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Abstract

Mesoscale eddies play an important role in both momentum and heat balances in the Southern Ocean. Previous studies have

documented an increasing intensity of the Southern Ocean eddy field during recent decades; however, it is still unclear whether

the mesoscale eddies with different lifetimes have different temporal variations. Using satellite altimeter observations from 1993

to 2020, we find that the increasing trend in the intensity of eddies is dominated by long-lived eddies (with lifetimes [?] 90

days), whose amplitude has increased at a rate of ˜2.8% per decade; the increase is concentrated downstream of topography.

In contrast, short-lived eddies (with lifetimes < 90 days) do not appear to have a significant trend in their amplitudes since

the early 1990s. An energy conversion analysis indicates that the increased baroclinic instabilities of the mean flows associated

with topography are responsible for the amplitude increase of the long-lived eddies.
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Key Points: 10 

• Long-lived eddies dominate the increasing intensity trend of eddies in the Southern 11 

Ocean. 12 

• The amplitude trends of the long-lived and short-lived eddies show nonuniform patterns. 13 

• The increased baroclinic instabilities of mean flows are responsible for the amplitude 14 

increase of the long-lived eddies. 15 

  16 
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Abstract 17 

Mesoscale eddies play an important role in both momentum and heat balances in the Southern 18 

Ocean. Previous studies have documented an increasing intensity of the Southern Ocean eddy 19 

field during recent decades; however, it is still unclear whether the mesoscale eddies with 20 

different lifetimes have different temporal variations. Using satellite altimeter observations from 21 

1993 to 2020, we find that the increasing trend in the intensity of eddies is dominated by long-22 

lived eddies (with lifetimes ≥ 90 days), whose amplitude has increased at a rate of ~2.8% per 23 

decade; the increase is concentrated downstream of topography. In contrast, short-lived eddies 24 

(with lifetimes < 90 days) do not appear to have a significant trend in their amplitudes since the 25 

early 1990s. An energy conversion analysis indicates that the increased baroclinic instabilities of 26 

the mean flows associated with topography are responsible for the amplitude increase of the 27 

long-lived eddies. 28 

Plain Language Summary 29 

The Southern Ocean is saturated with energetic eddies, which play a central role in modulating 30 

the ocean circulation and transporting heat, carbon, and nutrients. Much attention has been paid 31 

to the observed increasing trend in the eddy kinetic energy field in recent years; however, trends 32 

in the intensity of eddies with different lifetimes have been overlooked. Herein, the mesoscale 33 

eddies in the Southern Ocean are separated into two groups, with those with lifetimes shorter 34 

than 90 days being defined as short-lived eddies and those with lifetimes longer than 90 days 35 

being defined as long-lived eddies. Results show that the increasing intensity trend is dominated 36 

by the long-lived eddies. In contrast, the short-lived eddies do not appear to have a significant 37 

amplitude trend since the early 1990s. An energy conversion analysis indicates that the increased 38 

baroclinic instabilities of the mean flows are responsible for the amplitude increase of the long-39 

lived eddies. This study suggests that eddies with long lifetimes are more sensitive to warming in 40 

the Southern Ocean with the accompanying westerly wind strengthening, highlighting the need 41 

for better understanding the changes in eddies on separate scales instead of considering them 42 

together. 43 

 44 

 45 
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1 Introduction 46 

The Southern Ocean (SO) is a key component of the global climate system that has 47 

experienced pronounced subsurface warming alongside westerly wind strengthening in recent 48 

decades (Böning et al., 2008; Waugh et al., 2013; Shi et al., 2021). There, mesoscale eddies 49 

regulate the Antarctic circumpolar circulation (ACC) and meridional heat exchange, which 50 

further influence the transport of heat, carbon, and nutrients (Screen et al., 2009; Chelton et al., 51 

2011; Keppler & Landschützer, 2019; Friedrichs et al., 2022; Morrison et al., 2022). Primarily 52 

due to anthropogenic ocean warming and secondarily owing to wind stress strengthening, the 53 

ACC has been observed and modeled to undergo robust zonal acceleration (Shi et al., 2020, 54 

2021). The response of the ACC and the upper cell of the circumpolar meridional overturning 55 

circulation (MOC) to changes in wind stress were previously explained by two hypotheses: 56 

“eddy saturation” and “eddy compensation” (Straub, 1993; Hallberg & Gnanadesikan, 2001; 57 

Hallberg & Gnanadesikan, 2006; Hogg et al., 2008; Hogg, 2010; Viebahn & Eden, 2010).  58 

Due to the dynamic importance of mesoscale eddies, much attention has been paid to 59 

changes in the eddy kinetic energy (EKE) in the SO since the advent of satellite altimetry (Fu et 60 

al., 2010). For example, a robust increase in the EKE field has been observed since 1993, with 61 

larger trends in the Pacific and Indian sectors (Meredith & Hogg, 2006; Hogg et al., 2015; 62 

Menna et al., 2020). Following Hogg et al. (2015), Martínez-Moreno et al. (2019, 2022) 63 

decomposed the eddy field into mesoscale eddies and residual components and demonstrated that 64 

the increasing trend of EKE is mainly impacted by mesoscale eddies. Moreover, the EKE field 65 

shows a more significant increase of 2-5% per decade in the eddy-rich regions. In comparison, 66 

Zhang et al. (2021) pointed out that EKE increases significantly only downstream of the 67 

Campbell Plateau rather than in other regions along the ACC. The causes for the long-term 68 

changes in the EKE are thought to be due to a strengthening of the wind stress with delays of 1–4 69 

years (Hogg et al., 2015; Menna et al., 2020). Besides external wind-forced changes in the EKE, 70 

high-resolution modeling has suggested that the eddy field also exhibited a chaotic internal 71 

nature, which may mask wind-driven changes (Meredith, 2016; Patara et al., 2016; Hogg et al., 72 

2022). Another important feature is the spatial pattern of the EKE field, which is collocated with 73 

major topography and is primarily determined by the instability of the mean flow (Graham et al., 74 

2012; Barthel et al., 2017; Chapman, 2017; Youngs et al., 2017; Cai et al., 2022). Model 75 

experiments showed that the EKE depends on the shape and height of the topography as well as 76 
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on the baroclinicity of the jet, but it is not very sensitive to increased wind stress (Barthel et al., 77 

2017; Cai et al., 2022). The nonlinear evolution of the instability leads to an inverse cascade of 78 

energy and likely determines the eddy properties (Pedlosky, 1987; Venaille et al., 2011; Scott & 79 

Wang, 2005); however, the long-term changes in barotropic and baroclinic instabilities and their 80 

connections with eddy variations in the SO remain unexplored. 81 

Previous studies have mainly focused on the EKE field, which includes features like 82 

waves, meanders, and eddies of multiple scales; however, it is still unclear whether the 83 

mesoscale eddies with different lifetimes temporally differ in their variations. This study 84 

investigates how mesoscale eddies with different lifetimes respond to the SO changes and the 85 

possible physical processes responsible for those changes. To answer these questions, we explore 86 

the long-term trends in mesoscale eddies identified and tracked from satellite altimeter records 87 

from 1993 to 2020; we find that the increasing intensity trends are dominated by eddies with 88 

longer lifetimes, with the short-lived eddies only contributing slight changes. The mechanism 89 

behind this is illustrated by the increasing trends in energy conversion due to baroclinic 90 

instability. The remainder of this paper is organized as follows: Section 2 introduces the data and 91 

methods, the results are described in Section 3, and the discussion and conclusions are outlined 92 

in Section 4. 93 

2 Data and Methods 94 

2.1 Satellite altimeter and sea surface temperature products 95 

The daily surface height (SSH) and derived surface geostrophic speeds have a horizontal 96 

resolution of 1/4° from 1993 to 2020. Mesoscale eddies with coherent structures are identified 97 

and tracked based on the SSH after removing the large-scale variability, and eddy trajectory atlas 98 

products (META3.2 DT) are developed (Mason et al., 2014; Pegliasco et al., 2022). In the atlas, 99 

the eddy amplitude (𝐸𝑑𝑑𝑦 ) is defined as the magnitude of the difference between the 100 

extremum of SSH within the eddy and the SSH around the eddy edge, which exhibits a linear 101 

relationship with the surface geostrophic speed; the eddy length scale is equal to the diameter of 102 

an eddy that has the area of the coherent structure, 𝐿 = 2 𝑎𝑟𝑒𝑎/𝜋 . Details on the eddy 103 

characteristics are described in Peliasco et al. (2022).  104 
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Mesoscale eddies with lifetimes shorter than 10 days are not considered herein since the 105 

resolvable temporal scale of the product is around 10 days (Pujol et al., 2016; Chen & Han, 106 

2019). To reduce noise in the data, eddies with amplitudes smaller than 2 cm are also discarded. 107 

The present work divides the eddies into two groups based on their lifetimes. One group consists 108 

of short-lived eddies with lifetimes shorter than 90 days but longer than 10 days; The other group 109 

consists of long-lived eddies with lifetimes equal to or longer than 90 days. The median lifetime 110 

of eddies is around three months, among which the short-lived and long-lived eddies account for 111 

52% and 45% of the totals, respectively (Table S1). Our review of the results indicates that the 112 

conclusions of this analysis are not very sensitive to how the short- and long-lived eddies are 113 

partitioned (Fig. 1, S2 and S3). 114 

The National Oceanic and Atmospheric Administration (NOAA) Daily Optimum 115 

Interpolation Sea Surface Temperature (OISST) incorporates observations from different 116 

platforms into a regular global grid (Huang et al., 2021). The OISST v2.1 product has a 117 

horizontal resolution of 1/4° and is available from September 1981 to the present. We analyze 118 

the period of overlap with the eddy trajectory atlas from January 1993 to December 2020. 119 

2.2 Energy conversion 120 

Energy equations provide a quantitative description of the energy exchange between eddies 121 

and the mean flow (Cronin & Watts, 1996; Eden & Böning, 2002; Kang & Curchitser, 2015). 122 

Through instability processes, eddies can extract energy from the mean flow, where a barotropic 123 

conversion process (BT) occurs from the mean kinetic energy (MKE) to the EKE, and a 124 

baroclinic conversion process (BC) occurs from the mean potential energy (MPE) to the eddy 125 

potential energy (EPE). Due to the lack of long-term salinity observations, following Cronin & 126 

Watts (1996), the SST variability is used to represent the approximate density variability in the 127 

surface layer, using 𝜌 = 𝜌 (1 − 𝜑𝑇) . The temperature trend at the surface shows a pattern 128 

similar to those in the upper SO (Fig. S1), which suggests that the SST is roughly representative 129 

of the long-term changes in the upper ocean temperatures. Thus, we calculate the BT and BC in 130 

the surface layer as follows: 131 𝐵𝑇 = −𝜌 𝑢 ∂𝑢∂𝑥 + 𝑣 ∂𝑣∂𝑦 + 𝑢 𝑣 ∂𝑣∂𝑥 + ∂𝑢∂𝑦 ,                        (1)  

and 132 



manuscript submitted to Geophysical Research Letters 

 

𝐵𝐶 = − 𝑔𝑁 𝜌 𝑢 𝜌 ∂𝜌∂𝑥 + 𝑣 𝜌 ∂𝜌∂𝑦 = − 𝜌 𝛼𝑔∂𝑇∂𝑧 𝑢 𝑇 ∂𝑇∂𝑥 + 𝑣 𝑇 ∂𝑇∂𝑦 , (2) 

where 𝑢, 𝑣, 𝜌, and 𝑇  are the time-mean zonal and meridional velocity, seawater density, and 133 

temperature from 1993–2020, respectively; 𝑢 , 𝑣 , 𝜌 , and 𝑇  are the time-varying zonal and 134 

meridional velocity, seawater density, and temperature, respectively. In the equations, 𝑔, 𝜌 , 𝜑, 135 

and 𝑁  are an acceleration of gravity, a constant density of 1025 𝑘𝑔𝑚 , thermal expansion, and 136 

the buoyancy frequency, respectively. The mesoscale eddies emerge from the barotropic 137 

instability of strongly horizontal velocity shear or are generated by baroclinic instability from the 138 

collapsing of horizontal density gradients. The BT and BC are direct sources of eddy growth, 139 

with positive values indicating eddy formation. 140 

3 Results 141 

3.1 Changes in eddies with different lifetimes  142 

Here, we begin to explore changes in the amplitude (𝐸𝑑𝑑𝑦 ) and number (𝐸𝑑𝑑𝑦 ) of 143 

the eddies with different lifetimes over the region between 45°S and 65°S, which roughly covers 144 

the ACC path and its surroundings (Figs. 1 and S2). Figure 1a shows that all eddies have 145 

increased amplitudes since the early 1990s, with the increase being much more significant for the 146 

eddies with lifetimes longer than 90 days. The amplitude increase of the long-lived eddies has 147 

reached a rate of 0.26 ± 0.06 cm or 2.8% ± 0.6% per decade (Fig. 1c), which is consistent with 148 

trends in the EKE (Hogg et al., 2015; Martínez-Moreno et al., 2021), while the amplitude of the 149 

short-lived eddies does not appear to have had a significant change during the past a few decades 150 

(Fig. 1c). In addition, the variability of the eddies with lifetimes longer than 10 days is collocated 151 

with that of the long-lived eddies (Fig. 1c), indicating that the long-lived eddies are largely 152 

responsible for the changes and variations in the eddy amplitude in the SO. There is also an 153 

increasing trend in the number of eddies that is dominated by the long-lived eddies (Figs. 1b and 154 

1d). These may be a consequence of more long-lived eddies being formed or small eddies 155 

merging into larger ones through eddy–eddy interaction (the transfer of energy from small to 156 

large scales) (Groom, 2015). 157 

 158 
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Following Samelson et al. (2014) and Pegliasco et al. (2015), the evolution of a mesoscale 171 

eddy is divided into three stages, with 0–15% of its lifetime as the growing phase, 15–85% as the 172 

mature phase, and 85–100% as the decaying phase. Because the development of eddies is 173 

sourced from the energy of the mean flow, the changes in the amplitude and number of eddies 174 

are further explored during their growing phase (Figs. 1e and 1f). The long-lived eddies in the 175 

growing phase strengthened at a rate of 0.26 ± 0.2 cm or 3.2% ± 2.7% per decade, while the 176 

short-lived eddies show small changes in their amplitudes (Fig. 1e). The number of long-lived 177 

eddies in the growing phase has increased slightly with a large standard error and is barely 178 

significant at the 95% confidence level (Fig. 1f); by comparison, the number of short-lived 179 

eddies does not appear to exhibit a significant change. This analysis reveals that much larger 180 

increases in the amplitude of the long-lived eddies than in the short-lived eddies may be induced 181 

by more energy extraction in the growing period. 182 

3.2 Spatial features of the trends 183 

The spatial distribution of eddies suggests that eddy generation in the SO is not uniform but 184 

is centralized around five hotspots. Considering Figs. 2a–c, the five hot spots of eddies are all 185 

located downstream of major topographic features along the ACC, which is consistent with the 186 

findings of previous studies (e.g., Zajaczkovski, 2017). While the five hotspots of the long-lived 187 

eddies are collocated with those of the short-lived eddies, the long-lived eddies are distributed 188 

more widely due to their ability to propagate farther away (Figs. 2b and 2c). Figures 2d and 2e 189 

show that the trends in the amplitudes of the eddies are highly heterogeneous along the ACC, 190 

with larger trends concentrated in the eddy-rich area downstream of the topography. The 191 

increasing trend in the amplitude of the eddies is dominated by the long-lived eddies, whose 192 

amplitude has increased at a rate of up to 0.3 cm per decade. In contrast, the short-lived eddies 193 

appear to have a much weaker increasing trend in their amplitudes. These spatial variations may 194 

reflect the impacts of local wind stress or interactions between the ACC and local topography 195 

(Thompson & Garabato, 2014; Hogg et al., 2015; Rintoul, 2018). 196 
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 197 

Figure 2. (a) The bathymetry, the number of (b) short-lived and (c) long-lived eddies, and the 198 

amplitude trend of (d) short-lived and (e) long-lived eddies in 6° × 4° bins. The gray stippling 199 

indicates that the trends are statistically significant at the 95% confidence level. The curves 200 

indicate the Subantarctic Front (gray contour) and Southern ACC Front (green contour), 201 

respectively (Orsi et al., 1995). The five eddy-rich regions (R1: 0 − 70°E, R2: 70 − 140°E, R3: 202 140 − 200°E , R4: 200 − 270°E , and R5: 300 − 360°E ) are defined from west to east 203 

meridionally between 45°S and 65°S to cover the main ACC path. The five major topographic 204 

features are the Southwest Indian Ridge (SWIR), Kerguelen Plateau (KP), Maquarie Ridge 205 

(MR), Pacific Antarctic Ridge (PAR), and Drake Passage (DP). 206 

 207 
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To further explore changes in the amplitudes of short-lived and long-lived eddies in the 208 

eddy-rich regions (Figure S4), we divide the main ACC path into five subregions, each roughly 209 

covering one hotspot of eddies (Figure 2b). The amplitudes of long-lived eddies have increased 210 

significantly above the 95% confidence level in the R2 − R5, with the largest trends in the R2 at 211 

a rate of ~0.3 cm or 3.5%  per decade, while the amplitude of long-lived eddies appears to 212 

slightly decrease in the R1 at a rate of 0.9% ± 0.6% per decade. In contrast, the amplitudes of 213 

short-lived eddies show no robust trends in the R1, R2, R3, and R5, barely significantly above 214 

the 95% confidence level, but they show a weak increasing trend in the R4 at a rate of 215 ~0.1 cm or 1.7% per decade. The contrasting trends in the eddy amplitudes in the five hotspots 216 

are consistent with the changes in the EKE field (Martínez-Moreno et al., 2021, 2022), indicating 217 

the importance of local dynamics, such as local wind stresses and interactions between the mean 218 

flow and local topography (Rintoul, 2018). 219 

3.3 Mechanism for the trends in the eddy amplitudes 220 

The above analysis finds that the mesoscale eddies have increasing amplitude trends in the 221 

SO, with the trend being more significant for the long-lived eddies in several hotspots along the 222 

ACC (Fig. 2e). Around the five eddy-rich regions along the ACC jet, there appears to be positive 223 

mean energy conversion from the MKE to the EKE (BT) due to barotropic instabilities of the 224 

mean flow (Fig. S5), which is consistent with the distribution of the energetic eddy field. The BT 225 

is small near the Southwest Indian Ridge (SWIR) but large near the Kerguelen Plateau (KP), 226 

Maquarie Ridge (MR), Pacific Antarctic Ridge (PAR), and Drake Passage (DP), with the 227 

maximum reaching ~1 − 5 × 10  𝑊𝑚 . The energy conversion from the MPE to the EPE 228 

(BC) due to baroclinic instabilities is also centralized around the eddy-rich regions, and its value 229 

is much larger than that of the BT, reaching ~5 − 10 × 10  𝑊𝑚 , which indicates more 230 

energy is being released from the baroclinic instabilities. Moreover, the locations of the elevated 231 

eddy energy and the BC coincide with the bottom topography but not with those of strengthened 232 

winds, which implies the primary role of topography in shaping eddy activity patterns along the 233 

ACC (e.g., Graham et al., 2012; Thompson & Sallée, 2012; Barthel et al., 2017; Cai et al., 2022). 234 

 235 
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between the accelerated mean flow and topography. Meanwhile, the amplitude change of the 249 

long-lived eddies is highly significantly correlated with the change in the BC, with a correlation 250 

coefficient of 0.79 and a lag of three months, suggesting that baroclinic instability is the main 251 

process providing the energy for increasing the intensity of the eddies. But why these long-lived 252 

eddies? According to Scott & Wang (2005) and Tulloch et al. (2011), the most unstable scale of 253 

instabilities has a wavelength a few times larger than the deformation radius, which is ~100 km 254 

along the ACC path, as estimated from linear instability theory, 2𝜋𝐿 , where 𝐿  is the first 255 

Rossby radius of deformation (Fig. S6). In other words, the maximum perturbation energy can be 256 

expected at a scale of ~100 km. On the other hand, the mean length scales of long-lived eddies 257 

when they are detected for the first time are about 90 − 100 km, which corresponds well to the 258 

most unstable scale, while the length scales of short-lived eddies are much smaller. Therefore, 259 

increased baroclinic instabilities support amplitude increases of the long-lived eddies whose 260 

scale is near that of the energy source in the SO. 261 

 262 

 263 

Figure 4. Schematic diagram of possible physical processes underlying the eddy amplitude 264 

increase along the ACC path. Red curves and text indicate the changes from a reference state 265 

(black curves) in response to the SO warming and an increase in wind stress. (1) The ACC 266 

interacts with topography, which shapes the features of the elevated eddy field downstream of 267 

the topography. (2) In response to the SO warming and the westerly wind strengthening, the 268 

ACC undergoes zonal acceleration, the meander curvature increases, and meridional density 269 

gradients become greater. As a consequence, the BC of the mean flow significantly increases 270 
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there, driving the amplitude increase of eddies with longer lifetimes whose scales are near the 271 

most unstable scale. 272 

4 Discussion and Conclusions 273 

Our findings identified long-lived eddies that have dominated the increasing eddy intensity 274 

trend based on satellite altimeter observations from 1993 to 2020 in the SO; the increased 275 

baroclinic instabilities responsible for these long-term changes along the ACC path (between 276 45°S and 65°S) were also identified. Moreover, there are substantial longitudinal variations in 277 

the eddy amplitude trends, with a larger increase downstream of the major topography. As 278 

summarized in the schematic diagram in Fig. 4, the ACC jet is largely zonal upstream of the 279 

topography where the eddy energy is relatively low. When the jet encounters the major 280 

topography, the water columns are squashed/stretched and move equatorward/poleward, leading 281 

to a meander curvature and an unstable flow, which shapes the features of the elevated eddy field 282 

downstream of the topography (Barthel et al., 2017; Rintoul, 2018; Cai et al., 2022). Because the 283 

SO experienced pronounced warming in recent decades, more (less) warming north (south) of 284 

the ACC caused greater isopycnal tilting and robust zonal acceleration (Shi et al., 2021). At the 285 

same time, the strengthening westerly winds contributed to isopycnal tilt, while the increased 286 

meander curvature adjusted to balance the increased zonal transports (Thompson & Garabato, 287 

2014), which resulted in enhanced eddy activities. As a consequence, the BC of the mean flow 288 

significantly increased, which is more favorable for releasing available potential energy. These 289 

increased instabilities provided favorable conditions for the generation of more energetic eddies 290 

with longer lifetimes whose scales are ~90 km. 291 

Despite the significant amplitude increases of long-lived eddies, as shown herein, the 292 

amplitudes of short-lived eddies have changed little. Given short-lived eddies’ lifetimes (defined 293 

here as between 10 and 90 days), these results may partly reflect the stochastic, chaotic nature of 294 

these eddies (Hogg et al., 2022) and partly represent changes in eddies with relatively long 295 

lifetimes. In addition, much of the existing research has indicated that the ocean is saturated with 296 

nonlinear eddies that merge, split, and couple with one another (Groom, 2015). We found that 297 

the number of long-lived eddies also slightly increased in recent years, but the trend in the 298 

number of short-lived eddies was not significant. It seems that more long-lived eddies develop 299 

partly from eddy–eddy interaction. Note that we only consider the tracked eddies with lifetimes 300 
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larger than 10 days and amplitudes larger than 2 cm. Martínez-Moreno et al. (2019) found a 301 

decreasing trend in the number of eddies because they identified transient eddies using different 302 

algorithms and a larger area between 30°S − 60°S. 303 

In summary, the present study indicates that long-lived eddies strengthened at a quicker rate 304 

in response to climate change (ocean warming and wind intensification) in the SO, which 305 

highlights the need for further understanding the changes in eddies on separate scales instead of 306 

considering them together. Due to their ability to propagate farther away, long-lived eddies may 307 

play a more important role in transporting heat, carbon, and nutrients in the future (Screen et al., 308 

2009; Chelton et al., 2011; Keppler & Landschützer, 2019). 309 
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