al., 65 

2013), and a group of non-parametric metrics evaluates the spread of data (e.g., upper tail ratio 66 

(Lu et al., 2017; Smith et al., 2018; Villarini et al., 2011; Wang et al., 2022), Gini index (Eliazar 67 

& Sokolov, 2010; Rajah et al., 2014), and obesity index (Cooke & Nieboer, 2011; Sartori & 68 

Schiavo, 2015)). These methods often require long records to obtain reliable estimates (Papalexiou 69 

& Koutsoyiannis, 2013). This is a challenge globally and even more challenging when it comes to 70 

analyzing maxima (which is indeed the key to assessing hazards of extreme floods). The bias 71 

caused by the data size restricts the comparability across sites with different record lengths 72 

(Wietzke et al., 2020). In addition, the correctness of the estimation of tail heaviness is influenced 73 

by the underlying physical processes of the case studies (Merz et al., 2022). However, to the best 74 

of our knowledge, physical processes are absent from these frequently used metrics. It is preferable 75 

to have a new index that can robustly estimate with data in different lengths (Bernardara et al., 76 

2008; Merz & Blöschl, 2009) and is based on the physical processes that favor the heavy-tailed 77 

behavior of flood distributions. 78 

We propose a new index of heavy-tailed flood behavior, which can be estimated by common 79 

discharge dynamics. Unlike fitting a statistical distribution to observed series of maxima (which 80 

may not clearly exhibit heavy-tailed behavior due to data scarcity), the index infers the tail 81 

heaviness of floods by examining the intrinsic dynamics of the hydrological system. Reliable 82 

identification of heavy tails by the proposed index is tested in datasets with decreasing lengths in 83 

a great number of case studies with various climate and physiographic features. We leverage 84 

common discharge dynamics to facilitate flood peril assessment and demonstrate its usefulness in 85 

areas with limited records. 86 

2 Identifying tail behavior from hydrological dynamics 87 

We describe key hydrologic dynamics occurring at the catchment scale and the resulting 88 

probability distributions of streamflow and floods by means of the PHysically-based Extreme 89 

Value (PHEV) distribution of river flows (Basso et al., 2021). This framework is grounded on a 90 

well-established mathematical description of precipitation, soil moisture, and runoff generation in 91 

river basins (Laio et al., 2001; Porporato et al., 2004; Botter et al., 2007b, 2009).  Rainfall is 92 

described as a marked Poisson process with frequency 𝜆𝑝[T
−1] and exponentially distributed 93 

depths with average 𝛼 [L]. Soil moisture increases due to rainfall infiltration and decreases due to 94 

evapotranspiration. The latter is represented by a linear function of soil moisture between the 95 

wilting point and an upper critical value expressing the water holding capacity of the root zone. 96 

Runoff pulses occur with frequency 𝜆 < 𝜆𝑝  when the soil moisture exceeds the critical value. 97 

These pulses replenish single catchment storage, which drains according to a nonlinear storage-98 

discharge relation. The related hydrograph recession is described via a power law function with 99 

exponent 𝑎 [−] and coefficient 𝐾 [L1−a/T2−a]  (Brutsaert & Nieber, 1977), which allows for 100 

mimicking the joint effect of different flow components (Basso et al., 2015). Such a description of 101 

runoff generation and streamflow dynamics was successfully tested in a variety of hydro-climatic 102 

and physiographic conditions (Arai et al., 2020; Botter et al., 2007a; Botter et al., 2010; Ceola et 103 
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al., 2010; Doulatyari et al., 2015; Mejía et al., 2014; Müller et al., 2014; Müller et al., 2021; Pumo 104 

et al., 2014; Santos et al., 2018; Schaefli et al., 2013).  105 

PHEV provides a set of consistent expressions for the probability distributions of daily streamflow, 106 

ordinary peak flows (i.e., local flow peaks occurring as a result of streamflow-producing rainfall 107 

events; Zorzetto et al., 2016), and floods (i.e., flow maxima in a certain timeframe; Basso et al., 108 

2021). For example, the probability distribution of daily streamflow 𝑞 can be expressed as (Botter 109 

et al., 2009): 110 

𝑝(𝑞) = 𝐶1 ⋅ 𝑞
−𝑎 (𝑒

−1
𝛼𝐾(2−𝑎)

⋅𝑞2−𝑎

)(𝑒
𝜆

𝐾(1−𝑎)
⋅𝑞1−𝑎

) 111 

( 1 ) 112 

where 𝐶1 is a normalization constant.  113 

Taking the limit of Equation (1) for 𝑞 → +∞ gives indications of the tail behavior of the flow 114 

distribution (Basso et al., 2015). This is determined by the three terms in the equation, namely, one 115 

power law and two exponential functions, which behave differently depending on the value of the 116 

hydrograph recession exponent 𝑎 (Equation 2; notice that 𝑎 > 1 in most natural river basins; Tashie 117 

et al., 2020a).  118 

 119 

( 2 ) 120 

When 1 < 𝑎 < 2, the last term on the right-hand side converges to a constant value of one as q 121 

increases, thereby no more influence on how the distribution decreases toward zero. The first two 122 

terms instead decrease toward zero, affecting how the probability decreases for increasing values 123 

of q. The tail behavior is in this case determined by both a power law and an exponential functions, 124 

indicating that the probability decreases faster than an exponential but slower than a power law. 125 

When 𝑎 > 2, both the exponential terms converge to a constant value of one as q increases, and 126 

thus no more influence on how the probability decreases toward zero. In this case the tail of the 127 

distribution is solely determined by the power law function. Despite being aware that several 128 

definitions of heavy-tailed distribution exist (El Adlouni et al., 2008; Vázquez et al., 2006), in the 129 

remaining of the manuscript we refer to heavy-tailed behavior for the case of distributions which 130 

exhibit a power law tail (i.e., the cases with a > 2). We thus aim to distinguish them from cases 131 

lim
𝑞→+∞

𝑝(𝑞) = lim
𝑞→+∞

 𝐶1 ⋅ 𝑞
−𝑎 (𝑒

−1
𝛼𝐾(2−𝑎)

⋅𝑞2−𝑎

)(𝑒
𝜆

𝐾(1−𝑎)
⋅𝑞1−𝑎

)  

⟼ 0             ⟼ 0                       ⟼ 𝑒0 = 1            for  1 < 𝑎 < 2 

 

⟼ 0             ⟼ 𝑒0 = 1              ⟼ 𝑒0 = 1            for  𝑎 > 2 
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which display a lighter tail because of the simultaneous effect of exponential decay (i.e., the cases 132 

with 1 < a < 2).  133 

From the above derivations, the hydrograph recession exponent emerges as a key index of the tail 134 

behavior of streamflow distributions, which shall be heavy-tailed for values of a > 2. The same 135 

analysis applies to infer the tail behavior of the probability distributions of ordinary peak flows 136 

(Botter et al., 2009) and floods (Basso et al., 2016) (see supporting information Text S1). 137 

Remarkably, we find that the same critical value of the recession exponent indicates the emergence 138 

of heavy-tailed behavior also in peak flow and flood distributions. We therefore propose the 139 

hydrograph recession exponent a as an index for identifying heavy-tailed flood behavior, and test 140 

its capability to correctly predict such behavior in Section 4. 141 

Recent studies showed that the hydrograph recession exponent is a convincing descriptor of the 142 

geomorphological signature of drainage areas (Biswal & Marani, 2010, 2014; Biswal & Kumar, 143 

2014; Ghosh et al., 2016; Mutzner et al., 2013). The river network structure primarily defines how 144 

the geometry of saturated (Mutzner et al., 2013) and unsaturated areas (Biswal & Marani, 2010) 145 

of a river basin change over the draining process, which essentially determines the streamflow 146 

dynamics at the outlet. Despite being aware of the influences of seasonal climate (Jachens et al., 147 

2020; Tashie et al., 2019), the geomorphological structure of the contributing river network has 148 

been demonstrated as the major determinator of the hydrograph recession exponent (Biswal & 149 

Kumar, 2014; Ghosh et al., 2016). We thus refer to the hydrograph recession exponent for a 150 

hydrogeomorphological index of heavy-tailed flood behavior.  151 

3 Data and parameter estimation 152 

To test the proposed hydrogeomorphological index of heavy-tailed flood behavior (i.e., the 153 

hydrograph recession exponent a), we use streamflow records with daily time resolution of 98 154 

gauges across Germany (Figure S1). The analyzed river basins encompass a variety of climate and 155 

physiographic settings (Tarasova et al., 2020), while not being heavily affected by anthropogenic 156 

flow regulation and snow dynamics across seasons. Their areas range from 110 to 23,843 km2 with 157 

a median value of 1,195 km2. The minimum, median, and maximum lengths of the streamflow 158 

records are 35, 58, and 63 years (inbetween 1951 – 2013). We perform all analyses on a seasonal 159 

basis (winter: December–February, spring: March–May, summer: June–August, fall: September–160 

November) to account for the seasonality of the hydrograph recessions and flood distributions 161 

(Durrans et al., 2003; Tashie et al., 2020b). This results in an overall number of 386 case studies 162 

used in our study. 163 

We estimated 𝑎 as the median value of the exponents of power law functions fitted to 𝑑𝑞 𝑑𝑡⁄ − 𝑞 164 

pairs of each hydrograph recession observed in the daily flow series (Jachens et al., 2020; Biswal, 165 

2021). Notice that the proposed indicator of heavy-tailed flood behavior is thus estimated based 166 

on commonly available daily discharge observations. 167 

The identification of case studies with either heavy- or nonheavy-tailed behavior resulting from 168 

the proposed index must be evaluated against a suitable benchmark. This is obtained by means of 169 

a state-of-the-art approach to fit power law functions to empirical distributions and evaluate their 170 

plausibility for the analyzed data (Clauset et al., 2009). The fitted exponent is here noted as 𝑏. We 171 

analyze three types of empirical data, namely daily streamflow, ordinary peaks, and monthly 172 
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maxima (Fischer & Schumann, 2016; Malamud & Turcotte, 2006), and obtain estimates of the 173 

fitted exponent b for each case. These results will be used to validate the capabilities of the 174 

proposed hydrogeomorphological index to infer heavy-tailed flood behavior from the analysis of 175 

hydrograph recessions. 176 

4 Results and discussion  177 

We examine if power law distributions fitted to the empirical distributions of daily streamflow, 178 

ordinary peaks, and monthly maxima well describe the observed data for the case studies identified 179 

as having heavy-tailed behavior (i.e., a > 2) according to the hydrogeomorphological index (Figure 180 

1). First, we identify the case studies with either heavy- (a > 2; red) or nonheavy (a < 2; green) -181 

tailed behavior based on the hydrogeomorphological index. Then, we use the Kolmogorov-182 

Smirnov (KS) statistic 𝜅 to evaluate the reliability of the fitted power law function in describing 183 

the data (κ∈[0,∞], κ=0 denotes the highest reliability). The KS statistic 𝜅 indicates how likely the 184 

data are to be drawn from a power law. Figures 1a-1c show that the histograms of the number of 185 

case studies are significantly skewed toward lower values of 𝜅 for all cases of daily streamflows, 186 

ordinary peak flows, and monthly flow maxima with a > 2 (red histograms), whereas this is not 187 

true for cases with a < 2 (green histograms). Statistical significance of the skewnesses was 188 

evaluated through the Jarque–Bera test at a significance level of 0.05. The result essentially 189 

indicates that data from case studies which are identified with heavy-tailed behavior according to 190 

the hydrogeomorphological index (a>2, red) are indeed more likely to come from power law 191 

distributions. 192 

We further estimate the accuracy of the hydrogeomorphological index based on the fraction of 193 

case studies that are correctly identified by the hydrogeomorphological index among all heavy-194 

tailed cases. To define the number of cases with heavy tails based on the available observations, 195 

we choose a threshold value of 𝜅 to determine whether the data are reliably described by power 196 

law functions. Mathematically, the accuracy can be expressed as 𝑃𝑎>2(𝜅 < 𝜅𝑟) = 𝑁𝑝(𝑎 > 2) 𝑁𝑝⁄ , 197 

where 𝜅𝑟  is the imposed threshold of 𝜅 , 𝑁𝑝  is the number of case studies whose 𝜅 < 𝜅𝑟 , and 198 

𝑁𝑝(𝑎 > 2) is the number of case studies with 𝑎 > 2 among the 𝑁𝑝 case studies. Higher accuracy 199 

essentially means that a higher fraction of heavy-tailed cases (as defined by fitted power laws and 200 

a set 𝜅𝑟 threshold) are correctly identified by means of the hydrogeomorphological index. Notice 201 

that the smaller the 𝜅𝑟 threshold, the more reliable the description of power law distributions for 202 

data. The blue frame and dot in figures 1a and 1d display an example of defined reliability and the 203 

corresponding accuracy. 204 

Figures 1d-1f display the accuracy of the hydrogeomorphological index as a function of the 205 

reliability threshold 𝜅𝑟. In all three cases (daily streamflows, ordinary peak flows, and monthly 206 

flow maxima), the accuracy values increase with the reliability level of the power law function 207 

fitted on observed data. This means that the hydrogeomorphological index shows higher accuracy 208 

for case studies where the empirical distributions of observed data are more consistent with power 209 

laws. In other words, the proposed hydrogeomorphological index, which is estimated as the 210 
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hydrograph recession exponent from commonly available daily flow records, is a robust indicator 211 

of heavy-tailed flood behavior. 212 

 213 

Figure 1. Accuracy of the proposed hydrogeomorphological index. (a)-(c) Number of analyzed case 214 

studies as a function of the KS statistic 𝜅 of empirically fitted power law distributions (the latter is a measure 215 

of how reliable the power law is as a model for the given data: the lower 𝜅, the more reliable the power law 216 

model). Case studies are identified with either heavy- (𝑎 > 2, red histograms) or nonheavy (𝑎 < 2, green 217 

histograms) –tailed behavior based on the hydrograph recession exponent 218 

𝑎 estimated from daily flow records, which is proposed as a hydrogeomorphological index of heavy-219 

tailed streamflow and flood behavior. (d)-(f) Accuracy of the hydrogeomorphological index as a function 220 

of decreasing thresholds of 𝜅𝑟 (i.e., increasing reliability of empirical power laws). The accuracy 𝑃𝑎>2(𝜅 <221 

𝜅𝑟) is essentially the fraction of the red area under a specified threshold of 𝜅 (as explanatorily shown by 222 

the blue frames and dots in panels a and d). The values of the KS statistic 𝜅  are derived from records of (a, 223 

d) daily streamflows, (b, e) ordinary peak flows, and (c, f) monthly flow maxima. 224 

We further employ the goodness-of-fit testing procedure proposed by Clauset et al. (2009) 225 

(supporting information Text S2) to identify case studies for which the representation of daily 226 

streamflow, ordinary peak flows, and monthly maxima by means of power law distributions is 227 

convincingly supported by the available data. We refer to these case studies as ‘confirmed heavy-228 

tailed cases’ (Figure 2, black dots). Conversely, we term the remaining ones as 'uncertain cases' 229 

(Figure 2, gray). The latter label denotes that the distribution underlying the available observations 230 

may or may not be a power law but, statistically speaking, we cannot be conclusive due to data 231 

scarcity. 232 

Figure 2 shows the empirical power law exponent 𝑏 as a function of the hydrogeomorphological 233 

index of heavy-tailed flow behavior 𝑎. Red markers display the median values of 𝑎 and 𝑏 (squares), 234 

the interquartile intervals of 𝑏 (vertical bars), and the binning ranges of 𝑎 (horizontal bars, equal 235 
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number of case studies in each bin), highlighting the correlation between the empirical power law 236 

exponent 𝑏 and the hydrograph recession exponent 𝑎 for confirmed heavy-tailed cases (black dots) 237 

in all three cases (i.e., daily streamflows, ordinary peak flows, and monthly flow maxima). We 238 

also test the correlation by calculating their distance correlation (Székely et al., 2007), which is 239 

valid for both potential linear and nonlinear associations between two random variables. We find 240 

that 𝑎 and 𝑏 are significantly correlated at a significance level of 0.05 in all three cases with 241 

distance (Spearman) correlation coefficients of 0.45, 0.44, and 0.81 (0.42, 0.46, and 0.60) for daily 242 

streamflows, ordinary peak flows, and monthly flow maxima. The last high value of correlation is 243 

likely affected by the existence of two clusters of black dots in Figure 2c. Nonetheless, the 244 

existence of a statistically significant correlation between the empirical power law exponent and 245 

the hydrogeomorphological index (confirmed for all panels a,b,c) confirms that the latter not only 246 

can be used to identify heavy-tailed flood behavior but also to evaluate the degree of the tail 247 

heaviness of the underlying distributions.  248 

Figure 2c is of particular interest because it shows a common issue in the practice of flood hazard 249 

assessment. The power law is a plausible representation of the empirical distribution of monthly 250 

maxima in some cases (black dots) that are characterized by large values of the recession exponent 251 

𝑎  and are therefore classified as having heavy-tailed behavior according to the 252 

hydrogeomorphological index. In other cases (gray dots), conclusive evidence of possible heavy-253 

tailed flood behavior cannot be drawn from the limited observations of monthly maxima. However, 254 

the hydrogeomorphological index retains its capability to provide estimates of the tail heaviness 255 

based on the value of the hydrograph recession exponent and classifies the case studies as heavy-256 

tailed. Such a classification is deemed robust, provided that the predictions of the 257 

hydrogeomorhological index are confirmed by observations in cases (panels a and b) where data 258 

size is not a limitation (i.e., for daily streamflow and ordinary peak flows). The ability of the 259 

hydrogeomorphological index to infer the tail heaviness of flood distributions by examining the 260 

intrinsic dynamics of the hydrological system constitutes an advantage of the approach, that is 261 

especially useful in the very common cases when the tail of the flood distribution cannot be known 262 

from limited observations of maxima only.  263 

 264 

 265 

Figure 2. Empirical power law exponent 𝒃 as a function of the hydrogeomorphological index of 266 

heavy-tailed behavior 𝒂. Case studies are classified into groups of confirmed heavy-tailed (black dots) 267 

and uncertain (gray dots) cases on the basis of the goodness-of-fit testing procedure (Clauset et al., 2009). 268 

The former denotes cases for which a power law provides a reliable description of the empirical data 269 

distribution, while the latter denotes cases whose data cannot convincingly support such a distribution. Red 270 

markers highlight the correlation between the empirical power law exponent b and the hydrograph recession 271 

exponent a for confirmed heavy-tailed cases in the case of (a) daily streamflows (n=121 case studies), (b) 272 

ordinary peak flows (n=116), and (c) monthly flow maxima (n=34).  Red markers display the median values 273 
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of a and b (squares), the interquartile intervals of b (vertical bars), and the binning ranges of a (horizontal 274 

bars, equal number of case studies in each bin). 275 

In Figure 3, we test the index stability of the categorization of case studies into heavy/nonheavy-276 

tailed flood behavior for decreasing data lengths. We benchmark the hydrogeomorphological 277 

index (i.e., the hydrograph recession exponent 𝑎) against two other frequently used metrics of 278 

heavy tails in hydrological studies: (1) the upper tail ratio (UTR) (Lu et al., 2017; Smith et al., 279 

2018; Villarini et al., 2011; Wang et al., 2022) and (2) the shape parameter 𝜉  of the GEV 280 

distribution (Morrison & Smith, 2002; Papalexiou et al., 2013; Villarini & Smith, 2010). The UTR 281 

is derived as the ratio of the maximum record to the 0.9 quantiles of floods (Smith et al., 2018), 282 

and the 𝜉 is estimated using the python package OpenTURNS 1.16 (Baudin et al., 2017). We 283 

compute both using data of monthly flow maxima. For all three indices (𝑎, 𝑈𝑇𝑅, and 𝜉), we 284 

estimate the index for decreasing data lengths from 35 (bounded by the shortest record length in 285 

the dataset) to 2 years in each case study. The index for each test length is calculated based on the 286 

median value of the estimates derived from 30 random fragments (with the assigned test length) 287 

of the entire record. 288 

To have the reference of the stability of the categorization, we use the entire data record computing 289 

the values of the hydrogeomorphological index and the GEV shape parameter (notations with an 290 

asterisk in Figure 3, i.e., 𝑎∗ and 𝜉∗). Each case study is categorized as either having (red) or not 291 

(green) the heavy-tailed behavior by the criteria of heavy (nonheavy) tails for the 292 

geomorphological index as 𝑎∗ > 2 (𝑎∗ < 2) or for the GEV shape parameter as 𝜉∗ > 0 (𝜉∗ ≤ 0) 293 

(Godrèche et al., 2015). For the UTR, however, there is no specific threshold for the identification 294 

of heavy/nonheavy tails, but a larger value indicates a heavier tail.  295 

The categorization of the hydrogeomorphological index is consistent across the test data length 296 

(Figure 3a). Specifically, the index estimates retain beyond 2 for most heavy-tailed cases (red) and 297 

below 2 for most nonheavy-tailed cases (green) when the data length decreases. The vertical 298 

shaded bar and line show the 0.25–0.75 and 0.05–0.95 quantile ranges of the index estimates across 299 

case studies. Besides the consistent categorization, the index estimates vary in a narrow range over 300 

the test data length both for the median value (i.e., from 2.64 to 2.92 for heavy-tailed cases and 301 

from 1.84 to 2.0 for nonheavy-tailed cases) and for the variation (e.g., the coefficient of variation 302 

ranges from 0.29 to 0.33 for heavy-tailed cases and from 0.29 to 0.33 for nonheavy-tailed cases). 303 

The small fluctuation of the variation across the test data length implies that the variation in index 304 

estimates is primarily caused by case study heterogeneity rather than decreasing data length. These 305 

results essentially confirm the stability of the hydrogeomorphological index for decreasing data 306 

lengths. 307 

In contrast, the upper tail ratio shows pronounced instability for decreasing data lengths (Figure 308 

3b). The median value of the index estimates ranges from 1.32 to 2.36, and the coefficient of 309 

variation ranges from 0.15 to 0.64, indicating that the tail heaviness is underestimated as data 310 

length decreases, in agreement with Smith et al. (2018) and Wietzke et al. (2020). The differential 311 

variation for decreasing data length denotes an apparent bias in the index estimates caused by the 312 

short data in addition to the heterogeneity across case studies.  313 

Figure 3c shows the categorization of tail behavior based on the estimates of the GEV shape 314 

parameters. When the test data length is above five years, case studies with index estimates in the 315 
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interquartile range (the vertical shaded bar) are consistent in the categorization of heavy/nonheavy-316 

tailed behavior. When the data length is below five years, the underestimation of tail heaviness 317 

exists. Meanwhile, the index estimate changes slightly in its median but evidently in its coefficient 318 

of variation across the test data length. The former (latter) ranges from 0.39 to 0.52 (0.37 to 1.03) 319 

for the heavy-tailed cases and keeps 0 (--; the coefficient of variation is not applied for data with 320 

zero mean) for the nonheavy-tailed cases. These results show that the GEV shape parameter may 321 

still be considered a practical index for the heavy/nonheavy-tailed categorization because most 322 

applications have data that are more than five years. Nonetheless, the bias in the variation of index 323 

estimates across data length and the apparent underestimation in cases with very limited data point 324 

to the dependence on data lengths, in agreement with Papalexiou and Koutsoyiannis (2013). 325 

We demonstrate the hydrogeomorphological index is robust in cases with limited data, i.e., it is 326 

stable in the categorization of heavy/nonheavy-tailed flood behavior for decreasing data lengths. 327 

Given that most data records worldwide are relatively short (Lins, 2008), this is a valuable tool to 328 

infer the tail behavior of streamflow in river basins. Moreover, given that generally all available 329 

records are too short of estimating the tail behavior of maxima (e.g., floods), this approach is even 330 
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more valuable because it allows scientists or engineers to estimate the heavy-tailed flood behavior 331 

and assess the hazards from common discharge dynamics.  332 

 333 

Figure 3. Stability of the categorization of case studies into heavy/nonheavy-tailed flood behavior for 334 

decreasing data lengths. Estimates of three different indices of tail behavior as a function of data length. 335 

(a) Hydrograph recession exponent 𝑎 (i.e., the proposed hydrogeomorphological index of this study). Two 336 

frequently used metrics of heavy tails in hydrological studies: (b) the upper tail ratio 𝑈𝑇𝑅, and (c) the shape 337 
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parameter 𝜉 of the GEV distribution. Dots display the median values of the estimates for 386 case studies; 338 

vertical shaded bars and lines respectively show the 0.25-0.75 and 0.05-0.95 quantile ranges of the estimates. 339 

The entire data record was used for computing the reference values of the hydrograph recession exponent 340 

𝑎∗ and the GEV shape parameter 𝜉∗ and categorizing each case study as either having (red) or not (green) 341 

the heavy-tailed behavior. 342 

5 Conclusions  343 

The hydrograph recession exponent is identified as an index of heavy-tailed flood behavior from 344 

a physically-based description of hydrological dynamics. It is essentially a 345 

hydrogeomorphological index of heavy-tailed flood behavior because it originates from the 346 

geomorphological structure of the contributing river basin. We show that the proposed 347 

hydrogeomorphological index enables the identification of heavy/nonheavy-tailed flood behavior 348 

and the evaluation of the tail heaviness across case studies. Remarkably, it leverages the 349 

information of common discharge dynamics and shows robust identification of tail behavior for 350 

decreasing data length. We demonstrate all these capabilities in a large set of case studies across 351 

Germany on a seasonal basis, featuring the diversity in climatic and physiographic conditions. The 352 

hydrogeomorphological index addresses the limitations of other frequently used indices (e.g., lack 353 

of physical support, low effectiveness/ineffectiveness in cases with limited data) and allows for 354 

robust identification of heavy-tailed flood behavior, which is particularly useful in assessing 355 

hazards of extreme floods in data-scarce areas. 356 

Acknowledgments  357 

This work is funded by the Deutsche Forschungsgemeinschaft-Project 421396820 “Propensity of 358 

rivers to extreme floods: climate-landscape controls and early detection (PREDICTED)” and FOR 359 

2416 “Space-Time Dynamics of Extreme Floods (SPATE)”. The financial support of the 360 

Helmholtz Centre for Environmental Research and the Norwegian Institute for Water Research is 361 

as well acknowledged. SY (the 3rd author) acknowledges the support of the Helmholtz Climate 362 

Initiative Project funded by the Helmholtz Association. The manuscript and supporting 363 

information provide all the information needed to replicate the results. 364 

Data Availability Statement 365 

For providing the discharge data for Germany, we are grateful to the Bavarian State Office of 366 

Environment (LfU, https://www.gkd.bayern.de/de/fluesse/abfluss) and the Global Runoff Data 367 

Centre (GRDC) prepared by the Federal Institute for Hydrology (BfG, http://www.bafg.de/GRDC). 368 

Climatic data can be obtained from the German Weather Service (DWD;  369 

ftp://ftp-cdc.dwd.de/pub/CDC/). The digital elevation model can be retrieved from Shuttle Radar 370 

Topography Mission (SRTM; https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/).  371 

  372 

 373 

 374 

 375 



manuscript submitted to Geophysical Research Letters 

 

References 376 

Arai, R., Toyoda, Y., & Kazama, S. (2020). Runoff recession features in an analytical 377 

probabilistic streamflow model. Journal of Hydrology, 597, 125745. 378 

https://doi.org/10.1016/j.jhydrol.2020.125745 379 

Basso, S., Botter, G., Merz, R., & Miniussi, A. (2021). PHEV! The PHysically-based Extreme 380 

Value distribution of river flows. Environmental Research Letters, 16(12). 381 

https://doi.org/10.1088/1748-9326/ac3d59 382 

Basso, S., Schirmer, M., & Botter, G. (2015). On the emergence of heavy-tailed streamflow 383 

distributions. Advances in Water Resources, 82, 98–105. 384 

https://doi.org/10.1016/j.advwatres.2015.04.013 385 

Basso, S., Schirmer, M., & Botter, G. (2016). A physically based analytical model of flood 386 

frequency curves. Geophysical Research Letters, 43(17), 9070–9076. 387 

https://doi.org/10.1002/2016GL069915 388 

Baudin, M., Dutfoy, A., Iooss, B., & Popelin, A.-L. (2017). OpenTURNS: An Industrial 389 

Software for Uncertainty Quantification in Simulation BT - Handbook of Uncertainty 390 

Quantification. In R. Ghanem, D. Higdon, & H. Owhadi (Eds.) (pp. 2001–2038). Cham: 391 

Springer International Publishing. https://doi.org/10.1007/978-3-319-12385-1_64 392 

Beirlant, J., Goegebeur, Y., Teugels, J., Segers, J., De Waal, D., & Ferro, C. (2004). Statistics of 393 

extremes: Theory and applications. Wiley. 394 

https://doi.org/https://doi.org/10.1002/0470012382 395 

Bernardara, P., Schertzer, D., Sauquet, E., Tchiguirinskaia, I., & Lang, M. (2008). The flood 396 

probability distribution tail: How heavy is it? Stochastic Environmental Research and Risk 397 

Assessment, 22(1), 107–122. https://doi.org/10.1007/s00477-006-0101-2 398 

Bevere, L., & Remondi, F. (2022). Natural catastrophes in 2021: the floodgates are open. Swiss 399 

Re Institute sigma research. 400 

Biswal, B. (2021). Decorrelation is not dissociation: There is no means to entirely decouple the 401 

Brutsaert-Nieber parameters in streamflow recession analysis. Advances in Water 402 

Resources, 147, 103822. https://doi.org/https://doi.org/10.1016/j.advwatres.2020.103822 403 

Biswal, B., & Marani, M. (2010). Geomorphological origin of recession curves. Geophysical 404 

Research Letters, 37(24), 1–5. https://doi.org/10.1029/2010GL045415 405 

Biswal, B., & Marani, M. (2014). “Universal” recession curves and their geomorphological 406 

interpretation. Advances in Water Resources, 65, 34–42. 407 

https://doi.org/10.1016/j.advwatres.2014.01.004 408 



manuscript submitted to Geophysical Research Letters 

 

Biswal, B., & Nagesh Kumar, D. (2014). What mainly controls recession flows in river basins? 409 

Advances in Water Resources, 65, 25–33. https://doi.org/10.1016/j.advwatres.2014.01.001 410 

Botter, G., Basso, S., Porporato, A., Rodriguez-Iturbe, I., & Rinaldo, A. (2010). Natural 411 

streamflow regime alterations: Damming of the Piave river basin (Italy). Water Resources 412 

Research, 46(6), 1–14. https://doi.org/10.1029/2009WR008523 413 

Botter, G., Peratoner, F., Porporato, A., Rodriguez-Iturbe, I., & Rinaldo, A. (2007). Signatures of 414 

large-scale soil moisture dynamics on streamflow statistics across U.S. climate regimes. 415 

Water Resources Research, 43(11), 1–10. https://doi.org/10.1029/2007WR006162 416 

Botter, G., Porporato, A., Rodriguez-Iturbe, I., & Rinaldo, A. (2007). Basin-scale soil moisture 417 

dynamics and the probabilistic characterization of carrier hydrologic flows: Slow, leaching-418 

prone components of the hydrologic response. Water Resources Research, 43(2), 1–14. 419 

https://doi.org/10.1029/2006WR005043 420 

Botter, G., Porporato, A., Rodriguez-Iturbe, I., & Rinaldo, A. (2009). Nonlinear storage-421 

discharge relations and catchment streamflow regimes. Water Resources Research, 45(10), 422 

1–16. https://doi.org/10.1029/2008WR007658 423 

Brutsaert, W., & Nieber, J. L. (1977). Regionalized drought flow hydrographs from a mature 424 

glaciated plateau. Water Resources Research, 13(3), 637–643. 425 

https://doi.org/10.1029/WR013i003p00637 426 

Ceola, S., Botter, G., Bertuzzo, E., Porporato, A., Rodriguez-Iturbe, I., & Rinaldo, A. (2010). 427 

Comparative study of ecohydrological streamflow probability distributions. Water 428 

Resources Research, 46(9), 1–12. https://doi.org/10.1029/2010WR009102 429 

Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-law distributions in empirical 430 

data. SIAM Review, 51(4), 661–703. https://doi.org/10.1137/070710111 431 

Cooke, R. M., Nieboer, D., & Misiewicz, J. (2014). Fat-Tailed Distributions: Data, Diagnostics 432 

and Dependence (volume 1). John Wiley & Sons. 433 

Cooke, R. M., & Nieboer, D. (2011). Heavy-Tailed Distributions: Data, Diagnostics, and New 434 

Developments. Resources for the Future Discussion Paper, No. 11-19. 435 

https://doi.org/dx.doi.org/10.2139/ssrn.1811043 436 

Doulatyari, B., Betterle, A., Basso, S., Biswal, B., Schirmer, M., & Botter, G. (2015). Predicting 437 

streamflow distributions and flow duration curves from landscape and climate. Advances in 438 

Water Resources, 83, 285–298. https://doi.org/10.1016/j.advwatres.2015.06.013 439 

Durrans, S. R., Eiffe, M. A., Thomas, W. O., & Goranflo, H. M. (2003). Joint Seasonal /Annual 440 

Flood Frequency Analysis. Journal of Hydrologic Engineering, 8(4), 181–189. 441 

https://doi.org/10.1061/(asce)1084-0699(2003)8:4(181) 442 



manuscript submitted to Geophysical Research Letters 

 

El Adlouni, S., Bobée, B., & Ouarda, T. B. M. J. (2008). On the tails of extreme event 443 

distributions in hydrology. Journal of Hydrology, 355(1–4), 16–33. 444 

https://doi.org/10.1016/j.jhydrol.2008.02.011 445 

Eliazar, I., & Sokolov, I. (2010). Gini characterization of extreme-value statistics. Physica A-446 

Statistical Mechanics and Its Applications - PHYSICA A, 389, 4462–4472. 447 

https://doi.org/10.1016/j.physa.2010.07.005 448 

Else, H. (2021). Climate change implicated in Germany’s deadly floods. Nature. 449 

https://doi.org/10.1038/d41586-021-02330-y 450 

Embrechts, P., Klüppelberg, C., & Mikosch, T. (1997). Modelling extreme events for insurance 451 

and finance. Springer Berlin Heidelberg. 452 

Fischer, S., & Schumann, A. (2016). Robust flood statistics: comparison of peak over threshold 453 

approaches based on monthly maxima and TL-moments. Hydrological Sciences Journal, 454 

61(3), 457–470. https://doi.org/10.1080/02626667.2015.1054391 455 

Ghosh, D. K., Wang, D., & Zhu, T. (2016). On the transition of base flow recession from early 456 

stage to late stage. Advances in Water Resources, 88, 8–13. 457 

https://doi.org/10.1016/j.advwatres.2015.11.015 458 

Godrèche, C., Majumdar, S. N., & Schehr, G. (2015). Statistics of the longest interval in renewal 459 

processes. Journal of Statistical Mechanics: Theory and Experiment, 2015(3). 460 

https://doi.org/10.1088/1742-5468/2015/03/P03014 461 

Jachens, E. R., Rupp, D. E., Roques, C., & Selker, J. S. (2020). Recession analysis revisited: 462 

Impacts of climate on parameter estimation. Hydrology and Earth System Sciences, 24(3), 463 

1159–1170. https://doi.org/10.5194/hess-24-1159-2020 464 

Katz, R. (2002). Statistics of Extremes in Climatology and Hydrology. Advances in Water 465 

Resources, 25, 1287–1304. 466 

Kondor, D., Pósfai, M., Csabai, I., & Vattay, G. (2014). Do the rich get richer? An empirical 467 

analysis of the Bitcoin transaction network. PLoS ONE, 9(2). 468 

https://doi.org/10.1371/journal.pone.0086197 469 

Laio, F., Porporato, A., Fernandez-Illescas, C. P., & Rodriguez-Iturbe, I. (2001). Plants in water-470 

controlled ecosystems: Active role in hydrologic processes and responce to water stress IV. 471 

Discussion of real cases. Advances in Water Resources, 24(7), 745–762. 472 

https://doi.org/10.1016/S0309-1708(01)00007-0 473 

Lins, H. F. (2008). Challenges to hydrological observations. WMO Bulletin, 57(January), 55–58. 474 



manuscript submitted to Geophysical Research Letters 

 

Lu, P., Smith, J. A., & Lin, N. (2017). Spatial characterization of flood magnitudes over the 475 

drainage network of the Delaware river basin. Journal of Hydrometeorology, 18(4), 957–476 

976. https://doi.org/10.1175/JHM-D-16-0071.1 477 

Malamud, B. D. (2004). Tails of natural hazards. Physics World, 17(8), 31–35. 478 

https://doi.org/10.1088/2058-7058/17/8/35 479 

Malamud, B. D., & Turcotte, D. L. (2006). The applicability of power-law frequency statistics to 480 

floods. Journal of Hydrology, 322(1–4), 168–180. 481 

https://doi.org/10.1016/j.jhydrol.2005.02.032 482 

McDermott, T. K. J. (2022). Global exposure to flood risk and poverty. Nature Communications, 483 

13(1), 6–8. https://doi.org/10.1038/s41467-022-30725-6 484 

Mejía, A., Daly, E., Rossel, F., Javanovic, T., & Gironás, J. (2014). A stochastic model of 485 

streamflow for urbanized basins. Water Resources Research, 50, 1984–2001. 486 

https://doi.org/10.1002/2013WR014834 487 

Merz, B., Basso, S., Fischer, S., Lun, D., Blöschl, G., Merz, R., et al. (2022). Understanding 488 

heavy tails of flood peak distributions. Water Resources Research, 1–37. 489 

https://doi.org/10.1029/2021wr030506 490 

Merz, B., Blöschl, G., Vorogushyn, S., Dottori, F., Aerts, J. C. J. H., Bates, P., et al. (2021). 491 

Causes, impacts and patterns of disastrous river floods. Nature Reviews Earth and 492 

Environment, 2(9), 592–609. https://doi.org/10.1038/s43017-021-00195-3 493 

Merz, R., & Blöschl, G. (2009). Process controls on the statistical flood moments - a data based 494 

analysis. Hydrological Processes, 23(5), 675–696. https://doi.org/10.1002/hyp 495 

Morrison, J. E., & Smith, J. A. (2002). Stochastic modeling of flood peaks using the generalized 496 

extreme value distribution. Water Resources Research, 38(12), 41-1-41–12. 497 

https://doi.org/10.1029/2001wr000502 498 

Müller, M. F., Dralle, D. N., & Thompson, S. E. (2014). Analytical model for flow duration 499 

curves in seasonally dry climates. Water Resources Research, 50, 5510–5531. 500 

https://doi.org/10.1002/2014WR015301 501 

Müller, M. F., Roche, K. R., & Dralle, D. N. (2021). Catchment processes can amplify the effect 502 

of increasing rainfall variability. Environmental Research Letters, 16(8). 503 

https://doi.org/10.1088/1748-9326/ac153e 504 

Mutzner, R., Bertuzzo, E., Tarolli, P., Weijs, S. V., Nicotina, L., Ceola, S., et al. (2013). 505 

Geomorphic signatures on Brutsaert base flow recession analysis. Water Resources 506 

Research, 49(9), 5462–5472. https://doi.org/10.1002/wrcr.20417 507 



manuscript submitted to Geophysical Research Letters 

 

Nerantzaki, S. D., & Papalexiou, S. M. (2019). Tails of extremes: Advancing a graphical method 508 

and harnessing big data to assess precipitation extremes. Advances in Water Resources, 134. 509 

https://doi.org/10.1016/j.advwatres.2019.103448 510 

Papalexiou, S. M., Koutsoyiannis, D., & Makropoulos, C. (2013). How extreme is extreme? An 511 

assessment of daily rainfall distribution tails. Hydrology and Earth System Sciences, 17(2), 512 

851–862. https://doi.org/10.5194/hess-17-851-2013 513 

Papalexiou, S. M., & Koutsoyiannis, D. (2013). Battle of extreme value distributions : A global 514 

survey on extreme daily rainfall. Water Resources Research, 49(1), 187–201. 515 

https://doi.org/10.1029/2012WR012557 516 

Porporato, A., Daly, E., & Rodriguez-Iturbe, I. (2004). Soil water balance and ecosystem 517 

response to climate change. American Naturalist, 164(5), 625–632. 518 

https://doi.org/10.1086/424970 519 

Pumo, D., Viola, F., La Loggia, G., & Noto, L. V. (2014). Annual flow duration curves 520 

assessment in ephemeral small basins. Journal of Hydrology, 519(PA), 258–270. 521 

https://doi.org/10.1016/j.jhydrol.2014.07.024 522 

Rajah, K., O’Leary, T., Turner, A., Petrakis, G., Leonard, M., & Westra, S. (2014). Changes to 523 

the temporal distribution of daily precipitation. Geophysical Research Letters, 41(24), 524 

8887–8894. https://doi.org/10.1002/2014GL062156 525 

Rentschler, J., Salhab, M., & Jafino, B. A. (2022). Flood exposure and poverty in 188 countries. 526 

Nature Communications, 13(1), 3527. https://doi.org/10.1038/s41467-022-30727-4 527 

Resnick, S. I. (2007). Heavy‐Tail Phenomena: Probabilistic and Statistical Modeling. New 528 

York: Springer US. 529 

Santos, A. C., Portela, M. M., Rinaldo, A., & Schaefli, B. (2018). Analytical flow duration 530 

curves for summer streamflow in Switzerland. Hydrology and Earth System Sciences, 22(4), 531 

2377–2389. https://doi.org/10.5194/hess-22-2377-2018 532 

Sartori, M., & Schiavo, S. (2015). Connected we stand: A network perspective on trade and 533 

global food security. Food Policy, 57, 114–127. 534 

https://doi.org/https://doi.org/10.1016/j.foodpol.2015.10.004 535 

Schaefli, B., Rinaldo, A., & Botter, G. (2013). Analytic probability distributions for snow-536 

dominated streamflow. Water Resources Research, 49(5), 2701–2713. 537 

https://doi.org/10.1002/wrcr.20234 538 

Smith, J. A., Cox, A. A., Baeck, M. L., Yang, L., & Bates, P. (2018). Strange Floods: The Upper 539 

Tail of Flood Peaks in the United States. Water Resources Research, 54(9), 6510–6542. 540 

https://doi.org/10.1029/2018WR022539 541 



manuscript submitted to Geophysical Research Letters 

 

Székely, G. J., Rizzo, M. L., & Bakirov, N. K. (2007). Measuring and testing dependence by 542 

correlation of distances. Annals of Statistics, 35(6), 2769–2794. 543 

https://doi.org/10.1214/009053607000000505 544 

Tarasova, L., Basso, S., & Merz, R. (2020). Transformation of Generation Processes From Small 545 

Runoff Events to Large Floods. Geophysical Research Letters, 47(22). 546 

https://doi.org/10.1029/2020GL090547 547 

Tashie, A., Pavelsky, T., & Band, L. E. (2020). An Empirical Reevaluation of Streamflow 548 

Recession Analysis at the Continental Scale. Water Resources Research, 56(1), 1–18. 549 

https://doi.org/10.1029/2019WR025448 550 

Tashie, A., Pavelsky, T., & Emanuel, R. E. (2020). Spatial and Temporal Patterns in Baseflow 551 

Recession in the Continental United States. Water Resources Research, 56(3), 1–18. 552 

https://doi.org/10.1029/2019WR026425 553 

Tashie, A., Scaife, C. I., & Band, L. E. (2019). Transpiration and subsurface controls of 554 

streamflow recession characteristics. Hydrological Processes, 33(19), 2561–2575. 555 

https://doi.org/10.1002/hyp.13530 556 

Vázquez, A., Oliveira, J. G., Dezsö, Z., Goh, K. Il, Kondor, I., & Barabási, A. L. (2006). 557 

Modeling bursts and heavy tails in human dynamics. Physical Review E - Statistical, 558 

Nonlinear, and Soft Matter Physics, 73(3), 1–19. 559 

https://doi.org/10.1103/PhysRevE.73.036127 560 

Villarini, G., & Smith, J. A. (2010). Flood peak distributions for the eastern United States. Water 561 

Resources Research, 46(6), 1–17. https://doi.org/10.1029/2009WR008395 562 

Villarini, G., Smith, J. A., Baeck, M. L., Marchok, T., & Vecchi, G. A. (2011). Characterization 563 

of rainfall distribution and flooding associated with U.S. landfalling tropical cyclones: 564 

Analyses of Hurricanes Frances, Ivan, and Jeanne (2004). Journal of Geophysical Research 565 

Atmospheres, 116(23). https://doi.org/10.1029/2011JD016175 566 

Wang, H., Merz, R., Yang, S., Tarasova, L., & Basso, S. (2022). Emergence of heavy tails in 567 

streamflow distributions: the role of spatial rainfall variability. Advances in Water 568 

Resources Journal, 171(104359). https://doi.org/10.1016/j.advwatres.2022.104359 569 

Wietzke, L. M., Merz, B., Gerlitz, L., Kreibich, H., Guse, B., Castellarin, A., & Vorogushyn, S. 570 

(2020). Comparative analysis of scalar upper tail indicators. Hydrological Sciences Journal, 571 

65(10), 1625–1639. https://doi.org/10.1080/02626667.2020.1769104 572 

Zorzetto, E., Botter, G., & Marani, M. (2016). On the emergence of rainfall extremes from 573 

ordinary events. Geophysical Research Letters, 43(15), 8076–8082. 574 

https://doi.org/10.1002/2016GL069445 575 

 576 



supporting information submitted to Geophysical Research Letters 

 

1 

 

 

Geophysical Research Letters 

Supporting Information for 

A hydrogeomorphological index of heavy-tailed flood behavior 

H. -J. Wang1, R. Merz1,2, S. Yang3, and S. Basso1,4 

1Department of Catchment Hydrology, Helmholtz Centre for Environmental Research – UFZ, Halle (Saale), Germany, 

2Institute of Geosciences and Geography, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany, 

3Department of Aquatic Ecosystem Analysis, Helmholtz Centre for Environmental Research – UFZ, Magdeburg, 

Germany 

4Norwegian Institute for Water Research (NIVA), Oslo, Norway 

 

 

 

Contents of this file  

 
Text S1 to S2 

Figures S1 

 

Introduction  

This supporting information contains two supplementary methods and one figure. Text S1 is 
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S1 is a reference map of the analyzed basins. 
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Text S1. Identifying tail behavior for distributions of peak flows and flow maxima from 
hydrological dynamics 

The probability distribution of ordinary peak flows (i.e., local flow peaks generated by 

streamflow-producing rainfall events (Zorzetto et al., 2016)) and flow maxima (i.e. maximum 
values in a specified time frame) can be analytically expressed as 𝑝𝑗(𝑞) and 𝑝𝑀(𝑞), respectively 

(Basso et al., 2016): 

𝑝𝑗(𝑞) = 𝐶2 ⋅ 𝑞1−𝑎 ⋅ 𝑒
−

𝑞2−𝑎

𝛼𝐾(2−𝑎) ⋅ 𝑒
𝑞1−𝑎

𝐾(1−𝑎) 

( S1 ) 

𝑝𝑀(𝑞) = 𝑝𝑗(𝑞) ⋅ λτ ⋅ 𝑒−λτ⋅𝐷𝑗(𝑞), 𝐷𝑗(𝑞) = ∫ 𝑝𝑗(𝑞)
∞

𝑞

𝑑𝑞 

( S2 ) 

where  𝜏[𝑑𝑎𝑦] is the duration of the specified time frame, 𝐶2 is normalization constants, and all 
the other notations have been listed in the main context. 

To analyze the tail behavior of these distributions, we take the limit of 𝑞 ⟶ +∞  for both 

Equations S1 and S2. Because lim
𝑞→∞

𝐷𝑗(𝑞) = ∫ 𝑝𝑗(𝑞)
∞

∞
𝑑𝑞 = 0, the Equations S1 and S2 can 

be transformed into: (set 𝐶3 = λτ𝐶2) 

 

lim
𝑞→∞

𝑝𝑗(𝑞) = {𝐶2 ⋅ 𝑞1−𝑎 ⋅ 𝑒
−

𝑞2−𝑎

𝛼𝐾(2−𝑎), 1 < 𝑎 < 2

𝐶2 ⋅ 𝑞1−𝑎, 𝑎 > 2
 

( S3 ) 

lim
𝑞→∞

𝑝𝑀(𝑞) = {𝐶3 ⋅ 𝑞1−𝑎 ⋅ 𝑒
−

𝑞2−𝑎

𝛼𝐾(2−𝑎), 1 < 𝑎 < 2

𝐶3 ⋅ 𝑞1−𝑎, 𝑎 > 2
 

( S4 ) 

For both of the cases, the tail behavior is determined by a power law term and an exponential 

term when 1 < 𝑎 < 2, which indicates the tail decreases slower than the exponential but faster 

than the power law tail; while the tail behavior is solely determined by a power law function, 

representing heavy-tailed flow distribution when 𝑎 > 2. Therefore, the hydrograph recession 
exponent (𝑎 > 2) is shown as an indicator of the heavy-tailed flood behavior. 
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Text S2. Testing the power law hypothesis 

Every empirical data distribution can be fitted by a power law model no matter what is the true 
distribution from which the data is drawn. To identify case studies for which the power law is a 

plausible distribution of the observed data, we test the power law hypothesis by means of the 
method of Clauset et al. (2009), which statistically confirms whether the power law distribution 
fitted on the empirical data provides a reliable description of those data. We compute this 
goodness-of-fit framework via the function test_pl in the python package plfit 1.0.3 

(https://pypi.org/project/plfit/). 

The challenge here is to discern the errors caused by the sampling randomness from those 
arising because the data might be actually drawn from another distribution rather than the 

power law. The principle of the approach is to first measure the error distance 𝜀𝑑  between the 
empirical data and the optimized power law model, which is the distance need to be tested. 

Secondly, we generate a number of synthetic data samples by randomly sampling from the 
optimized power law model. The error distance 𝜀𝑠  between the synthetic data and the 

optimized power law model is measured, indicating the fluctuation caused by randomness only. 
A power law hypothesis is accepted if 𝜀𝑑 < 𝜀𝑠  but rejected if 𝜀𝑑 > 𝜀𝑠.  

However, it is possible that non-power-law empirical data also has a smaller 𝜀𝑑  than 𝜀𝑠 . To 
address this issue, a great number 𝑛 of iterations via the Monte-Carlo test for this approach is 

needed. 

The Kolmogorov-Smirnov statistic is used to measure the error distance with 𝑛 = 1000 (as 

suggested by Clauset et al. (2009)). In the meanwhile, the 𝑝-value is defined as the frequency of 

𝜀𝑠 > 𝜀𝑑. The power law hypothesis is ruled out if 𝑝 ≤ 0.1 whereas it is confirmed as plausible if 

𝑝 > 0.1. We, therefore, term all the qualified cases (i.e., 𝑝 > 0.1) ‘confirmed heavy-tailed cases’ 
to indicate their empirical power law distributions are convincingly supported by the data, 

whereas the others are not.  

It is worth mentioning that, statistically, we cannot say those who does not qualify ‘are not’ 

power law distributions. There are at least two potential reasons for this result: (1) they are 
indeed not power law functions, or (2) The empirical data do not represent well the actual 
underlying distribution, often due to small sample sizes.  
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Figure S1. A reference map of 98 streamflow gauges across Germany. These river basins 

encompass a variety of climate and physiographic settings, without strong impact from snow 
dynamics. Their areas range from 110 to 23,843 km2 with a median value of 1,195 km2. The 
minimum, median, and maximum lengths of the daily streamflow records are 35, 58, and 63 

years (inbetween 1951 – 2013). 


