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Abstract

The pore structure of marine sediments varies with the distribution of gas-hydrate, hence affecting the gas-water permeability.

CT image is a conventional approach to view the internal structure, while for hydrate-bearing sediment investigation, rather

poor resolution of obtained image has limited the accuracy of the analysis. Recently, super-resolution (SR) reconstruction

techniques have been used to enhance the spatial resolution of CT images with varying degrees of improvement. Typical Image

Pairs-Based SR (PSR) methods require higher resolution matching images for training, which is challenging for hydrate samples

in dynamic temperature and pressure conditions. Here, we introduced a self-supervised learning (SLSR) method that only relies

on a single input image to complete the process of training and reconstruction. We conducted a complete training to establish

an end-to-end network consisting of two sub-networks, an SR network and a downscaling network. Self-built datasets from

three hydrate samples with different sediment grains were trained and tested. Compared with the typical method, the SR

results show that our method provides higher resolution while improving clarity. Moreover, in the subsequent calculation of

porosity parameters, it has the highest consistency with the liquid saturation method. This study contributes to investigating

the water seepage and energy transfer in the gas hydrate bearing sediments, which is particularly important for the exploration

and development of marine natural gas hydrate resources. The image super-resolution method established by us has also a

broad application prospect in the field of CT imaging.
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Key Points: 15 

• Further breakthrough the CT imaging limits, presenting more clear internal structure of 16 
sediment pores. 17 

• Enables super-resolution image reconstruction technique for fine structure detection in 18 
sediment pores. 19 

• The pore structure of sediments is more clearly resolved and the porosity parameters are 20 
calculated more accurately. 21 
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Abstract 23 

The pore structure of marine sediments varies with the distribution of gas-hydrate, hence 24 
affecting the gas-water permeability. CT image is a conventional approach to view the internal 25 
structure, while for hydrate-bearing sediment investigation, rather poor resolution of obtained 26 
image has limited the accuracy of the analysis. Recently, super-resolution (SR) reconstruction 27 
techniques have been used to enhance the spatial resolution of CT images with varying degrees 28 
of improvement. Typical Image Pairs-Based SR (PSR) methods require higher resolution 29 
matching images for training, which is challenging for hydrate samples in dynamic temperature 30 
and pressure conditions. Here, we introduced a self-supervised learning (SLSR) method that only 31 
relies on a single input image to complete the process of training and reconstruction. We 32 
conducted a complete training to establish an end-to-end network consisting of two sub-networks, 33 
an SR network and a downscaling network. Self-built datasets from three hydrate samples with 34 
different sediment grains were trained and tested. Compared with the typical method, the SR 35 
results show that our method provides higher resolution while improving clarity. Moreover, in 36 
the subsequent calculation of porosity parameters, it has the highest consistency with the liquid 37 
saturation method. This study contributes to investigating the water seepage and energy transfer 38 
in the gas hydrate bearing sediments, which is particularly important for the exploration and 39 
development of marine natural gas hydrate resources. The image super-resolution method 40 
established by us has also a broad application prospect in the field of CT imaging. 41 

Plain Language Summary 42 

When trying to break through the hardware limitation of X-ray images by some machine 43 
learning methods, it always requires higher resolution images for a training process. That is 44 
impossible to operate with gas hydrate samples, for it is hard to keep them stable without a low-45 
temperature and high-pressure environment. We introduced an optimized process that uses only 46 
the original images without paired higher-resolution images. We trained and tested this algorithm 47 
on actual X-ray images taken from homemade and field hydrate samples. The processed images 48 
were presented with higher resolution and higher image quality, which can give more accurate 49 
microstructure information hidden in the images. The results show that this method has broad 50 
application prospects in marine sediment microscopic detection. 51 

1 Introduction 52 

The morphology of gas hydrate in Marine sediment pores has a significant influence on 53 
the physical characteristics such as acoustic velocity, resistivity, and permeability, which largely 54 
determines the accuracy of hydrate geophysical exploration and resource evaluation (PRIEST et 55 
al., 2005; REN et al., 2010; ZHANG et al., 2020). So far, the natural gas hydrate in the pores of 56 
marine sediments is still distributed in a dispersed manner, which is invisible to the naked eye. 57 
For example, gas hydrate is mainly filled in the pores of muddy or sandy sediments of Shenhu 58 
area, South China Sea (LIU et al., 2017). X-ray micro-computed tomography (micro-CT) has 59 
been widely leveraged to explore microscopic hydrate-bearing sediments since it can visually 60 
present the microstructure characteristics and phase changes of different components without 61 
destroying samples. The researchers leverage advances in micro-CT image acquisition and 62 
analysis techniques to create 3D digital images of gas hydrate samples, which are used for 63 
computational modeling and simulations to calculate physical property parameters of interest, 64 
such as saturation, porosity, and permeability (Wang et al., 2018). However, the accuracy of 65 
calculated parameters is crucially dependent on the quality of digital images, which is currently 66 
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limited by the resolution of the micro-CT scanning technology. High-resolution data, however, 67 
results in a small field of view (FOV), and thus a trade-off between image FOV and image 68 
resolution is made (Wildenschild & Sheppard, 2013), which leads to non-representative results 69 
(Li et al., 2017). Recent developments in Image Super-Resolution (SR) methods allow images of 70 
low resolution (LR) to have fine details compared to high-resolution images (HR) using deep 71 
learning, which may be an effective means to circumvent the trade-off between high resolution 72 
and FOV to assist in more accurate physical analysis. 73 

Image Super-Resolution techniques, an ill-posed and indeterminate inverse problem with 74 
an infinite solution space, reconstruct higher resolution output from the LR observation to obtain 75 
images with a resolution beyond the limit of hardware. In recent years, SR methods based on 76 
deep learning especially convolutional neural networks (CNN), have increasingly become a 77 
robust way to improve the performance of Single Image Super-Resolution (SISR) (Dong et al., 78 
2016; Kim et al., 2016; Tai et al., 2017; Ledig et al., 2017; Wang et al., 2019), which have been 79 
used in digital rock micro-CT images. Wang et al. (2019) compared SR-Resnet, Enhanced Deep 80 
SR (EDSR), and Wide-Activation Deep SR (WDSR) methods on the performance of super-81 
resolving micro-CT images of sandstone and carbonate rocks, which were trained on paired 82 
synthesized LR-HR images where the LR images were bicubically downscaled from original HR 83 
images. Hou et al. (2021) proposed a generative adversary network of an image segmentation 84 
network as a discriminator constrained by perspective information and prior information 85 
(SCPGAN) to enhance micro-CT digital rock images resolution which shows GAN based model 86 
with prior information has excellent anti-noise capacity. Janssens et al. (2020) used a generative 87 
adversarial network (GAN) to improve the CT image resolution of the reservoir and some 88 
physical parameters of the reservoir such as pore network properties and single-phase, 89 
unsaturated, and two-phase flow were compared after super-resolution. The results showed 90 
relevant small pores and pore surfaces are better resolved thus providing better estimates of 91 
unsaturated and two-phase flow. 92 

Note that, the SR methods mentioned above focus more on the super-resolution of synthetic 93 
images whose LR images are down-scaled from corresponding HR images, which may cause 94 
some problems in practical applications. Firstly, the mapping between downscaled images and 95 
original HR images may deviate from the realistic model, which makes state-of-the-art SR 96 
methods trained on LR-HR image pairs produced with the assumption suffer from significant 97 
performance degradation. Secondly, there is a need to super-resolve the highest resolution 98 
images with the best FOV the instrument can achieve, whether it is feasible to apply the model 99 
trained based on this hypothesis to super-resolution HR images is still lack of sufficient evidence.  100 

To overcome these challenges, Real-World Image Pairs-Based methods, Domain 101 
Translation-Based methods, and Self-Supervised Learning-Based methods have been introduced. 102 
Real-World Image Pairs-Based methods directly collect the images of the same scenario with 103 
different resolutions to model the direct mapping of realistic LR-HR image pairs (Chen et al., 104 
2019; Zhang et al., 2019; Cai et al., 2019). However, it is difficult to get completely matched 105 
LR-HR image pairs in the real world while misalignment may cause blur artifacts. And in the 106 
field of gas-bearing hydrate, whose formation and decomposition process may cause a great 107 
challenge to collect the realistic LR-HR image pairs. As it is hard to obtain datasets with well-108 
aligned LR-HR image pairs, the Domain Translation-Based methods translate texture from a 109 
high-resolution domain to a low-resolution domain without one-to-one correspondence between 110 
LR and HR images (Yuan et al., 2018; Kim et al., 2020; You et al., 2020). The Domain 111 
Translation-Based methods use Cycle-Consistent Adversarial Networks (Cycle-GAN), based on 112 
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Unpaired image-to-image Translation. (Zhu et al., 2017). Niu et al (2021). used paired and 113 
unpaired micro-CT images of a carbonate rock sample with complicated micro-porous textures 114 
to train a convolutional neural network (CNN) and Cycle-GAN respectively, whose quantitative 115 
results show that the unpaired GAN approach can reconstruct super-resolution images as precise 116 
as paired CNN method. Chen et al. (2020) proposed a cycle-consistent generative adversarial 117 
network (Cycle-GAN)-based SR approach for real-world rock micro-CT images super-resolution, 118 
which is trained on a set of unpaired rock images at different resolutions. The experimental 119 
results showed great consistency with the targets in terms of both the visual quality and the 120 
statistical parameters such as the porosity, the lineal-path function, and the pore size distribution. 121 
Niu et al. applied a cycle-in-cycle generative adversarial network (CinCGAN) using unpaired 122 
training images to improve the resolution of 3-D micro-CT data, which results demonstrated that 123 
CinCGAN provides physically accurate images with an order of magnitude larger field of view 124 
when compared to other typical methods (Yuan et al., 2018; Niu et al., 2020). 125 

As most existing SISR methods use external datasets such as paired or unpaired training 126 
data to train SR models, Self-Supervise Learning-Based methods were proposed to exploit the 127 
internal information of the single specific LR input. KernelGAN (Bell-Kligler et al., 2019) 128 
estimates a downscaling kernel for the blind SR based on internal learning, which can be plugged 129 
into the reconstruction module ZSSR (Shocher et al., 2018) to enhance performance. DBPI (Kim 130 
et al., 2020) and DualSR (Emad et al., 2021) assumed that the SR network not only depends on 131 
the estimated kernel but also can improve downscaling kernel estimation, which trained the 132 
downscaling kernel along with kernel estimation network and SR network. As Self-Supervise 133 
Learning-Based methods train on a single input image, which only utilizes the internal 134 
information of LR input while a great deal of external information is neglected because online 135 
training with time-consuming. The application of self-supervised learning for super-resolving the 136 
micro-CT images in the field of the digital core has not been reported yet. 137 

In this work, the DRRN, SRDenseNet, DualSR, DBPI and the improved DBPI methods 138 
were used to enhance the resolution of gas hydrate micro-CT images which were collected in the 139 
laboratory. The DRNN and SRDenseNet methods were trained on paired synthesized LR-HR 140 
images where the LR images were bicubically downscaled from original HR images which is the 141 
same as those approaches used in this field before. The DualSR and DBPI methods are based on 142 
self-supervised learning which reconstruct SR images from a single input image. And the 143 
improved DBPI method combines the advances of self-supervised learning and Image Pairs-144 
Based method. The SR results show that compared with Image Pairs-Based methods, self-145 
supervised learning methods can obtain CT images with higher resolution and contrast, however, 146 
it is greatly affected by image noise, leading to a large change degree of gray value near the 147 
center of sand component in CT image before and after reconstruction. In order to overcome the 148 
above defects, we improved the DBPI method that performs best previously, which further 149 
improved the sharpness and contrast of the image while alleviating the above symptoms. After 150 
that, the watershed image segmentation algorithm was used to segment the pores and skeletons 151 
in the original CT image, the bicubic interpolation image, the results obtained by DBPI and the 152 
results obtained by the improved DBPI. Finally, the porosity parameter was calculated based on 153 
the segmentation results, and the mean porosity of the result of the improved DBPI closest to the 154 
that measured by the saturated liquid weighing method. The results show that the improved 155 
DBPI method can help to distinguish the porosity and skeleton better, so as to calculate more 156 
accurate porosity parameters. 157 
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2 Materials and Methods 158 

The basic model of SISR follows equation 1, which assumes that the low-resolution input 159 
image 𝐼  is the result of downscaling a high-resolution image 𝐼  by a scaling factor 𝑠 using 160 
some kernel 𝑘  and with an additional blur factor 𝑛 : 161 

  𝐼 = (𝐼 ∗ 𝑘 ) ↓ + 𝑛, (1) 162 

where * and ↓  represent the convolution and the subsampling with a scale factor of 𝑠 163 
respectively. Image Pairs-Based SR (PSR) methods and Self-Supervised Learning-Based SR 164 
(SLSR) methods were used to enhance the resolution of micro-CT images for a comparison. 165 

2.1 SISR by PSR 166 

PSR methods assume that 𝑘  is a Gaussian Kernel which usually is a bicubic 167 
downscaling kernel with antialiasing, and learn the direct mapping of paired LR-HR images to 168 
reconstruct high-resolution images from low-resolution images which were bicubically 169 
downscaled from HR images.  170 

2.1.1 DRRN-PSR 171 

The DRRN-PSR structure (Figure 1) used in this study is inspired by Tai et al. (2017). 172 
DRRN-PSR has two substructures: the residual unit and the recursive block. The residual unit 173 
contains two convolutional layers of kernel size 3 with rectified linear units (ReLU) activation 174 
function and each convolutional layer applies 64 filters. The recursive block contains a 175 
convolutional layer in the beginning, and then several residual units are stacked at the behind of 176 
the first layer. The recursive block number B and the residual unit number U in each recursive 177 
block are the two key parameters in DRRN-PSR. The network structure of DRRN-PSR with 𝐵=2 178 
and 𝑈=9 was designed to super-resolve the micro-CT images in our implementation, the whole 179 
structure of our implementation of DRRN-PSR is shown in Figure 1. 180 

Given a training set {X( ), X( )} , where N is the number of training patches and X( ) is 181 
the ground truth HR patch of the LR patch X( ), the loss function with parameter set Θ of DRRN-182 
PSR is 183 

 ℒ(Θ) = (X( ) − 𝒟(X( ))) . (1) 184 
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 185 
Figure 1.  The whole structure of our implementation of DRRN-PSR with 𝐵=2 and 𝑈=9, where B is the 186 
recursive block number and U is the residual unit number in each recursive block. “𝑘𝑘” in convolution 187 
layers represents filter size. The number of filters for each convolution layer is presented above each layer. 188 

2.1.2 SRDenseNet-PSR 189 

SRDenseNet-PSR connects each layer to every other layer in a feed-forward fashion, was 190 
proposed by Huang et al. (2018) to strengthen feature propagation, encourage feature reuse, etc. 191 
The main body of SRDenseNet-PSR contains dense blocks consisting of several dense layers. 192 
Each dense layer are convolutional layers with activation functions such as ReLU. The 𝑖  layer 193 
in each dense block receives the feature maps of all preceding layers as input: 194 

 X = ℱ [X , X , … , X ] , (2) 195 

where [X , X , … , X ]  refers to the concatenation of the feature maps produced in layers 196 0, … , 𝑖 − 1 of each dense block, ℱ is a composite function of convolution and ReLU operations. 197 
There has a skip connection after each dense block in our implementation, as shown in Figure 2, 198 
and the loss function used is the same as equation 1 in DRRN-PSR. 199 

 200 
Figure 2.  The whole structure of our implementation of SRDenseNet-PSR with eight dense blocks and each 201 
dense block has five dense layers (two color colors in the dense block). 202 
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2.2 SISR by SLSR 203 

SLSR methods train an image-specific network that learns low-to-high resolution 204 
mapping using only patches of the input test image compared to PSR methods which need plenty 205 
of paired images for training. A two-stage optimization problem is modeled in this approach, 206 
which conducts downscaling kernel estimation followed by SR network training with the 207 
estimated kernel. 208 

2.2.1 DualSR-SLSR 209 

The whole network architecture of DualSR-SLSR is shown in Figure 3(a), where the 𝐺  210 
is SR network that trains to super-resolve the input LR image, the 𝐺  is the downscaling 211 
network that estimates the downscaling kernel, and the 𝐷  is the discriminator that learns to 212 
distinguish between real (patches of the input LR image) and fake (output patches generated by 213 𝐺 ). The downscaling network, SR network, and discriminator are shown in Figure 3 (b), 214 
Figure 3 (c) and Figure 3 (d), respectively. 215 

 216 
Figure 3.  The whole network architecture of DualSR-SLSR (a) contains of the downscaling network (b), the 217 
upscaling network (c), and the discriminator (d). 218 

Figure 3(a) demonstrates the forward and backward cycles process with cycle-219 
consistence-loss which are similar to CycleGAN. In the forward cycle, the 𝐺  generates a 2x 220 
upscaled image patch, and then 𝐺  is applied and converts the upscaled image patch back to 1x. 221 
Similarly, a 1 2x downscaled version of the image patch is generated by 𝐺  and then the 𝐺  222 
upscales the image patch back to the original scale in the backward cycle. Denoting the input 223 
image patch as 𝑥 in the forward cycle and as 𝑦 in the backward cycle respectively, the cycle-224 
consistence-loss is 225 

  ℒ = 𝔼 𝐺 𝐺 (𝑥) − 𝑥 + 𝔼 𝐺 𝐺 (𝑦) − 𝑦 . (3) 226 

In order to estimate the degradation model accurately, a GAN is used to preserve the distribution 227 
of patches across scales of the input image that the output 𝐺 (𝑦) is indistinguishable by the 228 
discriminator 𝐷  from input image patches. The adversarial loss for the generator is 229 

  ℒ = 𝔼 [𝐷 𝐺 (𝑦) − 1] . (4) 230 

Then, the final loss function for training the 𝐺 , 𝐺 , and 𝐷  is 231 

  ℒ = ℒ + ℒ . (5) 232 
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2.2.2 DBPI-SLSR 233 

Similar to DualSR-SLSR, the DBPI-SLSR network has a downscaling network 𝐺 , an 234 
SR network 𝐺 , the Up-Down process (forward cycle), and the Down-Up process (backward 235 
cycle) are shown in Figure 4. In the down-up side, a patch of the input image is first downscaled 236 
by 𝐺 , and then the 𝐺  upscales the downscaled one to the original size. Then a ℒ  loss is 237 
applied to reduce the difference between the input patch 𝑥  and the output of the Down-Up 238 
process, as shown in equation 6: 239 

  ℒ =
×

𝐺 𝐺 (𝑥) − 𝑥 , (6) 240 

where m and n are the height and width of input patch 𝑥, respectively. In parallel, a patch of 241 
input image is first upscaled by 𝐺  and then 𝐺  downscales the upscaled one to generate an 242 
up-down image patch. Then, in the same manner, a ℒ  loss is applied to reduce the difference 243 
between the input patch 𝑥 and the output of the Up-Down process, as shown in equation 7: 244 

  ℒ =
×

‖𝐺 (𝐺 (𝑥)) − 𝑥‖ . (7) 245 

In the training process, ℒ  is used to train 𝐺  and ℒ  is used to train 𝐺 . The ℒ  and 246 ℒ  loss consist of the dual back-projection loss, which is 247 

  ℒ = ℒ + ℒ =
×

𝐺 𝐺 (𝑥) − 𝑥 + 𝐺 𝐺 (𝑥) − 𝑥 . (8) 248 

The blur kernel of the input image is estimated by the dual back-projection loss implicitly 249 
that is different from DualSR-SLSR which uses a GAN to estimate the blur kernel. The network 250 
of 𝐺  and 𝐺  of DBPI-SLSR are the same as the network shown in Figure3(b) and Figure 3(c) 251 
used in DualSR-SLSR. 252 

 253 
Figure 4.  The overall framework of DBPI-SLSR. The downscaling network 𝐺  and the SR network 𝐺  of 254 
DBPI are the same as the network shown in Figure3(b) and Figure 3(c). 255 

2.2.3 Our improved SLSR based on DBPI (I-DBPI) 256 

The whole framework of I-DBPI is the same as DBPI-SLSR, however, they differ in the 257 
training strategy. More intuitively, I-DBPI learns low-to-high resolution mapping using images 258 
of the whole dataset, since the feature information of CT slice images of the same sample is 259 
highly coincident. It can make up for the lack of thin feature information when Self-Supervised 260 
Learning methods use single image for training, and improve the robustness. 261 
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2.3 Performance Evaluation Criteria 262 

2.3.1 Image Similarity Metrics  263 

Peak Singal-to-Noise Ration (PSNR) and Structure Similarity Index (SSIM) are two 264 
objective evaluation metrics to measure the difference between the ground truth image and the 265 
super-resolved image, which need corresponding reference images. For a better description, let 266 
X ∈ ℝ × ×  and X ∈ ℝ × ×  denote the ground truth image and the super-resolved image 267 
where 𝐻, 𝑊, and 𝐶 are width, height, and channel numbers of the image respectively. 268 

(1) PSNR. PSNR is the most widely used full-reference objective quality assessment 269 
metric for image super-resolution, which is more concerned with the proximity between X and X. 270 
Given X and X, the PSNR can be calculated by equation 9: 271 

  𝑃𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔 , (9) 272 

where 𝐿 denotes the maximum pixel value (i.e., 255 for 8-bit images) and MSE is the mean 273 
square error between X and X. 274 

(2) SSIM. SSIM is a full-reference objective quality assessment metric that measures 275 
structural similarity between X  and X . More specifically, SSIM compares the luminance, 276 
contrast, and structure between X and X. SSIM is defined as 277 

  𝑆𝑆𝐼𝑀 = [𝑙 X, X ] [𝑐 X, X ] [𝑠 X, X ] . (10) 278 

Further, equation 11 can be simplified when 𝛼 = 𝛽 = 𝛾 = 1 and 𝐶 =  as 279 

  𝑆𝑆𝐼𝑀 = ( X X )( X X )( X X )( X X ). (11) 280 

2.3.2 Image Clarity Metrics 281 

In this paper, we need to evaluate the image quality when super-resolving the original 282 
micro-CT images which have no reference images to calculate the PNSR and SSIM indicators. 283 
Since image clarity is an important indicator in the quality evaluation of non-reference images 284 
which corresponds better with the subjective feelings of people’s eyes, the SMD (Sum of Mean 285 
Modulus Difference) is used to quantitatively evaluate the images super-resolved on the original 286 
images. The SMD is the sum of the absolute value of the gray difference of the adjacent pixels, 287 
which is defined as: 288 

  𝑆𝑀𝐷 = ∑ ∑ (|𝐼(𝑖, 𝑗) − 𝐼(𝑖, 𝑗 − 1)| + |𝐼(𝑖, 𝑗) − 𝑓𝐼(𝑖 + 1, 𝑗)|), (12) 289 

where 𝑖 and 𝑗 is the width and height index of the input image, respectively, and 𝐼(𝑖, 𝑗) denotes 290 
the pixel value. 291 

 292 
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2.4 Datasets and Training Details 293 

2.4.1 Datasets 294 

Three self-built datasets from three hydrate samples were shuffled and split 8:1:1 into 295 
training, validation, and testing sets in this study. The three datasets are S1, S2, and S3, as the 296 
porosity decreases progressively. They were described in detail as follows:  297 

S1. Quartz sand_Hyd. This dataset contains 800 HR micro-CT images of gas hydrate-298 
bearing quartz sand. The sample is prepared manually in the laboratory and contains four 299 
components, methane gas, hydrate, water and quartz sand. The grain size of quartz sand ranges 300 
from 500-700 μm. Each image has a spatial resolution of 18 μm and a size of 510510. 301 

S2. Berea Sandstone_Hyd. This dataset contains 520 HR micro-CT images of gas 302 
hydrate-bearing Berea sandstone. The sample is also prepared manually in the laboratory and 303 
contains four components, methane gas, hydrate, water and Berea sandstone. The grain size 304 
range of Berea sandstone is 150-240um. Each image has a spatial resolution of 16.5 μm and a 305 
size of 450450. 306 

S3. South China Sea sediment_Hyd. This dataset contains 250 HR micro-CT images of 307 
gas hydrate-bearing sediment from the South China Sea. There are four components in the 308 
image, gas, hydrate, water and sediment. The South China Sea sediment contains foraminiferal 309 
shells with coarse particles and clay with fine particles, so its particle size range is large, ranging 310 
from 0.02-2000 μm. In addition to argillaceous matrix, there are a small amount of sand and 311 
foraminifera shells in the sediments. Each image has a spatial resolution of 18 μm and a size of 312 
450450. 313 

Figure 5 presents some images of the three datasets mentioned above. From a perspective 314 
of pore morphology and image characteristics, the samples differ significantly. 315 

 316 
Figure 5.  Visualization of images in the proposed datasets S1 : Quartz sand_Hyd (left), S2 : South China Sea 317 
sediment_Hyd (middle), and S3 : Berea Sandstone_Hyd (right). 318 

2.4.2 Training Details 319 

While the DRRN-PSR and SRDenseNet-PSR need paired LR-HR images for training, 320 
however, the proposed datasets only contain HR images. Thus, the LR datasets were prepared 321 
using images bicubically downscaled from the corresponding HR images. For data 322 
augmentation, we crop images to 6464 size and 3232 size for the HR and LR training 323 
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datasets, respectively. The DRRN-PSR and SRDenseNet-PSR were trained using ADAM 324 
optimizer with initial learning rate of 0.0001 for 150 iterations, and the batch size is set to 128. 325 

By contrast, the DualSR-SLSR and DBPI-SLSR were trained for every single input 326 
image. For the former, the generators and the discriminator were trained successively, a batch of 327 
6464 and 128128 batches (patches 𝑥 and 𝑦 in Figure 3) were sampled from the input image 328 
for each iteration. The networks 𝐺 , 𝐺 , 𝐷  were trained for 3000 iterations with ADAM 329 
optimizer. The initial learning rate is 0.001 for 𝐺  and 0.0002 for 𝐺  and 𝐷 , and the 330 
learning rate was divided by 10 for every 750 iterations. For the latter, a patch of size 6464 331 
was sampled from the given image to train the downscaling and upscaling networks successively 332 
for each iteration. The networks 𝐺  and 𝐺  were trained with ADAM optimizer for 3000 333 
iterations. The initial learning rate is 0.0001 for both 𝐺  and 𝐷 , and the learning rate was 334 
divided by 10 for every 750 iterations. The final super-resolved image is obtained by running the 335 
trained upscaling network on the input image. 336 

For I-DBPI, a patch of size 64×64 was sampled from all images of each dataset to train 337 
the downscaling and upscaling networks successively for each iteration. The networks 𝐺  and 338 𝐺  were trained with ADAM optimizer for around 60000 iterations that larger than 3000 339 
iterations in DBPI. The initial learning rate is 0.0001 for both 𝐺  and 𝐷 , and the learning rate 340 
was divided by 10 for every 750 iterations. 341 

We use PyTorch for training and testing on an NVIDIA TITAN RTX GPU for these SR 342 
methods mentioned above. 343 

3 Results 344 

3.1 Experiments on Synthesized LR Micro-CT Images for 2 SR 345 

The present study was designed to determine the SR methods’ effectiveness on micro-CT 346 
images through conducting super-resolution experiment on synthesized LR micro-CT images 347 
that were bicubically downscaled from the proposed three datasets for 2 super-resolution. Both 348 
quantitative and qualitative evaluation between the SR micro-CT images and the corresponding 349 
ground truth images can be performed in this experiment, as each synthesized LR micro-CT 350 
image has its HR counterpart.  351 

 352 

Tabel 1.  Quantitative results (PSNR / SSIM / SMD) for 2 SR of different methods on synthesized LR 353 
micro-CT images of the proposed three datasets. 354 

Method S1 S2 S3 

Bicubic 33.10 / 0.9739 / 13.07 32.92 / 0.9789 / 11.40 33.66 / 0.9683 / 6.47 

DRRN-PSR 35.94 / 0.9877 / 13.90 35.37 / 0.9849 / 10.94 34.92 / 0.9838 / 6.65 

SRDenseNet-PSR 36.77 / 0.9913 / 13.94 36.77 / 0.9897 / 11.83 35.31 / 0.9862 / 6.50 

DualSR-SLSR 22.12 / 0.8210 / 27.07 26.80 / 0.8453 / 22.55 30.67 / 0.9186 / 10.16 

DBPI-SLSR 24.99 / 0.8000 / *27.62 23.64 / 0.7493 / *29.87 25.75 / 0.7687 / *14.76 
* represents the best performance. 355 



manuscript submitted to Water Resources Research 

 

Table 1 summarizes the quantitative results (PSNR / SSIM / SMD) for 2 SR on the 356 
synthesized LR micro-CT images of the proposed three datasets S1, S2, and S3. According to 357 
Table 1, the PSR methods achieve much better PSNR / SSIM than the SLSR methods, and 358 
SRDenseNet-PSR performs the best. By contrast, the SLSR methods achieve much better SMD, 359 
among which DBPI-SLSR achieves the best. A possible explanation is that the PSNR and SSIM 360 
are used to quantify the similarity between the SR images and the ground truth images, and the 361 
PSR methods were trained with multiple paired LR-HR images, thus results in better PSNR and 362 
SSIM. In comparison, the SLSR methods consider the information from the image itself, thus 363 
results in much sharper images with better SMD. 364 

 365 
Figure 6.  Zoom-in visual comparison for 2 SR on synthesized LR micro-CT images (2 downscaling from 366 
the GT) by different SR methods. The images in every other rows are an enlargement of the red box of the 367 
previous row. The numbers in the right of different SR methods are the resolution of images and the below are 368 
PSNR, SSIM and SMD, respectively. (GT: Ground Truth Image) 369 
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The qualitative comparison of different SR methods is shown in Figure 6. It can be seen 370 
that the ground truth images are visually blurry, although the ground truth images in our 371 
proposed datasets have the best resolution which consider the balance between FOV and 372 
resolution. Although the PSR methods tend to achieve comparable visual quality with the ground 373 
truth images, however, the performance are limited by the quality of the ground truth images 374 
because of the direct mapping learning between the LR-HR images. By contrast, the SLSR 375 
methods produce much clearer and sharper results which are not limited to the ground truth 376 
images. Furthermore, the SLSR methods enhance the resolution using only the input information 377 
of the image itself, no additional fake information would be introduced by contrast to GAN. This 378 
benefits us to find more realistic details from the super-resolved micro-CT images and will be 379 
helpful to the construction of super-resolution digital core, the accurate image segmentation, and 380 
the accurate calculation of physical property parameters. 381 

3.2 Experiments on HR Micro-CT Images for 2 SR 382 

The results above have demonstrated the effectiveness of the SLSR methods on micro-383 
CT images super-resolution. Since our goal is to get higher resolution images beyond the HR 384 
images (HR-SR), we need to apply super-resolution on the actually obtained HR micro-CT 385 
images, these SR methods mentioned above were also carried out on the HR micro-CT images. 386 
The model parameters of DRRN-PSR and SRDenseNet-PSR used in this experiment are the 387 
same as those in section 3.1.  388 

The quantitative and qualitative comparison of different SR methods for 2 super-389 
resolution on the actually obtained HR micro-CT images in our proposed three datasets are 390 
shown in Figure 7 and Figure 8, respectively. As shown in Figure 7, only the SMD is used in that 391 
the SR results have no counterpart higher resolution images to measure the performance of both 392 
PSNR and SSIM. In Figure 7, an intuitive comparison of the SMD performance of different SR 393 
methods on test sets of the three datasets are illustrated in each graph. In all graphics, the much 394 
higher SMD values were achieved by SLSR methods and among them the DBPI-SLSR did the 395 
best. 396 

 397 
Figure 7.  SMD comparison for 2 SR on the actually obtained HR micro-CT images in Quartz sand_Hyd(S1) 398 
(a), Berea Sandstone_Hyd(S2) (b), South China Sea sediment_Hyd(S3) (c). by different SR methods. 399 

Looking at Figure 8, it is apparent that the SLSR methods created much clearer and 400 
sharper images compared to not only the results of both bicubic interpolation and PSR methods, 401 
but also the actually obtained HR images. Internal feature information was extracted by self-402 
supervised learning to make up the missing details for the magnified image, in that improves 403 
image contrast while enhancing the resolution. However, one unexpected problem that emerged 404 
from the results was that the noise of CT images was enlarged as well, especially in the hydrate 405 
samples with lower grain size. One issue is the gray values near the center of sands are much 406 
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lower than the edge region as shown in the enlargement images in the last two rows of Figure 8. 407 
A possible explanation for this might be that the instrumental noise that resulted in the lower 408 
gray values near the center than the edge region. Limited by image resolution, it is difficult to 409 
find this phenomenon, however, it becomes apparent as image resolution increases. This 410 
phenomenon can be more easily found in the results of bicubic interpolation and PSR methods, 411 
and was more obvious in the results of SLSR methods, which shows self-supervised learning can 412 
explore more image details in comparison. In accordance with the present results, although self-413 
supervised learning amplifiers noise, previous studies have demonstrated that it can produce 414 
clearer and sharper results even on the actually obtained HR micro-CT images. However, 415 
additional uncertainty arises from the results that the great gray scale difference of sands 416 
components may affects the accuracy of image segmentation and physical property parameter 417 
calculation. Therefore, in order to attenuate the noise effects in further study, we do efforts to 418 
make some improvements based on DBPI-SLSR methods to make better results. 419 
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 420 

Figure 8.  Zoom in visual comparison for 2 SR on the actually obtained HR micro-CT images. The images in 421 
every other rows are an enlargement of the red box of the previous row. The numbers in the right of different 422 
SR methods are the resolution of images and the below is SMD values. 423 

3.3 Results of I-DBPI for 2 SR on HR Micro-CT Images 424 

The results obtained from the previous experiments show that the self-supervised 425 
learning has ability to produce high quality images while enhancing the resolution by training on 426 
a single input image compared to the PSR methods, however, affects by image noise. In order to 427 
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create better results, some improvements were made based on the DBPI-SLSR that performed 428 
the best in previous experiments. The yields from the I-DBPI were compared with the DBPI-429 
SLSR on S2 and S3 in the aspect of quantitative and qualitative which shown in Figure 9 and 430 
Figure 10, respectively.  431 

Figure 10 compares the image quality which is our primary concern. As shown in the 432 
enlargement images of the red box in Figure 10, the gray values of sand components in the result 433 
of the I-DBPI change smoothly and the gray range is almost the same as the original image 434 
comparing with the unsatisfactory results of the DBPI-SLSR. In addition, the contrast and 435 
sharpness of images are further enhanced by the I-DBPI, which can not only be seen intuitively 436 
from the image, but also from the distribution of SMD in Figure 9 in which the mean SMD of the 437 
I-DBPI are higher than the DBPI-SLSR in those two datasets. Moreover, the dispersion degree of 438 
SMD decreases after the improvement, indicating that the improved method is more stable and 439 
precise. Why does the improved approach work better, one passible explain is that the self-440 
supervised learning can learn much more feature information from a large amount of data than 441 
from only one image, which can help recover more image details and make distribution stable. 442 

It is worth mentioning that the process time is greatly reduced by the I-DBPI, especially 443 
when dealing with large numbers of images. More intuitively, the DBPI-SLSR method needs 444 
around two minutes to super-resolve an image of size 500  500 on an NVIDIA TITAN RTX 445 
GPU, however, the time can be shortened to two seconds for per image by I-DBPI. 446 

 447 
Figure 9.  SMD comparison for 2 SR on the actually obtained HR images in Berea Sandstone_Hyd(S2) (a), 448 
South China Sea sediment_Hyd(S3) (b). The SMD scores are achieved by DBPI-SLSR and I-DBPI. 449 

 450 
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 451 
Figure 10.  Zoom in visual comparison for 2 SR on the actually obtained HR micro-CT images. The images 452 
in every other cols are an enlargement of the red box of the first col. The numbers below the different SR 453 
methods are the resolution of images and SMD, respectively. 454 

 455 

 456 

 457 
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3.4 Porosity Comparison of Berea Sandstone_Hyd(S3) Images 458 

The previous studies have demonstrated that high quality micro-CT images can be 459 
produced by the I-DBPI. Theoretically, high quality micro-CT images will helpful to the precise 460 
image segmentation, and the accurate calculation of physical property parameters. In order to 461 
verify this, the original HR images, the result images of bicubic interpolation, DBPI-SLSR, and 462 
theI-DBPI of S3 were used to calculate the porosity for a comparison. 463 

 464 
Figure 11.  Image gray value distribution of Berea Sandstone_Hyd(S3) images by different SR methods. The 465 
curves filled with different colors are the original distribution. The dark green curve is the average of those 466 
original curves and the gray and light green curves are the fitting results of gaussian function. The gray range 467 
0-132 and 142-255 are the initial segmentation threshold of pore and skeleton. 468 

The gray value distribution of different SR methods is shown in Figure 11. However, 469 
there is no obvious trough in the gray value distribution, the watershed image segmentation 470 
algorithm is used as the segmentation threshold of pore and skeleton cannot be selected from the 471 
gray value distribution directly. In order to unify the initial threshold of watershed segmentation 472 
algorithm, all the gray value distribution were averaged firstly which is illustrated by the dark 473 
green curve in Figure 11. After that, the average distribution curve was bimodally fitted by 474 
gaussian function. The two curves obtained by the fitting are shown as gray and light green 475 
curves in Figure 11, whose intersection point is near the gray value of 140. Overall consideration, 476 
the initial segmentation threshold of pore and skeleton were set to 0-132 and 142-255 477 
respectively, and the watershed algorithm is responsible for automatically inflating the remaining 478 
regions to different boundaries. The results of watershed image segmentation show that the 479 
boundary between the pore and skeleton of the image processed by DBPI and the improved 480 
DBPI is more obvious compared with the original image and bicubic upscaling image, which 481 
leads to more accurate segmentation results. 482 

Based on the segmentation results, the porosity of 2D slices and the average porosity of 483 
3D image were calculated by Avizo numerical simulation software. The porosity distribution of 484 
2D slices is shown in Figure 12. From the figure, it can be seen that although the porosity values 485 
calculated by different methods varies greatly, the distribution trends of porosity are basically the 486 
same. Among them, the porosity distribution of the improved DBPI is more precise. Figure 13 487 
shows the 3D pore skeleton image of the Berea Sandstone Hyd sample. The average porosity of 488 
the 3D sample are 0.2814, 0.2970, 0.3363 and 0.3658 respectively, which differ widely. For a 489 
better comparison, we measured the mean porosity by the saturated liquid weighing method 490 
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which is a physical means. The porosity measured by the saturated liquid weighing method was 491 
0.3648 that is basically consistent with the result of the improved DBPI, which indicates that the 492 
improved DBPI can help to distinguish the porosity and skeleton better, so as to calculate more 493 
accurate porosity parameters. 494 

  495 
Figure 12.  Porosity distribution of 2D slices of the Berea Sandstone Hyd(S3) sample by different SR methods, 496 
and the linear lines are the fitted trend of porosity distribution (a); Difference of the porosity and its 497 
corresponding fitted lines (b). 498 
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 499 
Figure 13. The 3D pore skeleton image of the Berea Sandstone Hyd sample by different SR methods. 500 
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4 Conclusions 501 

We break through the hardware limits to enhance the resolution and enlarge the pore 502 
spatial structure of hydrate CT images by developing the Self-Supervised Learning-Based SR 503 
(SLSR) methods. Image Pairs-Based SR (PSR) methods are also used as the most useful SR 504 
means in the past. We do that by first training the PSR with synthesized LR-HR Micro-CT 505 
images and the SLSR with every single input micro-CT image based on decreased porosity 506 
hydrate CT image datasets S1, S2 and S3. The image quality of SLSR results exceed the PSR a 507 
lot on synthesized LR images (LR-HR) as well as the actually obtained HR images (HR-SR), as 508 
SLSR are not limited by the actually obtained HR images. SLSR are affected by the grain size 509 
and porosity of samples a little. Qualitative and quantitative evaluation tell us the DBPI-SLSR 510 
has the best performance on visual sense and clarity, however, it has certain limitations in terms 511 
of that it is greatly affected by image noise, leading to a large change degree of gray value near 512 
the center of the sand component in CT image before and after reconstruction. Our method 513 
trained on big datasets improved from DBPI-SLSR further improve the sharpness and contrast of 514 
the images while mitigating the above shortcomings. This research has made some efforts on the 515 
issue of exceeding the limitation of imaging systems on FOV and resolution. 516 

After that, the watershed image segmentation algorithm was used to segment the pores 517 
and skeletons in the original CT image, the bicubic interpolation image, the results obtained by 518 
DBPI-SLSR and the results obtained by the improved DBPI-SLSR. The segmentation results 519 
showed that the watershed algorithm could expand from the set threshold to the boundary 520 
between the pores and the skeleton more accurately, since the improved DBPI-SLSR increased 521 
the gray difference between the pores and the skeleton in the micro-CT images. Finally, the 522 
porosity parameter was calculated based on the segmentation results, and the mean porosity of 523 
the result of the improved DBPI-SLSR was closest to that measured by the saturated liquid 524 
weighing method. 525 

Taken together, the results of this study suggest that compared to PSR methods, the 526 
SLSR methods can promote the hydrate-bearing sediment micro-CT images qualities in 527 
resolution and clarity, which benefits accurate segmentation and calculation of physical property 528 
parameters, especially the improved DBPI-SLSR that proposed by us.  529 
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