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Abstract

Permafrost degradation on the Tibetan Plateau is well-documented and expected to continue throughout this century. However,

the impact of thawing permafrost on the distribution, composition, and resilience of vegetation communities in this region is

not well understood. In this study, we combined a transient numerical permafrost model with machine learning algorithms to

project the near-future thermal state of permafrost and vegetation (represented by the Normalized Difference Vegetation Index

[NDVI]) changes under two contrasting climate pathways (Shared Socioeconomic Pathway 1–2.6 [SSP1–2.6] and SSP5–8.5).

The contribution of climatic and terrestrial variables to vegetation evolution was quantified using ridge regression. By 2100,

permafrost areas were expected to decrease by 21±4%, and 55±2% under the SSP1–2.6 and SSP5–8.5 scenarios, respectively,

relative to the baseline period (2000–2018). Under the SSP1–2.6 scenarios, the mean annual ground temperature and active layer

thickness were projected to fluctuate stably, while under the SSP5–8.5 scenarios, a significant increasing trend was anticipated.

Satellite-based observations indicated an increasing trend of NDVI within the permafrost areas from 2000 to 2018 (0.01 per

decade), mainly attributed to climatic factors. In the future, vegetation greenness was expected to possibly remain stable under

SSP1–2.6 scenarios, whereas a rising trend was likely noted under SSP5–8.5 scenarios during 2019–2050, mainly controlled by

the surface air temperature and liquid water content at the root zone during the growing season. Our modeling work provides

a potential approach for investigating future vegetation changes and offers more possibilities to improve understanding of the

interaction between soil-vegetation-atmosphere in cold regions.
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Key Points:9

• By 2100, the permafrost areas will thaw at 0.23± 0.04 and 0.60± 0.02× 10 6 km2
10

under SSP1–2.6 and SSP5–8.5, respectively.11

• By 2050, NDVI in the permafrost areas likely stay stable under SSP1–2.6 scenar-12

ios and likely show a rising trend under SSP5–8.5 scenarios.13

• Surface air temperature and liquid water content at the root zone are the dom-14

inant features affecting NDVI changes in the permafrost areas.15
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Abstract16

Permafrost degradation on the Tibetan Plateau is well-documented and expected to con-17

tinue throughout this century. However, the impact of thawing permafrost on the dis-18

tribution, composition, and resilience of vegetation communities in this region is not well19

understood. In this study, we combined a transient numerical permafrost model with ma-20

chine learning algorithms to project the near-future thermal state of permafrost and veg-21

etation (represented by the Normalized Difference Vegetation Index [NDVI]) changes un-22

der two contrasting climate pathways (Shared Socioeconomic Pathway 1–2.6 [SSP1–2.6]23

and SSP5–8.5). The contribution of climatic and terrestrial variables to vegetation evo-24

lution was quantified using ridge regression. By 2100, permafrost areas were expected25

to decrease by 21± 4%, and 55± 2% under the SSP1–2.6 and SSP5–8.5 scenarios, respec-26

tively, relative to the baseline period (2000–2018). Under the SSP1–2.6 scenarios, the27

mean annual ground temperature and active layer thickness were projected to fluctuate28

stably, while under the SSP5–8.5 scenarios, a significant increasing trend was anticipated.29

Satellite-based observations indicated an increasing trend of NDVI within the permafrost30

areas from 2000 to 2018 (0.01 per decade), mainly attributed to climatic factors. In the31

future, vegetation greenness was expected to possibly remain stable under SSP1–2.6 sce-32

narios, whereas a rising trend was likely noted under SSP5–8.5 scenarios during 2019–33

2050, mainly controlled by the surface air temperature and liquid water content at the34

root zone during the growing season. Our modeling work provides a potential approach35

for investigating future vegetation changes and offers more possibilities to improve un-36

derstanding of the interaction between soil-vegetation-atmosphere in cold regions.37

Plain Language Summary38

About 40% of the Tibetan Plateau is underlain by permafrost, which has under-39

gone significant degradation and is estimated to experience substantial thawing by the40

end of this century. The thawing permafrost has impacted vegetation growth. To date,41

it has not been clear how the Normalized Difference Vegetation Index (NDVI; represent-42

ing vegetation) changes with climate warming and permafrost degradation. Here, we used43

a land surface model and machine learning algorithms to simulate future permafrost ther-44

mal regimes and variations in the NDVI for future growing seasons and assess the most45

important variables influencing NDVI variability. We found that permafrost areas were46

projected to shrink by 21± 4% under the SSP1–2.6 scenarios and 55± 2% under the SSP5–47

8.5 scenarios by 2100, compared to the baseline period (2000–2018). Our results suggested48

that under mild climate conditions (SSP1–2.6), NDVI in the permafrost areas likely re-49

mained stable from 2019 to 2050, while NDVI in the permafrost areas likely showed an50

increasing trend under harsh climate conditions (SSP5–8.5), which was mainly due to51

increasing surface air temperature and liquid water content at the root zone on the Ti-52

betan Plateau.53

1 Introduction54

The Tibetan Plateau (TP; Figure 1) hosts the world’s most extensive high-altitude55

permafrost areas, estimated at 1.15× 10 6 km2 (2005–2015) (Ran et al., 2021). Previous56

studies showed that permafrost had undergone significant degradation due to anthro-57

pogenic warming (Smith et al., 2022; X. Wang et al., 2022; Baral et al., 2023), as evi-58

denced by increased mean annual ground temperature (MAGT) (Q. Wu & Zhang, 2008;59

Zhao et al., 2021), increased active layer thickness (ALT) (Q. Wu & Zhang, 2010; Qin60

et al., 2017), reduced permafrost thickness and areas (D. Guo & Wang, 2013; Ran et al.,61

2018), and altered geomorphological features (T. Gao et al., 2021; Xia et al., 2022). Ac-62

cording to state-of-the-art Earth System Models (ESMs), the mean annual surface air63

temperature over the TP is projected to rise by 1.9 ◦ C under the Shared Socioeconomic64

Pathway 1–2.6 (SSP1–2.6) and by as much as 6.3 ◦ C under SSP5–8.5 by the end of the65
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21st century, relative to the baseline period of 1981–2010 (R. Chen, Li, et al., 2022). Such66

warming is expected to exacerbate the thawing and warming of the permafrost. Com-67

pared to the baseline period (2006–2015), the MAGT and ALT are estimated to increase68

by 0.8 ◦ C to 2.6 ◦ C and 0.7m to 3.0m, respectively, in the period 2091–2100 under the69

SSP2–4.5 to SSP5–8.5 scenarios (G. Zhang et al., 2022), corresponding with a decline70

in permafrost areas by 44% to 71% (G. Zhang et al., 2022). This degradation is expected71

to cause major impacts on the carbon budget (Mu et al., 2020; T. Wang et al., 2020),72

hydrological dynamics (Song et al., 2022; T. Wang et al., 2023), ecosystem (Cuo et al.,73

2022; T. Wang et al., 2022), and infrastructure stability (Ran, Cheng, et al., 2022; R. Chen74

et al., 2023) on the regional scale. Vegetation covers approximately 81% of the permafrost75

areas on the TP, rendering it the predominant surface characteristic (Z. Wang et al., 2016).76

With methodological innovations, sophisticated models, and a surge in observational data,77

our understanding of permafrost–vegetation interactions is improving (Heijmans et al.,78

2022). On the one hand, vegetation significantly influences the hydrothermal regime, car-79

bon, and nutrient dynamics in permafrost environments. This influence is exerted through80

alterations in the surface energy balance (Chang et al., 2015; Stuenzi, Boike, Cable, et81

al., 2021), regulation of snow cover dynamics (Lawrence & Swenson, 2011; Grünberg et82

al., 2020), and impacts on both ecosystem carbon uptake (Ding et al., 2017; D. Wei et83

al., 2021) and ecosystem respiration processes (Gagnon et al., 2019; Prager et al., 2020).84

On the other hand, the evolution of permafrost significantly affects vegetation patterns,85

either promoting greening or browning (Myers-Smith et al., 2020). This is primarily me-86

diated by its control over soil temperature and liquid water content in the root zone (Yi87

et al., 2014; de Vrese et al., 2023), alterations in landscape morphology (van der Kolk88

et al., 2016; Mu et al., 2017; Loranty et al., 2018), impacts on microbial stability (M. Wu89

et al., 2021), and influences on carbon and nitrogen cycling processes (Mekonnen et al.,90

2018; L. Liu et al., 2022; Mauclet et al., 2022).91

Continuous vegetation greening and enhanced carbon uptake were also observed92

on the TP along with climate warming and permafrost degradation since the 1980s (Teng93

et al., 2021; Cuo et al., 2022; Shi et al., 2023; Z. Jin et al., 2023; Y. Wang et al., 2023).94

Notably, the Normalized Difference Vegetation Index (NDVI) exhibited an upward trend95

of 0.011 per decade from 1982 to 2015 (Teng et al., 2021). Similarly, the Enhanced Veg-96

etation Index (EVI; which was developed to optimize the vegetation signal with improved97

sensitivity in high-biomass regions) increased by 0.01 per decade from 2000 to 2020 (Shi98

et al., 2023), and the Net Primary Productivity (NPP) demonstrated a positive trend99

of 0.51 g C m−2 per decade from 1982 to 2014 (Cuo et al., 2022). While many studies100

have identified warming temperatures and increasing precipitation to be the main drives101

of greening (Teng et al., 2021; X. Li et al., 2022; T. Wang et al., 2022) and plant phe-102

nology changes (Q. Zhang et al., 2018; M. Shen et al., 2022; T. Wang et al., 2022) across103

the TP, vegetation greening on the global scale is thought to be mainly induced by CO2104

fertilization (Piao et al., 2020). In addition to the climatic factors, the hydrothermal con-105

ditions of the permafrost would also affect the vegetation dynamics through the permafrost-106

vegetation interactions (J. Wang & Liu, 2022; T. Wang et al., 2022). All of these stud-107

ies have significantly improved our understanding of the characteristics and drivers of108

the vegetation greenness on the TP. However, it is still largely unknown how the veg-109

etation cover will evolve under further destabilizing permafrost conditions on the TP ac-110

counting for future climate scenarios at a larger spatial scale. This uncertainty persists111

since the very complex vegetation physiological processes which are often tied to spe-112

cific local conditions are not yet well represented in generalistic ESMs (Piao et al., 2020).113

With machine learning approaches increasingly being used to analyze complex spatiotem-114

poral data and explore future environmental change (Pearson et al., 2013; Nitze et al.,115

2018; J. Guo et al., 2023; C. Shen et al., 2023), coupling the model-based and data-driven116

methods allows us to deal with the complex permafrost-vegetation interactions and quan-117

tify the vegetation dynamics and its dominant factors under different climate scenarios.118

–3–
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Figure 1. (a) Topography of study areas and location of observation sites over the Ti-

betan Plateau. Black stars and red triangles stand for the mean annual ground temperature

(MAGT) and active layer thickness (ALT) of the monitoring sites, respectively. The digital

elevation model, glacier, lake, river, and the boundary of the Tibetan Plateau data and the

boundary of Three River Sources are obtained from the National Tibetan Plateau Data Center

https://data.tpdc.ac.cn and are licensed under CC BY 4.0. The road data is available from

the national 1:1000000 public basic geographic database of China (version 2017). (b) Spatial

distributions of permafrost and non-permafrost areas on the Tibetan Plateau. Data source: (Obu

et al., 2019). (c) Spatial distribution of the multi-year (2000–2018) mean of the growing season

(May to September) NDVI on the Tibetan Plateau at 1km2 scale from MODIS satellite imagery,

the sub barplot represents the percentage of the number of grid cells of NDVI in each interval to

the total number of grid cells. (d) Maps of vegetation types in the Tibetan Plateau adapted from

the 1:1000000 vegetation map of China (Zhou et al., 2022)

In this study, we combined a physically-based permafrost model (CryoGridLite)119

(Langer et al., 2024) and machine-learning approaches for predicting the vegetation evo-120

lution (represented by the NDVI) over the permafrost areas on the TP. Firstly, we ap-121

plied the CryoGridLite, driven by historical and future forcing datasets under the two122

different SSPs scenarios (SSP1–2.6 and SSP5–8.5) from two ESMs (AWI-CM-1-1-MR123

and MPI-ESM1-2-HR), to assess the potential shifts in permafrost distribution and its124

thermal state over the TP. Then, based on the output of the CryoGridLite model, we125

used machine-learning algorithms, which are Light Gradient Boosting Machine (Light-126

GBM) (Ke et al., 2017) and Extreme Gradient Boosting Machine (XGBoost) (T. Chen127

& Guestrin, 2016), to quantify the prospective changes in NDVI within the permafrost128

areas of the TP. Finally, we elucidated the dominant factors influencing NDVI variations129

and quantified the contribution of each explanatory variable to the NDVI change.130
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2 Methods131

2.1 CryoGridLite132

We applied the one-dimensional transient permafrost model CryoGridLite (Langer133

et al., 2024) to simulate the trajectory of permafrost evolution over the TP. CryoGridLite134

was a fast version that was inherited from CryoGrid3 (Westermann et al., 2016) and the135

CryoGrid community model (Westermann et al., 2023), reducing computational costs136

and thus making it more suitable for regional (e.g., TP) to hemispherical scale (e.g., Pan-137

Arctic; Nitzbon et al. (2023)) permafrost modeling. In the following, we briefly describe138

the main aspects of CryoGridLite and provide the model setup for this work. Further139

detailed descriptions of model structures and physical processes can be found in Langer140

et al. (2024).141

2.1.1 Model description142

In this tailored version of CryoGridLite, we implemented the surface energy bal-143

ance module, which was driven by the time series of forcing data (i.e. surface air tem-144

perature (◦ C), rainfall and snowfall rate (mh−1), (kg kg−1), surface air pressure (Pa),145

incoming shortwave and longwave radiation (W m−1), and wind (ms−1)), to provide the146

upper boundary condition of the model (detailed description can be seen in Supporting147

Information Text S1.1). Unlike the heat condition equation implemented in CryoGrid3,148

the CryoGridLite used enthalpy instead of temperature as the state variable to solve the149

one-dimensional subsurface heat transfer:150

∂H

∂t
− ∂

∂z
(k(z, T )

∂T (H)

∂z
) = 0 (1)

where H (J m−3) is the volumetric enthalpy including sensible and latent heat contents151

of the ground, t (s) is time, z (m) is the vertical subsurface depth, k (z, T )(W m−1 K−1)152

is the effective thermal conductivity derived from volumetric soil fractions of mineral,153

organic, water, ice and air in a given soil depth, and T (k) is the ground temperature.154

The lower boundary condition was defined by constant geothermal heat flux. The im-155

plemented snowpack scheme allowed the model to simulate snow accumulation, ablation,156

melt-water routing, and refreezing within the snow cover. Once the snow had filled the157

first grid cell above the soil surface, the surface albedo changed from that of the soil to158

that of the fresh snow and decreased over time towards that of the albedo of old snow159

(Westermann et al., 2016). Besides, we applied a simple bucket scheme (a detailed de-160

scription can be seen in Supporting Information Text S1.2) with only downward verti-161

cal water flow driven by gravity to compute the dynamics of soil water content rather162

than constant water contents used in (Langer et al., 2024).163

2.1.2 Model setup164

In this study, we synthesized the China Meteorological Forcing dataset (CMFD;165

selected period: 1979–2018 to represent historical climate conditions; resolution: 3 hours166

and 0.1 ◦ × 0.1 ◦) (He et al. (2020); https://www.tpdc.ac.cn), along with two ESMs167

from CMIP6 (AWI-CM-1-1-MR and MPI-ESM1-2-HR; selected period: 2019–2100 to168

portray future climate conditions; resolution: monthly and 0.9375 ◦ × 0.9375 ◦) (Müller169

et al. (2018); Semmler et al. (2020); https://esgf-data.dkrz.de) following the two170

SSP scenarios (SSP1–2.6 and SSP5–8.5) to construct the completely forcing data (pe-171

riod: 1979–2100; resolution: hourly and 0.1 ◦ × 0.1 ◦). Compared with other ESMs, AWI-172

CM-1-1-MR, and MPI-ESM1-2-HR presented the best performance in depicting the spa-173

tiotemporal patterns of mean annual and seasonal surface air temperature on the TP174

in the past decades (R. Chen, Li, et al., 2022). To ensure model stability and consistency175

of the forcing data from 1979 to 2100, we performed a linear interpolation on the CMFD176

data from a 3-hour to an hourly resolution. Further, we utilized the approach from Westermann177

et al. (2016) by combining baseline climate data (from CMFD) with monthly climate anoma-178

–5–
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lies (from ESMs) to generate the forcing data for this study. The time series of all forc-179

ing variables under the two SSPs and two ESMs for the period 1979–2100 is shown in180

Supporting Information Figure S1.181

For the soil domain of the model, the vertical resolution of grid cells increased with182

thickness from the soil surface (0m) to the lower boundary of the model (100m) (0.02m183

in 0–2m depth; 0.05m in 2–4m depth; 0.1m in 4–10m depth; 0.2m in 10–20m depth; 1m184

in 20–30m depth; 5m in 30–50m depth; 10m in 50–100m depth). The soil stratigraphies185

were specified as mineral, organic, initial water/ice, and air volumetric fractions. The186

initial water/ice content according to Langer et al. (2023) was assumed halfway between187

field capacity and porosity for the soil layer above the water table depth, which was pro-188

vided by a global groundwater table depths product (Fan et al. (2013); https://thredds189

-gfnl.usc.es/thredds/catalog/GLOBALWTDFTP/catalog.html), and saturated with190

the soil layer below the water table depth. The soil properties were derived from a new191

version of the global high-resolution dataset of soil hydraulic and thermal parameters192

dataset for land surface modeling (Y. Dai, Xin, et al. (2019); Y. Dai, Wei, et al. (2019);193

https://globalchange.bnu.edu.cn). The spatial resolution of this dataset was 0.00833 ◦
194

covering from 90 ◦ N to 90 ◦ S, 180 ◦ W to 180 ◦ E, and the vertical soil profile was pro-195

vided in 8 layers (0–0.0451m, 0.0451–0.0906m, 0.0906–0.1655m, 0.1655–0.2891m, 0.2891–196

0.4929m, 0.4929–0.8289m, 0.8289–1.3828m and 1.3828–3.8019m). This dataset directly197

provided the volumetric fraction of soil organic matter and soil porosity. At the same198

time, mineral content and field capacity were calculated based on the approach in Y. Dai199

et al. (2013); Y. Dai, Xin, et al. (2019); Y. Dai, Wei, et al. (2019). Besides, we assumed200

the soil stratigraphy from 3.8019m to the bedrock depth Yan et al. (2020) was the same201

as that of the soil layer above it (i.e.1.3828–3.8019m). Below the bedrock depth, we as-202

sumed no soil organic matter existed, the soil porosity was arbitrarily set to 0.1, and the203

soil mineral content was set to 0.9. We utilized the geothermal gradient (0.031 ◦ Cm−1;204

Y. Pang et al. (2022)) to interpolate the four-layer ERA5Land soil temperature (Muñoz-205

Sabater et al., 2021) in January 1979 to the whole soil profile as the initial ground tem-206

perature profile. The constant geothermal heat flux was extracted from the Terrestrial207

Heat Flow Dataset Lucazeau (2019) to describe the lower boundary condition.208

To depict snowpack dynamics over time, five empty grid cells were set above the209

soil surface in the initial state to represent the maximum snow depth of 0.1m with a ver-210

tical resolution of 0.02m (Orsolini et al., 2019). We assumed a constant snow density (150211

kgm−3) across the snowpack (L. Dai et al., 2018; Yin et al., 2021) and the fresh snow212

albedo was set to 0.82 (W. Wang et al., 2020). The parameters used in this study for213

model setup are summarized in the Supporting Information Table S1. We applied nearest-214

neighbor interpolation for all input datasets (detailed information is provided in Table215

1) and further masked them with shape files of the boundary (Y. Zhang et al. (2014);216

https://www.geodoi.ac.cn), glaciers (W. Guo et al. (2015); https://www.tpdc.ac.cn),217

and lakes (G. Zhang et al. (2019); https://www.tpdc.ac.cn) of the TP to finalize the218

model setup for each grid cell in our simulations.219

2.2 Machine learning model220

In this study, we adopted two regression-based machine learning approaches to project221

the future NDVI change on the permafrost areas over the TP, which have been widely222

used in the prediction of future climate as well as environmental variables (Ukkonen &223

Mäkelä, 2019; Kondylatos et al., 2022; F. Chen et al., 2023; Veigel et al., 2023; C. Chen224

et al., 2024). The NDVI was collected from the Moderate Resolution Imaging Spectro-225

radiometer (MODIS; MOD13A2; Didan (2015)) with a 1km spatial resolution from 2000–226

2018 to match up the period of CMFD and be regarded as the baseline period in this227

study. We processed the raw NDVI data to aggregate them into monthly intervals, which228

was the time resolution used in our machine learning approaches, using the maximum229

value composition approach (G. Pang et al., 2022) and further applied a Savitzky-Golay230

–6–
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Table 1. Overview of datasets used in this study

Datasets Variable/Parameter Reference/Source Comments

China Meteorologi-
meteorological forcing He et al. (2020)

Historical forc-
cal Forcing Dataset ing 1979–2018

AWI-CM-1-1-MR
meteorological forcing

Semmler et al. (2020) Future forcing
MPI-ESM1-2-HR Müller et al. (2018) 2019–2100

Global high-resolu- Volumetric fractions
tion dataset of soil of mineral, organic, Y. Dai, Xin, et al. (2019) Soil stra-
hydraulic and ther- porosity, and field Y. Dai, Wei, et al. (2019) tigraphy
mal parameters capacity

Global water-
Watertable depth Fan et al. (2013)

Used to deter-
table depth mine initial wat-
dataset er/ice content

Terrestrial Heat
Geothermal heat flux

Lucazeau (2019) Lower bound-
Flow Dataset ary conditions

A Global Depth to
Bedrock depth Yan et al. (2020)

Used to
Bedrock Dataset for constrain soil
Earth System Modeling depth

ERA5-Land
Four-layer

Muñoz-Sabater et al. (2021)
Initial soil

soil temperature temperature

MODIS NDVI

NDVI Didan (2015)
(MOD13A2, Vegetation
Version 6.1, 1km condition
spatial resolution)

Vegetation map

Vegetation types Zhou et al. (2022)

Analyzing NDVI
from a digitized changes and dri-
1:1000000 ving factors acr-
vegetation atlas oss various vege-
of China tation types

–7–
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filter to smooth the NDVI time series (T. Wang et al., 2022). In addition, we assumed231

that there was no vegetation in the area with a multi-year (2000–2018) average grow-232

ing season NDVI (from May to September, NDVIGS ; Teng et al. (2021)) lower than 0.1233

(T. Wang et al., 2022). The spatiotemporal trend of NDVIGS over the TP (excluding234

the non-vegetation areas) from 2000 to 2018 based on the MODIS dataset is shown in235

the Supporting Information Figure S2. We incorporated six variables as explanatory fac-236

tors in the machine-learning model based on previous studies (J. Wang & Liu, 2022; T. Wang237

et al., 2022; Y. Wang et al., 2023). Among them, surface air temperature (SAT), total238

precipitation (PRE), and incoming shortwave radiation (SIN) originated from climate-239

forcing data. Furthermore, the soil temperature (ST) and liquid water content (LWC)240

at the root zone (0–20cm; T. Wang et al. (2022)), and ALT are derived from the out-241

put of the CryoGridLite model for each grid cell. The time interval of these six variables242

was monthly, corresponding with the temporal resolution of the NDVI. The flow of the243

machine learning approach was as follows: First, the MODIS NDVI dataset and six ex-244

planatory variables that correspond with the same grid cell were divided into two groups:245

data from 2000 to 2014 served as the training dataset (about 80% of the data), and the246

remaining data (2015–2018) as the testing dataset (about 20% of the data). Then, ac-247

cording to the results from the CryoGridLite in the baseline period, we constructed the248

training and testing datasets on permafrost and non-permafrost areas (excluded ALT).249

For tuning the hyperparameters of each machine learning model in the training dataset250

in each area, we used Bayesian optimization (Python; Optuna package) with 500 iter-251

ations and set the early stopping and pruning strategy. The range of possible values for252

the part of hyperparameters and the final best hyperparameters can be seen in the Sup-253

porting Information Table S2. In each iteration, we used mean squared error as a scor-254

ing criterion and performed 5-fold cross-validation using the TimeSeriesSplit (Python;255

Scikit-learn package) approach due to there being a time dependence within the NDVI256

data. The optimal model parameter combinations resulting from each iteration were recorded257

and utilized to train the final model. Moreover, we introduced a weighting parameter258

for each model to enhance the model’s emphasis on the growing season NDVIGS asso-259

ciated with individual grid cells. In comparison to the monthly NDVI values, our pref-260

erence was for the model to exhibit superior performance when modeling the NDVIGS261

value. Similar to the hyperparameters used for each model, this weighting parameter was262

employed to obtain the optimal solution during the Bayesian optimization process. To263

evaluate the performance of each model, we employed root mean squared error (RMSE),264

bias (BIAS), coefficient of determination (R2), and Kling-Gupta efficiency (KGE; Gupta265

et al. (2009)) as the evaluation metrics.266

RMSE =

√√√√ 1

N

N∑
i=1

(Si −Oi)2 (2)

BIAS =
1

n

n∑
i=1

(Si −Oi) (3)

R2 = 1−
∑n

i=1(Si −Oi)
2∑n

i=1(Oi − Ō)2
(4)

KGE = 1−

√
(r − 1)

2
+

(
S

O
− 1

)2

+

(
σS

σO
− 1

)2

(5)

where N is the number of validation data, Si and Oi(i = 1, 2, ..., N) are the values of267

simulated and observed data, respectively, S and O are the mean values of simulated and268

observed data, respectively, r is the Pearson correlation coefficient, σS , and σO are the269

standard deviations of simulated and observed data, respectively. We utilized the op-270

timal machine learning model and future explanatory data to produce the NDVI for each271

grid cell within the permafrost and non-permafrost region over the TP.272
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2.3 Statistical analysis273

We employed three indices including the MAGT (◦ C), ALT (m), and permafrost274

areas (km2) to quantify permafrost degradation. In this study, we obtained the MAGT275

from the depth of zero annual amplitude, which was typically at the 10–15m soil depth276

on the TP (Q. Wu & Zhang, 2010; Qin et al., 2017). We defined a grid cell as permafrost277

if its MAGT lies below the 0◦C isotherm at the specific year (Ran, Li, et al., 2022). The278

ALT was quantified as the maximum thaw depth within the upper 10m of the subsur-279

face (Langer et al., 2024) and there is no existing ALT and permafrost when the MAGT280

exceeds 0◦C at the specific year at a grid cell. We employed the Albers Equal Area pro-281

jection for area calculations to accurately represent permafrost areas. To better track282

the dynamics of vegetation conditions across the permafrost and non-permafrost areas283

on the TP, we used the annual NDVIGS to represent the vegetation at individual years284

for each grid cell. In this study, we used ridge regression to robustly estimate the indi-285

vidual contributions of explanatory variables (mean or sum value at the growing season,286

i.e. SATGS , PREGS , SINGS , STGS , LWCGS , and ALTGS) to the variability in annual287

NDVIGS across the permafrost and non-permafrost region (T. Wang et al., 2022; J. Li288

et al., 2023). This approach effectively mitigated the issue of multicollinearity inherent289

among the predictors. The incorporation of a regularization penalty term (λ) served to290

apportion variance across the coefficients efficiently, thereby enhancing the precision of291

the estimated impacts of the explanatory variables on NDVIGS . Preceding the regres-292

sion analysis, standardized explanatory variables and corresponding NDVIGS served as293

inputs for the ridge regression model. The optimal regularization parameter, λ, was sys-294

tematically determined through 5-fold cross-validation and the Grid Search algorithm,295

ensuring the most robust model performance. Variables exhibiting the largest absolute296

values of the regression coefficients post-regularization were interpreted as the dominant297

factors influencing NDVIGS within the specific grid cells. A comprehensive range of the298

λ values explored during the model tuning phase was from 1×10−6 to 1×106. Besides,299

trend estimations of time series in this study were based on Sen’s slope, which was se-300

lected over linear regression for its robustness against outliers and its nonparametric na-301

ture (Y. Wang et al., 2023). The flowchart of this study is shown in Figure 2.302

3 Results303

3.1 Model evaluations304

3.1.1 CryoGridLite305

For this study, we synthesized observational data, including MAGT and ALT, from306

a range of literature and public resources across the TP to assess the effectiveness of the307

CryoGridLite model (Q. Wu et al., 2020; H. Chen et al., 2015; J. Chen et al., 2016; Qin308

et al., 2017; Luo et al., 2018; Z. Zhang et al., 2020; Zhao et al., 2021; Mu & Peng, 2022;309

Y. Gao et al., 2023). Ultimately, we selected a total of nMAGT = 84 and nALT = 66310

different grid cells comprising 151 MAGT and 86 ALT data records within various per-311

mafrost regions of the TP from 2000 to 2015 in our model domain (Detailed informa-312

tion see Supporting Information Table S3). Figure 1 (a) displays the geographical dis-313

tribution of these sites across the TP. For MAGT, we utilized the model output at the314

depth closest to the measured for comparison while for ALT, we considered the annual315

maximum thaw depth to compare the observed. Our modeling results indicated the sim-316

ulated MAGT at most sites (53.6%) in the range of ± 1◦ C of the observed value (Fig-317

ure 3 (a)), and there was a positive correlation between simulated and observed MAGT318

(Pearson correlation coefficient = 0.46, p < 0.01). However, we noted that our model319

tended to underestimate observed MAGT across the TP (Bias = -0.77 ◦ C), which could320

be attributed to inaccuracies of forcing, soil stratigraphy dataset, and imitated processes321

representation (Langer et al., 2024) and setting for the maximum snow height (0.1m).322

Overall, our model displayed the ability to reproduce the MAGT in the TP permafrost323
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Figure 2. Flowchart of the process used to estimate the future vegetation change

areas well. Compared with the model capability on the MAGT, there was a poorer re-324

lationship between simulated and observed ALT, with a Pearson correlation coefficient325

of 0.17 (Figure 3 (b)). Similarly, the model exhibited a trend of underestimating the mea-326

sured ALT compared to the observed values (Bias = -0.03m), which aligns with the sim-327

ulated cold bias for MAGT. The deviations between measured and modeled ALT were328

likely to be explained by inadequate forcing and soil dataset, shortcomings of the model329

(Langer et al., 2024), the cooling effect of shallow snow cover (0.1m), and high spatial330

heterogeneity of ALT on the TP (B. Cao et al., 2017; Ni et al., 2021). Nevertheless, our331

model reproduced the observed ALT on the TP, with modeled ALT deviations of ± 1m332

for most sites (59.1%). A more detailed model evaluation was conducted for the soil tem-333

perature at upper soil depth across the TP due to the soil temperature at the root zone334

as an input index in machine learning (see Supporting Information Table S4 and Fig-335

ure S3). In this research, CryoGridLite, driven by CMFD data, was employed to model336

the distribution of permafrost across the TP during the historical period (Figure 3 (c)).337

To demonstrate the capability of CryoGridLite to reproduce spatial permafrost occur-338

rence, we juxtaposed our simulation results with five contemporary maps of permafrost339

distribution based on different approaches, thereby providing a comprehensive compar-340

ison and validation of our modeling results (Zou et al. (2017); Ran et al. (2018); Obu et341

al. (2019); Ni et al. (2021); Z. Cao et al. (2023); Figure 3 (d-h)). The comparison largely342

confirmed that the projected area of permafrost was consistent between our results and343

those of previous studies. Our modeling results indicated that the most likely permafrost344

areas on the TP were 1.10× 10 6 km2 for the period 2000–2018 (excluding lakes and glaciers),345

which agreed well with other five studies (1.04–1.28× 10 6 km2). However, local differ-346

ences were found between our results and other permafrost maps, which were most pro-347

nounced in the southern TP and along the southeast margin of the zone of continuous348

permafrost. It can be explained in several parts, first, spatial resolution and study pe-349
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riod differences; lower resolutions (i.e., 0.1 ◦) make it difficult to capture the dynamics350

of permafrost changes at the boundaries of permafrost zones (Ni et al., 2021) and study351

period leads a slight discrepancy for the modeled results. Second, simulated approach352

differences; our results offer a dynamic, transient modeling perspective. In contrast, other353

models, such as the temperature at the top of the permafrost model and the surface frost354

number model, while simpler and requiring less data input, are not as equipped to cap-355

ture transient effects or to project the evolution of permafrost accurately (Smith et al.,356

2022). Besides, the permafrost-modeled results of the machine learning model have data357

dependence and the risk of overfitting (Ni et al., 2021). Third, the definition of permafrost358

differences; we diagnose the absence or presence of permafrost relying on the MAGT at359

the zero depth of annual amplitude. Other studies adopt different criteria to determine360

the permafrost exists (e.g., the MAGT at the top of permafrost or the 10m depth). In361

summary, despite limitations our model provides a reasonable basis for describing spa-362

tially and temporally transient conditions of permafrost on the TP as input variable for363

the following analysis.364

3.1.2 Machine learning model365

We utilized the pre-partitioned test dataset to evaluate the performance of two machine-366

learning algorithms in modeling the NDVIGS over the permafrost and non-permafrost367

areas of the TP (Figure 4). A comparison analysis of the two results (Figure 4 (a-b)) re-368

vealed that each algorithm proficiently captured the satellite-derived NDVIGS values on369

the permafrost areas. The performance metrics (with R2 >= 0.65, BIAS<= 0.01, RMSE<=370

0.08, and KGE>= 0.59) suggested each model demonstrated robust capabilities in cap-371

turing the NDVIGS dynamics over the permafrost regions of the TP. In comparison, the372

LightGBM model has better performance. Consequently, we selected the lightGBM model373

for further analysis of the spatial and temporal variability of NDVIGS and its underly-374

ing drivers under different future climate scenarios. Additionally, complimentary assess-375

ments conducted for NDVIGS over the non-permafrost areas underscored the simulation376

ability of both algorithms were remarkably similar and both can well repeat the changes377

in NDVIGS (Figure 4 (c-d)).378

3.2 Spatial and temporal patterns of the permafrost dynamics on the379

TP380

To elucidate the spatiotemporal dynamics of permafrost variability on the TP through-381

out this century, we executed four distinct simulations driven by the AWI-CM-1-1-MR382

(Figure 5) and MPI-ESM1-2-HR (Supporting Information Figure S4) models, under both383

the SSP1–2.6 and SSP5–8.5 scenarios. Our findings revealed that spatial variability of384

permafrost distribution under the AWI-CM-1-1-MR, particularly by mid-century (2041–385

2060), manifested as a moderate reduction relative to the baseline period (2000–2018).386

This reduction was predominantly observed along the northern boundary of the contin-387

uous permafrost zone, southern regions of the TP, and the Three Rivers Sources (TRS)388

region (the red box in Figure 1 (a)), with negligible disparities between the lower and389

higher emission pathways (Figure 5 (a, c, e, g)). In contrast, by the end of the century390

(2081–2100), the majority of the permafrost areas were projected to remain relatively391

intact under SSP1-2.6, while areas that experienced permafrost thaw by mid-century con-392

tinued to show visible degradation (Figure 5 (b, f)). Under a scenario of intensified cli-393

mate warming, substantial thawing of existing permafrost was anticipated, particularly394

in the southwestern and southern parts of the TP, where the MAGT at the depth of zero395

annual amplitude was likely to approach or even exceed 0 ◦ C (Figure 5 (d, h)). The TRS396

region, in particular, was expected to undergo extensive permafrost degradation. Con-397

versely, the northwestern areas of the Changtang Plateau and the Qilian Mountains were398

projected to maintain their permafrost coverage (Figure 5 (d, h)). In examining the pro-399

jected changes in MAGT under the AWI-CM-1-1-MR, significant spatial heterogeneity400
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Figure 3. (a) Scatter plot illustrates the comparison results between the observed and sim-

ulated mean annual ground temperature (MAGT) for 151 records located within 84 different

grid cells. (b) Scatter plot compares the observed and modeled active layer thickness (ALT) for

86 records located within 66 different grid cells. (c) Spatial distribution of permafrost during

2000–2018 over the Tibetan Plateau based on CryoGridLite model. (d-h) Spatial distribution of

permafrost on the Tibetan Plateau from other studies. In (a) and (b), each point indicates the

average value of observed and modeled MAGT/ALT in the same grid cell. The horizontal error

bars represent the range of all observed MAGT/ALT located in the same grid cell, and vertical

error bars indicate the range of simulated MAGT/ALT in the same grid cell.
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Figure 4. Density scatter plot for comparison between observed and modeled mean annual

NDVIGS in the permafrost and non-permafrost areas from 2015 to 2018. (a, c) LightGBM, (b, d)

XGBoost. The black dashed line indicates a 1:1 line. The red line represents the regression line.
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was observed across the permafrost regions. Under the SSP1–2.6 scenarios, this variabil-401

ity contrasted with the SSP5–8.5 scenarios; specifically, the eastern permafrost regions402

were trending warmer, whereas the central Changtang Plateau and the Pamir Mountains403

experiencing cooling trends (Figure 5 (a-b)). The future dynamics of MAGT in these404

permafrost areas were expected to be largely influenced by the extent of climatic warm-405

ing (Figure 5 (c-d)). Figure 5 (e-h) depicts the changes in ALT across the permafrost406

areas on the TP under the AWI-CM-1-1-MR for both mid-century and end-century, un-407

der two contrasting scenarios, relative to the 2000–2018 baseline period. The pattern of408

ALT changes mirrored that of MAGT, with a notable increase in ALT observed in the409

TRS region and along the Qinghai-Tibet Engineering Corridor (QTEC), throughout the410

century under both scenarios. Therefore, additional actions are needed to maintain the411

stability of infrastructure in the QTEC in the future. However, in the western TP, the412

evolutionary trajectory of ALT was contingent upon the extent of climate warming, i.e.413

ALT was likely to decrease under stable climatic conditions, while it tended to increase414

in scenarios of ongoing climate warming. The spatial distribution of MAGT, ALT, and415

permafrost areas under both scenarios under the MPI-ESM1-2-HR was in correspondence416

with the results from AWI-CM-1-1-MR (Supporting Information Figure S4).417

We further detected the time evolution of permafrost areas, MAGT, and ALT across418

the TP from 2019 to 2100 under SSP1–2.6 and SSP5–8.5 scenarios (Figure 5 (i-k)). The419

projected permafrost area consistently showed a decreasing trend across different climate420

scenarios; however, the rate of this decline varied. Permafrost areas decreased gradually421

from 1.06± 0.00× 10 6 km2 (mean± standard deviation) to 0.87± 0.04× 10 6 km2 under422

SSP1-2.6 and 0.49± 0.02× 10 6 km2 under SSP5-8.5 during 2019–2100 at a rate of -0.02± 0.00× 10 6 km2
423

per decade (SSP1-2.6) and -0.07± 0.00× 10 6 km2 per decade (SSP5-8.5) under the lower424

and higher emission pathway, respectively (Figure 5 (i)). By 2100, the permafrost ar-425

eas, under SSP1-2.6 and SSP5-8.5, were projected to decrease by 22± 3% and 56± 2%,426

respectively, compared to the baseline period.427

Figure 5 (j) presents the changes in MAGT during the period 2019–2100. Although428

projected MAGT based on AWI-CM-1-1-MR and MPI-ESM1-2-HR varies considerably429

under SSP1–2.6, MAGT increases slightly in the first half-century and decreases further430

until the end of the century, with insignificant changes in MAGT throughout the cen-431

tury. Under SSP5–8.5 scenarios, MAGT increased significantly to around -1.0 ◦ C by 2100.432

Relative to the mean MAGT (-2.26± 0.17 ◦ C) in the baseline period, MAGT decreased433

by about -0.07± 0.18 ◦ C and -0.26± 0.15 ◦ C under SSP1–2.6 by mid-century (2041–2060)434

and end-century (2081–2100), respectively, while, under SSP5–8.5, MAGT increases by435

about 0.28± 0.03 ◦ C and 1.20± 0.05 ◦ C by the period 2041–2060 and 2081–2100, respec-436

tively.437

The time series of simulated ALT in the permafrost areas are shown in Figure 5438

(k). The temporal variation of ALT was different in both climate scenarios. Under the439

lower emission pathway, ALT had no evident change throughout this century, while in-440

creasing to around 5.0m by 2100 under severe climate warming. By the middle of this441

century, ALT in the permafrost areas of the TP increased by approximately 0.03± 0.17m442

to 0.37± 0.07m under SSP1–2.6 and SSP5–8.5 scenarios, respectively. However, ALT443

decreased by about 0.24± 0.11m under SSP1–2.6 and increased by about 1.87± 0.14m444

under SSP5–8.5 by the end of this century.445

3.3 Spatial and temporal patterns of the vegetation in the permafrost446

areas on the TP447

Analysis of satellite imagery data at the grid cell level (i.e. 0.1 ◦) revealed that, dur-448

ing the period from 2000 to 2018, NDVIGS trends in the majority of permafrost areas449

(67.17%) on the TP did not exhibit significant changes (p-value > 0.05). A portion of450

the permafrost areas, constituting 31.55%, displayed an increase in NDVIGS (p-value <451
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Figure 5. Spatial changes of the mean annual ground temperature (a-d) and active layer

thickness (e-h) on the Tibetan Plateau by mid-century (2041–2060) and end-century(2081–2100)

under SSP1–2.6 and SSP5–8.5 scenarios from AWI-CM-1-1-MR, related to the baseline period

(2000–2018), respectively. (i-k) Time evolution of the changes in permafrost areas, mean annual

ground temperature, and active layer thickness from 2019 to 2100 under the SSP1-2.6 and SSP5-

8.5 scenarios. The grey area indicates degraded permafrost areas compared with the baseline by

the mid-century (2041–2060) and end-century (2081–2100), and the blue, red, green, and orange

lines represent the SSP1–2.6 and SSP5–8.5 scenarios from AWI-CM-1-1-MR and SSP1–2.6 and

SSP5–8.5 scenarios from MPI-ESM1-2-HR, respectively.
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0.05), whereas a minimal area, representing only 1.28% experienced a decline in NDVIGS452

(p-value < 0.05) (Figure 6 (c)). Within the non-permafrost areas, 18.96% and 2.24% pro-453

portion of the area experienced an increased and decreased NDVIGS , respectively, dur-454

ing the same period (Figure 6 (d)). Although we utilized data from both permafrost and455

non-permafrost areas across all grid cells to construct our training dataset, the predic-456

tive accuracy for extrapolations beyond the training data range was notably constrained,457

especially under the high-emission SSP5–8.5 scenarios, due to the inherent data depen-458

dency in machine learning. To enhance the robustness of our future NDVI change sim-459

ulations, we narrowed down our predictions to 2050. Our machine learning analysis, based460

on the SSP1–2.6 scenarios using two ESMs, indicated a stable NDVIGS (ensemble mean)461

across the permafrost areas, with no significant alterations anticipated from 2019 through462

2050 (p-value > 0.05), maintaining an average NDVIGS of 0.25± 0.03 (Figure 6 (a); blue463

and green line). Spatial distribution analysis of the mean annual NDVIGS trend under464

both ESMs showed no considerable shifts in vegetation conditions over 85–97% of the465

permafrost regions up to the middle of the century (Figure 6 (e) and Supporting Infor-466

mation Figure S5 (a)), this stability likely attributable to the relatively stable climatic467

conditions associated with lower emission trajectories. In contrast, under the SSP5–8.5468

scenarios, results from the Mann-Kendall test suggested a marginally increasing trend469

in the ensemble mean of the NDVIGS anomaly time series (0.05 < p-value < 0.10), with470

a rate of 0.01± 0.00 per decade (Figure 6 (a); orange and red line). Moreover, over 7–471

29% of the permafrost areas exhibited increased NDVIGS , while a significant decrease472

in NDVIGS was observed in only about 0.33–1.17% of the area under both scenarios (Fig-473

ure 6 (g) and Supporting Information Figure S5 (c)). Consequently, our findings hint at474

a potential slightly increased NDVIGS within the permafrost areas over the TP, amidst475

the ongoing severe climate warming projected by the middle of the century. Figure 6 (b,476

f, h) and Supporting Information Figure S5 (b, d) outline the time series of the NDVIGS477

anomaly and spatial distribution of the mean annual NDVIGS trend across the non-permafrost478

areas. From 2019 to 2050, the ensemble mean of the time series for mean annual NDVIGS479

anomaly in the majority of non-permafrost areas was expected to remain relatively sta-480

ble under SSP1–2.6 scenarios (p-value > 0.05), while a slight increase in NDVIGS trend,481

similar with the permafrost areas, is anticipated under SSP5–8.5 scenarios (0.05 < p-482

value < 0.10). Spatially, 1.90–5.03% permafrost and 6.10–8.77% non-permafrost areas483

showed an increasing trend under the SSP1–2.6 and SSP5–8.5 scenarios, respectively. In484

summary, NDVIGS trends in most permafrost and non-permafrost areas were expected485

to remain stable under lower emission pathways till the midpoint of this century. Con-486

versely, under higher emission pathways, NDVIGS was likely to exhibit an increasing trend487

in permafrost and non-permafrost areas. According to the vegetation types dataset of488

the TP Zhou et al. (2022), the alpine meadow and alpine steppe constituted the primary489

vegetation in the permafrost areas. We further detected the annual NDVIGS change for490

different vegetation types (alpine steppe and alpine meadow) in the permafrost areas (Sup-491

porting Information Figure S6). Our results showed that areas with increased mean an-492

nual NDVIGS outnumbered those with decreased mean annual NDVIGS for both veg-493

etation types, although the extent of this disparity varied under the two scenarios.494

3.4 Important features of spatiotemporal variability of the vegetation495

in the permafrost areas on the TP496

The evolution of vegetation is influenced by an interplay of various climatic and497

terrestrial factors (Hawinkel et al., 2016; Y. Wei et al., 2022; Higgins et al., 2023). We498

performed ridge regression for both permafrost and non-permafrost areas to identify the499

absolute values of the contribution of each explanatory factor and detect the most im-500

portant variables to NDVIGS change. For the baseline period, climate variables (i.e. SATGS ,501

PREGS , and SINGS) contributed notably (59.34% of permafrost areas and 68.65% of non-502

permafrost areas) to the NDVIGS change, specifically, the contribution of SATGS was503

the largest (22.99%) in the permafrost and was the secondary important factor (21.53%)504
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Figure 6. (a-b) Time series of mean annual NDVIGS anomalies (minus the mean value dur-

ing 2000–2018) from 2019 to 2050 under the future climate conditions on the permafrost and

non-permafrost areas over the TP. The blue, red, green, and orange lines represent SSP1–2.6

and SSP5–8.5 scenarios from AWI-CM-1-1-MR and MPI-ESM1-2-HR, respectively. (c-h) Spatial

patterns of mean annual NDVIGS trend across the permafrost and non-permafrost areas during

the baseline (2000–2018) and future periods (2019–2050) under different climate scenarios from

AWI-CM-1-1-MR. N, NS, and P indicate negative, non-significant, and positive trends. * and **

represent significance at p-value < 0.05 and 0.01, respectively
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in the non-permafrost area of the plateau, the PREGS was identified as the third impor-505

tant factor and made similar contributions (17.52% and 19.67%) in the permafrost and506

non-permafrost areas, the SINGS had more contributions to the NDVIGS change in the507

non-permafrost areas (27.45%) than that of in the permafrost areas (18.84%) (Figure508

7 (a-d)). For the terrestrial variables (i.e. STGS , LWCGS , and ALTGS [excluded in non-509

permafrost areas]), they contributed to the NDVIGS change of approximately 40% of the510

permafrost areas and 30% of the non-permafrost areas. We used the same method to ex-511

amine the dominant factors controlling the change of annual NDVIGS during 2019–2050512

under different climate scenarios and different ESMs (Figure 7 (e-l) and Supporting In-513

formation Figure S7 (a-h)). The results revealed that predominant factors affecting the514

future NDVIGS changes in permafrost and non-permafrost areas under the different sce-515

narios remained largely consistent. That is, under the SSP1–2.6 and SSP5–8.5 scenar-516

ios, it was found that SATGS and LWCGS emerged as the primary determinants of the517

interannual variability in NDVIGS across permafrost areas, influencing between 61.24%518

and 76.26% of these areas. In non-permafrost areas on the TP, SINGS was identified as519

the predominant driver behind NDVIGS interannual variability, affecting 33.38% to 45.59%520

of the areas under both scenarios. Supporting Information Figure S8 depicts the spa-521

tial patterns and relative importance of each explanatory variable across diverse vege-522

tation types. The NDVIGS interannual variation in both vegetation types was respon-523

sive to variations of climatic factors in the baseline period (approximately 60%). Aim-524

ing at the future periods, SATGS and LWCGS explained a much larger portion of the525

NDVIGS variations than other factors in both vegetation types (Supporting Information526

Figure S8 (e-l)). Overall, the interannual variability of the NDVIGS tended to be pre-527

dominantly controlled by the climate variables in both permafrost and non-permafrost528

areas from 2000 to 2018. Compared to the baseline period, our study indicated that SATGS ,529

LWCGS and SINGS were the main contributors to the NDVIGS change in the permafrost530

and non-permafrost areas in the future periods (Figure 7 (e-l), Supporting Information531

Figure S7 (a-h)). Consequently, surface air temperature, liquid water content at the root532

zone, and incoming solar radiation played an important role in future NDVIGS evolu-533

tion on the TP.534

4 Discussion535

4.1 Comparison with previous modeling studies of the permafrost state536

and vegetation conditions on the TP537

In this study, we utilized a computationally efficient numerical permafrost model538

(CryoGridLite) driven by climatic forcing data to simulate the thermal state of permafrost539

and ALT over the TP from 1979 to 2100. Table S5 summarizes the simulation results540

of the thermal state of permafrost and ALT on the TP under present and future climate541

conditions in the past 10 years based on different approaches. For the historical period,542

our results fell within the range of these studies for the permafrost state (MAGT: [-3.32◦ C,543

-1.35◦ C]; Permafrost areas: [1.01× 10 6 km2, 1.66× 10 6 km2]) and ALT [1.24m, 3.23m].544

As previously mentioned, the differences among these simulation results can be attributed545

to spatial resolution and study period, study approaches, and the definition of the per-546

mafrost state and ALT, etc. For the future period, although there were variations in mag-547

nitude and trends for the permafrost state and ALT between our study and others, all548

demonstrated that permafrost degradation over the TP would be an inevitable conse-549

quence in the 21st century under the SSP5–8.5/Representative Concentration Pathway550

(RCP) 8.5 scenarios. Meanwhile, under the SSP1–2.6/RCP2.6 scenarios, permafrost was551

anticipated to exhibit relative stability or only slight warming until the end of the cen-552

tury and was most likely aggradation in the northwest of the plateau due to the cool-553

ing surface air temperature under the SSP1-2.6 scenarios. In addition to the reasons men-554

tioned above, the divergence in projections could largely be explained by the disparities555

among the ESMs employed in these studies. For instance, G. Zhang et al. (2022) used556
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Figure 7. Spatial distribution of the dominant factors to the NDVIGS changes over different

periods in the permafrost and non-permafrost areas. (a, c) Baseline period (2000–2018). (e, g)

Future period (SSP1–2.6; AWI-CM-1-1-MR). (i,k) Future period (SSP5–8.5; AWI-CM-1-1-MR).

The barplot (b, d, f, h, j, l) represents the proportion of the contribution of each variable in the

permafrost and non-permafrost areas under AWI-CM-1-1-MR.
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the Noah-LSM driven by five ESMs to project permafrost stability on the TP through-557

out this century. Their findings revealed significant variances among the ESMs’ projec-558

tions under identical scenarios (e.g. under the SSP5-8.5 scenarios, simulations driven by559

CESM2 and EC-Earth3 suggested that permafrost was highly likely to vanish by 2100,560

while, projections based on MPI-ESM1-2-HR (also used in our study) indicated that ap-561

proximately 0.5× 10 6 km2 (similar with our results) of permafrost might persist by the562

end of the century).563

To project the NDVI in the future on the TP, we employed statistical models trained564

by machine-learning algorithms under two contrasting climate scenarios in this study.565

For the historical period (2000–2018), MODIS imagery indicated that the NDVIGS showed566

an increasing trend over the TP, with a rate of 0.01 per decade, and 24% proportion of567

the area covered by plants exhibits greening (Supporting Information Figure S2 (a-c)).568

In addition to the MODIS NDVI data, other ecological indicators (e.g. LAI, NPP, EVI,569

fractional vegetation coverage [FVC]) demonstrated that vegetation greenness increased570

on the TP since 2000 (Piao et al., 2020; M. Shen et al., 2022; Yang et al., 2023; X. Zhang571

& Li, 2023). Regarding vegetation evolution in the future, although few studies have elu-572

cidated the magnitude and trends of NDVI in the permafrost areas on the TP (H. Li et573

al., 2024), studies based on other vegetation factors and methods showed that under the574

background of future climate change, there was a potential for vegetation greening on575

the TP (Q. Gao et al., 2016; Mahowald et al., 2016; W. Liu et al., 2020; Cuo et al., 2022;576

M. Shen et al., 2022; Kong et al., 2023), which aligns with our study. For example, Q. Gao577

et al. (2016) and Cuo et al. (2022) applied the Lund-Potsdam-Jena dynamic global veg-578

etation model (LPJ-DGVM) to quantify the annual NPP changes on the TP under CMIP5/CMIP6579

scenarios. Their findings indicated a general increase in annual NPP, with a notable shift580

in the dominant vegetation, as alpine shrubs are projected to replace alpine meadows581

and steppes. The simulation results from ESMs (CMIP5) and regional climate models582

indicated a continued increasing trend of LAI by the end of the century in the north-583

ern temperate region (25–50◦ N: including the TP) and TP (Mahowald et al., 2016; W. Liu584

et al., 2020). Kong et al. (2023) constructed a framework of machine learning algorithms585

to predict the evolution trajectory of FVC in China under four SSP scenarios from 2019586

to 2060, with FVC showing an increasing trend except for the east region of China. H. Li587

et al. (2024) indicated that under the various climate scenarios, along with significant588

permafrost degradation, the TP exhibited a greening (NDVI) trend in vegetation which589

persists until the end of the century. In addition to employing the vegetation indices to590

analyze future vegetation greenness, a recent review summarized the potential plant phe-591

nology changes on the TP in this century, which included the advanced start of the grow-592

ing season and the delayed end of the growing season, causing vegetation greening on593

the TP (M. Shen et al., 2022). Besides, we would like to point out that there are ongo-594

ing debates regarding the continued vegetation greening phenomenon that occurs on the595

TP and the prospect of the TP becoming a net carbon sink in the future, especially con-596

sidering carbon released by thawing permafrost and enhanced soil and plant respiration597

(X. Jin et al., 2021; D. Wei et al., 2021; Ehlers et al., 2022; T. Wang et al., 2022). Con-598

sequently, an enhanced focus on the vegetation conditions within the permafrost regions599

of the Tibetan Plateau is warranted in future studies.600

4.2 Important features of vegetation greening601

In our study, we used ridge regression to discern the absolute values of the contri-602

butions of the driving factors for the NDVI changes on the TP. For the baseline period,603

the climatic variables were the important features of NDVIGS on the TP in both per-604

mafrost (approximately 60%) and non-permafrost areas (approximately 70%) (Figure605

7, Supporting Information Figure S7). Piao et al. (2020) noted that dynamic global veg-606

etation models suggested that CO2 fertilization (a phenomenon widely acknowledged for607

enhancing vegetation growth) continued to be the predominant factor driving vegeta-608

tive greening on a global scale. However, in northern high latitudes and the TP, it is the609
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increasing temperatures that primarily contributed to the observed greening trends (LAI).610

Statistical analysis (Teng et al., 2021; X. Li et al., 2022; M. Shen et al., 2022; T. Wang611

et al., 2022) and sensitivity experiments (Y. Wang et al., 2023) also demonstrated that612

climate change played an important role in vegetation growth over the past 40 years on613

the TP, albeit with contributions of varying magnitudes. This variability in quantita-614

tive contributions was attributed to the differential impact of various input explanatory615

variables (e.g. climate variables, terrain, soil properties) and different data sources (e.g.616

MODIS data, Global Inventory Modeling and Mapping Studies NDVI product [GIMMS617

NDVI], and SPOT VEGETATION imagery [SPOT-VEG NDVI]). For the future period,618

our findings indicated that, compared with the baseline period, NDVIGS showed a po-619

tential increasing trend likely occurring in the permafrost areas under the SSP5–8.5 sce-620

narios, mainly attributed to the change of SATGS and LWCGS . Supporting Information621

Figure S9 and S10 indicate the spatiotemporal distribution of LWCGS and SATGS in622

the permafrost areas from 2019 to 2050. In the vast majority of permafrost regions, both623

the SATGS and the LWCGS have exhibited an increasing trend. This was in agreement624

with the results from J. Gao et al. (2017), who combined the LPJ-DGVM with the ge-625

ographical regression, and R. Cao et al. (2023), who conducted multiple sensitivity ex-626

periments based on machine learning algorithms. All indicated that temperature would627

more significantly affect vegetation changes over the TP. One potential explanation is628

that warmer temperatures extend the duration of growing seasons, enhance photosyn-629

thetic activity, and lead to greater biomass accumulation ((J. Gao et al., 2017; X. Li et630

al., 2022; M. Shen et al., 2022)). Additionally, our results emphasized the important role631

of LWCGS in vegetation growing in the permafrost areas. Besides, it is important to ac-632

knowledge that in this study we only considered the impact of a few variables on NDVIGS633

change over the TP, without taking into account other factors. Future studies should syn-634

thesize more driving factors and implement more analysis methods (e.g. partial corre-635

lation analysis or structural equation model) to improve our understanding of the veg-636

etation change on the TP.637

4.3 Model limitation and uncertainty638

While the CryoGridLite model capably replicates the mean state (Figure 3 (a-b),639

Table S4) and temporal evolution (Supporting Information Figure S3) of the permafrost640

thermal regime across the TP, there is a need for further development and enhancements641

to diminish the uncertainty of simulations. For instance, the single offline simulation driven642

by singular meteorological forcing data (He et al., 2020) and soil stratigraphy datasets643

(Y. Dai, Xin, et al., 2019; Y. Dai, Wei, et al., 2019) and a fixed maximum snow depth644

(i.e., 0.1m) and snow density (i.e., 150 kgm−3) for all grid cells may introduce a large645

degree of uncertainty for simulation (W. Wang et al., 2016; Lu et al., 2020; Langer et646

al., 2024). Hence, conducting ensemble parameter simulations (including forcing, soil,647

and snow properties datasets) should be the direction of our subsequent research endeav-648

ors (Nitzbon et al., 2023; Langer et al., 2024). This approach is crucial for a more ac-649

curate quantification of the permafrost thermal state across the TP. Furthermore, com-650

pared with Nitzbon et al. (2023) and Langer et al. (2024), in this tailored version of Cryo-651

GridLite, we implemented the surface energy balance (Supporting Information Text S1.1)652

and ”bucket” scheme (Supporting Information Text S1.2) to calculate the dynamics of653

upper boundary conditions and groundwater changes, respectively. However, as pointed654

out by Langer et al. (2024), the model calculated the ground freezing by an enthalpy–temperature655

relation of free water instead of accurate soil freezing characteristic curves, and the model656

does not account for the interactions between permafrost and vegetation (Stuenzi, Boike,657

Cable, et al., 2021; Stuenzi, Boike, Gädeke, et al., 2021), subsidence processes following658

excess ice melting (Nitzbon et al., 2019), and sub-grid lateral fluxes (Nitzbon et al., 2021),659

which are known to affect permafrost thaw trajectories in complex landscapes. Further660

detailed descriptions of model limitation and uncertainty can be found in Langer et al.661

(2024). Moreover, for future permafrost simulations, we employed two ESMs (AWI-CM-662
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1-1-MR and MPI-ESM1-2-HR) to drive our CryoGridLite model. These ESMs have demon-663

strated their capability in accurately reproducing mean annual and seasonal surface air664

temperatures over recent decades (R. Chen, Li, et al., 2022). However, significant dis-665

crepancies were observed in their representation of precipitation changes (R. Chen, Duan,666

et al., 2022), introducing a notable degree of uncertainty into our permafrost projections.667

This is due to the permafrost’s thermal state being highly sensitive not only to air tem-668

perature but also to precipitation; increased rainfall can significantly mitigate permafrost669

degradation on the Tibetan Plateau (TP) (G. Zhang et al., 2021; Hamm et al., 2023).670

Therefore, to enhance our understanding of permafrost evolution on the TP, it is imper-671

ative to conduct additional simulations using a variety of ESMs672

Regarding the NDVI changes predicted by our model, we acknowledge a certain673

degree of uncertainty inherent in the outputs of our machine learning algorithms. Pri-674

marily, these models are challenged by their reliance on data-driven approaches, which675

may lack a solid physical basis, transparency, interpretability, and a heightened sensi-676

tivity to outliers, potentially leading to instability or inaccurate predictions (G. Zhang677

et al., 2022; C. Shen et al., 2023). Therefore, in our study, although we implemented sev-678

eral strategies to overcome the inherent shortcomings of machine learning algorithms,679

to make our results more robust, we extrapolated the predicted NDVI only to 2050. In680

addition, while NDVI data are extensively utilized for assessing the vegetative state of681

the TP (Teng et al., 2021; T. Wang et al., 2022; Yang et al., 2023), the reliability of this682

satellite-derived data is considerably impacted by factors such as sensor characteristics,683

atmospheric interference, and soil background effects (Sha et al., 2020). Therefore, it is684

crucial for future research to incorporate a broad spectrum of vegetation indices (e.g. LAI,685

EVI, NPP, soil-adjusted vegetation index) and apply more data to feed machine learn-686

ing model to reduce these errors and enable a more comprehensive analysis of vegeta-687

tive dynamics on the TP, particularly against the backdrop of ongoing climatic warm-688

ing. Moreover, we would like to point out that NDVIGS predictions in this study were689

based on MODIS satellite imagery. Owing to the data dependency of the machine learn-690

ing model, the use of alternative NDVI products as response variables might yield di-691

vergent results. This is particularly evident in the study of Yang et al. (2023), which em-692

ployed multi-source data to investigate vegetation changes on the TP since 2000, reveal-693

ing significant spatiotemporal discrepancies among MODIS data, GIMMS NDVI, and694

SPOT-VEG NDVI (e.g. SPOT-VEG NDVI (p < 0.001) and MODIS NDVI (p < 0.05)695

indicated a significant increasing trend, while GIMMS NDVI data (p < 0.534) did not696

show a significant increasing trend in NDVI on the TP). Meanwhile, the selection of ex-697

planatory variables significantly influences the determination of the quantitative contri-698

butions of predominant factors. Additionally, vegetation browning events induced by abrupt699

permafrost thaw (Heijmans et al., 2022) and vegetation greening occurring in thermokarst-700

drained lake basins (Y. Chen et al., 2023) are not considered in our study, which play701

an important role in controlling vegetation growth. Despite several shortcomings in our702

permafrost model and machine learning algorithms, our results attempt to provide a frame-703

work for exploring future vegetation changes in cold regions and identified limitations704

give opportunities for future improvements in our modeling approach.705

5 Conclusions706

In this study, we combined a numerical permafrost model (CryoGridLite) with machine-707

learning algorithms to analyze the vegetation conditions in the permafrost areas over the708

TP under various climate scenarios. Our model simulations, when compared with ob-709

servational data, efficiently captured the spatiotemporal patterns of permafrost across710

the TP during the baseline period (2000–2018), and the machine learning algorithm ef-711

fectively reproduced the interannual NDVIGS for the testing period (2015–2018). Forced712

by different climate conditions, our CryoGridLite model projected a continual decline713

in the permafrost areas on the TP in response to future climate warming. Under the SSP1-714
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2.6 scenario, mean annual ground temperature and active layer thickness appeared sta-715

ble on average, but with regionally different responses i.e mean annual ground temper-716

ature and active layer thickness tended to increase in the Three River Source region and717

Qinghai-Tibet Engineering Corridor and decrease in the northwest of TP. However, un-718

der the SSP5-8.5 scenarios, there was a notable increase in both mean annual ground719

temperature and active layer thickness. Remote sensing imagery from MODIS suggested720

that approximately 30% of the permafrost areas on the TP showed an increasing trend721

in NDVIGS over the baseline period. The results of machine learning indicated that un-722

der the low emission scenario (SSP1–2.6), no significant change in NDVIGS was expected723

for >85% permafrost areas in the future. In contrast, under the high emission scenario,724

an increasing trend in NDVIGS in the future in about 7.31–29.10% of the permafrost ar-725

eas, with less than 2% of the area experiencing a significantly decreased NDVI. Anal-726

ysis of the contributory factors revealed that climatic factors during the growing season727

were the primary influence on NDVI alterations within the permafrost areas for the base-728

line period (2000–2018). For the future periods (2019–2050), it was found that the sur-729

face air temperature and liquid water content at the root zone during the growing sea-730

son were anticipated to play a crucial, undeniable role in the NDVIGS changes within731

the permafrost areas. Although our approach has not yet fully accounted for the pro-732

cesses affecting the thermal state of permafrost and vegetation growth on the TP, the733

coupling of process-based and data-driven models provides a potential and meaningful734

pathway for detecting future vegetation evolution on the plateau. Our future research735

will aim to address the limitations of our methodology and deliver more accurate pre-736

dictions, thereby enhancing our understanding of the carbon budget of the TP.737
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Muñoz-Sabater, J., Dutra, E., Agust́ı-Panareda, A., Albergel, C., Arduini, G., Bal-1005

samo, G., . . . Thépaut, J.-N. (2021). Era5-land: a state-of-the-art global1006

reanalysis dataset for land applications. Earth System Science Data, 13 ,1007

4349–4383. doi: https://doi.org/10.5194/essd-13-4349-20211008

Myers-Smith, I. H., Kerby, J. T., Phoenix, G. K., Bjerke, J. W., Epstein, H. E., Ass-1009

mann, J. J., . . . Wipf, S. (2020). Complexity revealed in the greening of the1010

arctic. Nature Climate Change, 10 , 106–117. doi: https://doi.org/10.1038/1011

s41558-019-0688-11012

Ni, J., Wu, T., Zhu, X., Hu, G., Zou, D., Wu, X., . . . Yang, C. (2021). Simula-1013

tion of the present and future projection of permafrost on the qinghai-tibet1014

plateau with statistical and machine learning models. Journal of Geophysical1015

Research: Atmospheres, 126 , e2020JD033402. doi: https://doi.org/10.1029/1016

2020JD0334021017

Nitzbon, J., Krinner, G., von Deimling, T. S., Werner, M., & Langer, M. (2023).1018

First quantification of the permafrost heat sink in the earth’s climate sys-1019

tem. Geophysical Research Letters, 50 , e2022GL102053. doi: https://doi.org/1020

10.1029/2022GL1020531021

Nitzbon, J., Langer, M., Martin, L. C. P., Westermann, S., von Deimling, T. S., &1022

Boike, J. (2021). Effects of multi-scale heterogeneity on the simulated evolu-1023

tion of ice-rich permafrost lowlands under a warming climate. The Cryosphere,1024

15 , 1399–1422. doi: https://doi.org/10.5194/tc-15-1399-20211025

Nitzbon, J., Langer, M., Westermann, S., Martin, L., Aas, K. S., & Boike, J.1026

(2019). Pathways of ice-wedge degradation in polygonal tundra under1027

different hydrological conditions. The Cryosphere, 13 , 1089–1123. doi:1028

https://doi.org/10.5194/tc-13-1089-20191029

Nitze, I., Grosse, G., Jones, B. M., Romanovsky, V. E., & Boike, J. (2018). Re-1030

mote sensing quantifies widespread abundance of permafrost region distur-1031

bances across the arctic and subarctic. Nature Communications, 9 , 5423. doi:1032

https://doi.org/10.1038/s41467-018-07663-31033

Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H. H., Dasht-1034

seren, A., . . . Zou, D. (2019). Northern hemisphere permafrost map based1035

on ttop modelling for 2000–2016 at 1km2 scale. Earth-Science Reviews, 193 ,1036

299–316. doi: https://doi.org/10.1016/j.earscirev.2019.04.0231037

–28–



manuscript submitted to JGR: Earth Surface

Orsolini, Y., Wegmann, M., Dutra, E., Liu, B., Balsamo, G., Yang, K., . . . Arduini,1038

G. (2019). Evaluation of snow depth and snow cover over the tibetan plateau1039

in global reanalyses using in situ and satellite remote sensing observations. The1040

Cryosphere, 13 , 2221–2239. doi: https://doi.org/10.5194/tc-13-2221-20191041

Pang, G., Chen, D., Wang, X., & Lai, H. (2022). Spatiotemporal variations of land1042

surface albedo and associated influencing factors on the tibetan plateau. Sci-1043

ence of The Total Environment , 804 , 150100. doi: https://doi.org/10.1016/j1044

.scitotenv.2021.1501001045

Pang, Y., Zou, K., Guo, X., Chen, Y., Zhao, J., Zhou, F., . . . Yang, G. (2022).1046

Geothermal regime and implications for basin resource exploration in the1047

qaidam basin, northern tibetan plateau. Journal of Asian Earth Sciences, 239 ,1048

105400. doi: https://doi.org/10.1016/j.jseaes.2022.1054001049

Pearson, R. G., Phillips, S. J., Loranty, M. M., Beck, P. S. A., Damoulas, T.,1050

Knight, S. J., & Goetz, S. J. (2013). Shifts in arctic vegetation and associ-1051

ated feedbacks under climate change. Nature Climate Change, 3 , 673–677. doi:1052

https://doi.org/10.1038/nclimate18581053

Piao, S., Wang, X., Park, T., Chen, C., Lian, X., He, Y., . . . Myneni, R. B. (2020).1054

Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth1055

& Environment , 1 , 14–27. doi: https://doi.org/10.1038/s43017-019-0001-x1056

Prager, C. M., Boelman, N. T., Eitel, J. U. H., Gersony, J. T., Greaves, H. E.,1057

Heskel, M. A., . . . Griffin, K. L. (2020). A mechanism of expansion: arctic de-1058

ciduous shrubs capitalize on warming-induced nutrient availability. Oecologia,1059

192 , 671–685. doi: https://doi.org/10.1007/s00442-019-04586-81060

Qin, Y., Wu, T., Zhao, L., Wu, X., Li, R., Xie, C., . . . Hao, J. (2017). Numerical1061

modeling of the active layer thickness and permafrost thermal state across1062

qinghai-tibetan plateau. Journal of Geophysical Research: Atmospheres, 122 ,1063

11604–11620. doi: https://doi.org/10.1002/2017JD0268581064

Ran, Y., Cheng, G., Dong, Y., Hjort, J., Lovecraft, A. L., Kang, S., . . . Li, X.1065

(2022). Permafrost degradation increases risk and large future costs of in-1066

frastructure on the third pole. Communications Earth & Environment , 3 , 238.1067

doi: https://doi.org/10.1038/s43247-022-00568-61068

Ran, Y., Li, X., & Cheng, G. (2018). Climate warming over the past half century1069

has led to thermal degradation of permafrost on the qinghai–tibet plateau. The1070

Cryosphere, 12 , 595–608. doi: https://doi.org/10.5194/tc-12-595-20181071

Ran, Y., Li, X., Cheng, G., Che, J., Aalto, J., Karjalainen, O., . . . Chang, X.1072

(2022). New high-resolution estimates of the permafrost thermal state and1073

hydrothermal conditions over the northern hemisphere. Earth System Science1074

Data, 14 , 865–884. doi: https://doi.org/10.5194/essd-14-865-20221075

Ran, Y., Li, X., Cheng, G., Nan, Z., Che, J., Sheng, Y., . . . Wu, X. (2021). Mapping1076

the permafrost stability on the tibetan plateau for 2005–2015. Science China1077

Earth Sciences, 64 , 62–79. doi: https://doi.org/10.1007/s11430-020-9685-31078

Semmler, T., Danilov, S., Gierz, P., Goessling, H. F., Hegewald, J., Hinrichs, C., . . .1079

Jung, T. (2020). Simulations for cmip6 with the awi climate model awi-cm-1-1.1080

Journal of Advances in Modeling Earth Systems, 12 , e2019MS002009. doi:1081

https://doi.org/10.1029/2019MS0020091082

Sha, H., Lina, T., P, H. J., Yang, W., & Guofan, S. (2020). A commentary re-1083

view on the use of normalized difference vegetation index (ndvi) in the era1084

of popular remote sensing. Journal of Forestry Research, 32 , 1–6. doi:1085

https://doi.org/10.1007/s11676-020-01155-11086

Shen, C., Appling, A. P., Gentine, P., Bandai, T., Gupta, H., Tartakovsky, A., . . .1087

Lawson, K. (2023). Differentiable modelling to unify machine learning and1088

physical models for geosciences. Nature Reviews Earth & Environment , 4 ,1089

552–567. doi: https://doi.org/10.1038/s43017-023-00450-91090

Shen, M., Wang, S., Jiang, N., Sun, J., Cao, R., Ling, X., . . . Fu, B. (2022). Plant1091

phenology changes and drivers on the qinghai–tibetan plateau. Nature Re-1092

–29–



manuscript submitted to JGR: Earth Surface

views Earth & Environment , 3 , 633–651. doi: https://doi.org/10.1038/1093

s43017-022-00317-51094

Shi, S., Wang, P., Zhan, X., Han, J., Guo, M., & Wang, F. (2023). Warming and in-1095

creasing precipitation induced greening on the northern qinghai-tibet plateau.1096

Catena, 233 , 107483. doi: https://doi.org/10.1016/j.catena.2023.1074831097

Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J., & Romanovsky, V. E. (2022).1098

The changing thermal state of permafrost. Nature Reviews Earth & Environ-1099

ment , 3 , 10–23. doi: https://doi.org/10.1038/s43017-021-00240-11100

Song, L., Wang, L., Zhou, J., Luo, D., & Li, X. (2022). Divergent runoff impacts1101

of permafrost and seasonally frozen ground at a large river basin of tibetan1102

plateau during 1960–2019. Environmental Research Letters, 17 , 124038. doi:1103

https://doi.org/10.1088/1748-9326/aca4eb1104

Stuenzi, S. M., Boike, J., Cable, W., Herzschuh, U., Kruse, S., Pestryakova, L. A.,1105

. . . Langer, M. (2021). Variability of the surface energy balance in permafrost-1106

underlain boreal forest. Biogeosciences. doi: https://doi.org/10.5194/1107

bg-18-343-20211108
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Key Points:9

• By 2100, the permafrost areas will thaw at 0.23± 0.04 and 0.60± 0.02× 10 6 km2
10

under SSP1–2.6 and SSP5–8.5, respectively.11

• By 2050, NDVI in the permafrost areas likely stay stable under SSP1–2.6 scenar-12

ios and likely show a rising trend under SSP5–8.5 scenarios.13

• Surface air temperature and liquid water content at the root zone are the dom-14

inant features affecting NDVI changes in the permafrost areas.15
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Abstract16

Permafrost degradation on the Tibetan Plateau is well-documented and expected to con-17

tinue throughout this century. However, the impact of thawing permafrost on the dis-18

tribution, composition, and resilience of vegetation communities in this region is not well19

understood. In this study, we combined a transient numerical permafrost model with ma-20

chine learning algorithms to project the near-future thermal state of permafrost and veg-21

etation (represented by the Normalized Difference Vegetation Index [NDVI]) changes un-22

der two contrasting climate pathways (Shared Socioeconomic Pathway 1–2.6 [SSP1–2.6]23

and SSP5–8.5). The contribution of climatic and terrestrial variables to vegetation evo-24

lution was quantified using ridge regression. By 2100, permafrost areas were expected25

to decrease by 21± 4%, and 55± 2% under the SSP1–2.6 and SSP5–8.5 scenarios, respec-26

tively, relative to the baseline period (2000–2018). Under the SSP1–2.6 scenarios, the27

mean annual ground temperature and active layer thickness were projected to fluctuate28

stably, while under the SSP5–8.5 scenarios, a significant increasing trend was anticipated.29

Satellite-based observations indicated an increasing trend of NDVI within the permafrost30

areas from 2000 to 2018 (0.01 per decade), mainly attributed to climatic factors. In the31

future, vegetation greenness was expected to possibly remain stable under SSP1–2.6 sce-32

narios, whereas a rising trend was likely noted under SSP5–8.5 scenarios during 2019–33

2050, mainly controlled by the surface air temperature and liquid water content at the34

root zone during the growing season. Our modeling work provides a potential approach35

for investigating future vegetation changes and offers more possibilities to improve un-36

derstanding of the interaction between soil-vegetation-atmosphere in cold regions.37

Plain Language Summary38

About 40% of the Tibetan Plateau is underlain by permafrost, which has under-39

gone significant degradation and is estimated to experience substantial thawing by the40

end of this century. The thawing permafrost has impacted vegetation growth. To date,41

it has not been clear how the Normalized Difference Vegetation Index (NDVI; represent-42

ing vegetation) changes with climate warming and permafrost degradation. Here, we used43

a land surface model and machine learning algorithms to simulate future permafrost ther-44

mal regimes and variations in the NDVI for future growing seasons and assess the most45

important variables influencing NDVI variability. We found that permafrost areas were46

projected to shrink by 21± 4% under the SSP1–2.6 scenarios and 55± 2% under the SSP5–47

8.5 scenarios by 2100, compared to the baseline period (2000–2018). Our results suggested48

that under mild climate conditions (SSP1–2.6), NDVI in the permafrost areas likely re-49

mained stable from 2019 to 2050, while NDVI in the permafrost areas likely showed an50

increasing trend under harsh climate conditions (SSP5–8.5), which was mainly due to51

increasing surface air temperature and liquid water content at the root zone on the Ti-52

betan Plateau.53

1 Introduction54

The Tibetan Plateau (TP; Figure 1) hosts the world’s most extensive high-altitude55

permafrost areas, estimated at 1.15× 10 6 km2 (2005–2015) (Ran et al., 2021). Previous56

studies showed that permafrost had undergone significant degradation due to anthro-57

pogenic warming (Smith et al., 2022; X. Wang et al., 2022; Baral et al., 2023), as evi-58

denced by increased mean annual ground temperature (MAGT) (Q. Wu & Zhang, 2008;59

Zhao et al., 2021), increased active layer thickness (ALT) (Q. Wu & Zhang, 2010; Qin60

et al., 2017), reduced permafrost thickness and areas (D. Guo & Wang, 2013; Ran et al.,61

2018), and altered geomorphological features (T. Gao et al., 2021; Xia et al., 2022). Ac-62

cording to state-of-the-art Earth System Models (ESMs), the mean annual surface air63

temperature over the TP is projected to rise by 1.9 ◦ C under the Shared Socioeconomic64

Pathway 1–2.6 (SSP1–2.6) and by as much as 6.3 ◦ C under SSP5–8.5 by the end of the65
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21st century, relative to the baseline period of 1981–2010 (R. Chen, Li, et al., 2022). Such66

warming is expected to exacerbate the thawing and warming of the permafrost. Com-67

pared to the baseline period (2006–2015), the MAGT and ALT are estimated to increase68

by 0.8 ◦ C to 2.6 ◦ C and 0.7m to 3.0m, respectively, in the period 2091–2100 under the69

SSP2–4.5 to SSP5–8.5 scenarios (G. Zhang et al., 2022), corresponding with a decline70

in permafrost areas by 44% to 71% (G. Zhang et al., 2022). This degradation is expected71

to cause major impacts on the carbon budget (Mu et al., 2020; T. Wang et al., 2020),72

hydrological dynamics (Song et al., 2022; T. Wang et al., 2023), ecosystem (Cuo et al.,73

2022; T. Wang et al., 2022), and infrastructure stability (Ran, Cheng, et al., 2022; R. Chen74

et al., 2023) on the regional scale. Vegetation covers approximately 81% of the permafrost75

areas on the TP, rendering it the predominant surface characteristic (Z. Wang et al., 2016).76

With methodological innovations, sophisticated models, and a surge in observational data,77

our understanding of permafrost–vegetation interactions is improving (Heijmans et al.,78

2022). On the one hand, vegetation significantly influences the hydrothermal regime, car-79

bon, and nutrient dynamics in permafrost environments. This influence is exerted through80

alterations in the surface energy balance (Chang et al., 2015; Stuenzi, Boike, Cable, et81

al., 2021), regulation of snow cover dynamics (Lawrence & Swenson, 2011; Grünberg et82

al., 2020), and impacts on both ecosystem carbon uptake (Ding et al., 2017; D. Wei et83

al., 2021) and ecosystem respiration processes (Gagnon et al., 2019; Prager et al., 2020).84

On the other hand, the evolution of permafrost significantly affects vegetation patterns,85

either promoting greening or browning (Myers-Smith et al., 2020). This is primarily me-86

diated by its control over soil temperature and liquid water content in the root zone (Yi87

et al., 2014; de Vrese et al., 2023), alterations in landscape morphology (van der Kolk88

et al., 2016; Mu et al., 2017; Loranty et al., 2018), impacts on microbial stability (M. Wu89

et al., 2021), and influences on carbon and nitrogen cycling processes (Mekonnen et al.,90

2018; L. Liu et al., 2022; Mauclet et al., 2022).91

Continuous vegetation greening and enhanced carbon uptake were also observed92

on the TP along with climate warming and permafrost degradation since the 1980s (Teng93

et al., 2021; Cuo et al., 2022; Shi et al., 2023; Z. Jin et al., 2023; Y. Wang et al., 2023).94

Notably, the Normalized Difference Vegetation Index (NDVI) exhibited an upward trend95

of 0.011 per decade from 1982 to 2015 (Teng et al., 2021). Similarly, the Enhanced Veg-96

etation Index (EVI; which was developed to optimize the vegetation signal with improved97

sensitivity in high-biomass regions) increased by 0.01 per decade from 2000 to 2020 (Shi98

et al., 2023), and the Net Primary Productivity (NPP) demonstrated a positive trend99

of 0.51 g C m−2 per decade from 1982 to 2014 (Cuo et al., 2022). While many studies100

have identified warming temperatures and increasing precipitation to be the main drives101

of greening (Teng et al., 2021; X. Li et al., 2022; T. Wang et al., 2022) and plant phe-102

nology changes (Q. Zhang et al., 2018; M. Shen et al., 2022; T. Wang et al., 2022) across103

the TP, vegetation greening on the global scale is thought to be mainly induced by CO2104

fertilization (Piao et al., 2020). In addition to the climatic factors, the hydrothermal con-105

ditions of the permafrost would also affect the vegetation dynamics through the permafrost-106

vegetation interactions (J. Wang & Liu, 2022; T. Wang et al., 2022). All of these stud-107

ies have significantly improved our understanding of the characteristics and drivers of108

the vegetation greenness on the TP. However, it is still largely unknown how the veg-109

etation cover will evolve under further destabilizing permafrost conditions on the TP ac-110

counting for future climate scenarios at a larger spatial scale. This uncertainty persists111

since the very complex vegetation physiological processes which are often tied to spe-112

cific local conditions are not yet well represented in generalistic ESMs (Piao et al., 2020).113

With machine learning approaches increasingly being used to analyze complex spatiotem-114

poral data and explore future environmental change (Pearson et al., 2013; Nitze et al.,115

2018; J. Guo et al., 2023; C. Shen et al., 2023), coupling the model-based and data-driven116

methods allows us to deal with the complex permafrost-vegetation interactions and quan-117

tify the vegetation dynamics and its dominant factors under different climate scenarios.118

–3–



manuscript submitted to JGR: Earth Surface

Figure 1. (a) Topography of study areas and location of observation sites over the Ti-

betan Plateau. Black stars and red triangles stand for the mean annual ground temperature

(MAGT) and active layer thickness (ALT) of the monitoring sites, respectively. The digital

elevation model, glacier, lake, river, and the boundary of the Tibetan Plateau data and the

boundary of Three River Sources are obtained from the National Tibetan Plateau Data Center

https://data.tpdc.ac.cn and are licensed under CC BY 4.0. The road data is available from

the national 1:1000000 public basic geographic database of China (version 2017). (b) Spatial

distributions of permafrost and non-permafrost areas on the Tibetan Plateau. Data source: (Obu

et al., 2019). (c) Spatial distribution of the multi-year (2000–2018) mean of the growing season

(May to September) NDVI on the Tibetan Plateau at 1km2 scale from MODIS satellite imagery,

the sub barplot represents the percentage of the number of grid cells of NDVI in each interval to

the total number of grid cells. (d) Maps of vegetation types in the Tibetan Plateau adapted from

the 1:1000000 vegetation map of China (Zhou et al., 2022)

In this study, we combined a physically-based permafrost model (CryoGridLite)119

(Langer et al., 2024) and machine-learning approaches for predicting the vegetation evo-120

lution (represented by the NDVI) over the permafrost areas on the TP. Firstly, we ap-121

plied the CryoGridLite, driven by historical and future forcing datasets under the two122

different SSPs scenarios (SSP1–2.6 and SSP5–8.5) from two ESMs (AWI-CM-1-1-MR123

and MPI-ESM1-2-HR), to assess the potential shifts in permafrost distribution and its124

thermal state over the TP. Then, based on the output of the CryoGridLite model, we125

used machine-learning algorithms, which are Light Gradient Boosting Machine (Light-126

GBM) (Ke et al., 2017) and Extreme Gradient Boosting Machine (XGBoost) (T. Chen127

& Guestrin, 2016), to quantify the prospective changes in NDVI within the permafrost128

areas of the TP. Finally, we elucidated the dominant factors influencing NDVI variations129

and quantified the contribution of each explanatory variable to the NDVI change.130

–4–



manuscript submitted to JGR: Earth Surface

2 Methods131

2.1 CryoGridLite132

We applied the one-dimensional transient permafrost model CryoGridLite (Langer133

et al., 2024) to simulate the trajectory of permafrost evolution over the TP. CryoGridLite134

was a fast version that was inherited from CryoGrid3 (Westermann et al., 2016) and the135

CryoGrid community model (Westermann et al., 2023), reducing computational costs136

and thus making it more suitable for regional (e.g., TP) to hemispherical scale (e.g., Pan-137

Arctic; Nitzbon et al. (2023)) permafrost modeling. In the following, we briefly describe138

the main aspects of CryoGridLite and provide the model setup for this work. Further139

detailed descriptions of model structures and physical processes can be found in Langer140

et al. (2024).141

2.1.1 Model description142

In this tailored version of CryoGridLite, we implemented the surface energy bal-143

ance module, which was driven by the time series of forcing data (i.e. surface air tem-144

perature (◦ C), rainfall and snowfall rate (mh−1), (kg kg−1), surface air pressure (Pa),145

incoming shortwave and longwave radiation (W m−1), and wind (ms−1)), to provide the146

upper boundary condition of the model (detailed description can be seen in Supporting147

Information Text S1.1). Unlike the heat condition equation implemented in CryoGrid3,148

the CryoGridLite used enthalpy instead of temperature as the state variable to solve the149

one-dimensional subsurface heat transfer:150

∂H

∂t
− ∂

∂z
(k(z, T )

∂T (H)

∂z
) = 0 (1)

where H (J m−3) is the volumetric enthalpy including sensible and latent heat contents151

of the ground, t (s) is time, z (m) is the vertical subsurface depth, k (z, T )(W m−1 K−1)152

is the effective thermal conductivity derived from volumetric soil fractions of mineral,153

organic, water, ice and air in a given soil depth, and T (k) is the ground temperature.154

The lower boundary condition was defined by constant geothermal heat flux. The im-155

plemented snowpack scheme allowed the model to simulate snow accumulation, ablation,156

melt-water routing, and refreezing within the snow cover. Once the snow had filled the157

first grid cell above the soil surface, the surface albedo changed from that of the soil to158

that of the fresh snow and decreased over time towards that of the albedo of old snow159

(Westermann et al., 2016). Besides, we applied a simple bucket scheme (a detailed de-160

scription can be seen in Supporting Information Text S1.2) with only downward verti-161

cal water flow driven by gravity to compute the dynamics of soil water content rather162

than constant water contents used in (Langer et al., 2024).163

2.1.2 Model setup164

In this study, we synthesized the China Meteorological Forcing dataset (CMFD;165

selected period: 1979–2018 to represent historical climate conditions; resolution: 3 hours166

and 0.1 ◦ × 0.1 ◦) (He et al. (2020); https://www.tpdc.ac.cn), along with two ESMs167

from CMIP6 (AWI-CM-1-1-MR and MPI-ESM1-2-HR; selected period: 2019–2100 to168

portray future climate conditions; resolution: monthly and 0.9375 ◦ × 0.9375 ◦) (Müller169

et al. (2018); Semmler et al. (2020); https://esgf-data.dkrz.de) following the two170

SSP scenarios (SSP1–2.6 and SSP5–8.5) to construct the completely forcing data (pe-171

riod: 1979–2100; resolution: hourly and 0.1 ◦ × 0.1 ◦). Compared with other ESMs, AWI-172

CM-1-1-MR, and MPI-ESM1-2-HR presented the best performance in depicting the spa-173

tiotemporal patterns of mean annual and seasonal surface air temperature on the TP174

in the past decades (R. Chen, Li, et al., 2022). To ensure model stability and consistency175

of the forcing data from 1979 to 2100, we performed a linear interpolation on the CMFD176

data from a 3-hour to an hourly resolution. Further, we utilized the approach from Westermann177

et al. (2016) by combining baseline climate data (from CMFD) with monthly climate anoma-178
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lies (from ESMs) to generate the forcing data for this study. The time series of all forc-179

ing variables under the two SSPs and two ESMs for the period 1979–2100 is shown in180

Supporting Information Figure S1.181

For the soil domain of the model, the vertical resolution of grid cells increased with182

thickness from the soil surface (0m) to the lower boundary of the model (100m) (0.02m183

in 0–2m depth; 0.05m in 2–4m depth; 0.1m in 4–10m depth; 0.2m in 10–20m depth; 1m184

in 20–30m depth; 5m in 30–50m depth; 10m in 50–100m depth). The soil stratigraphies185

were specified as mineral, organic, initial water/ice, and air volumetric fractions. The186

initial water/ice content according to Langer et al. (2023) was assumed halfway between187

field capacity and porosity for the soil layer above the water table depth, which was pro-188

vided by a global groundwater table depths product (Fan et al. (2013); https://thredds189

-gfnl.usc.es/thredds/catalog/GLOBALWTDFTP/catalog.html), and saturated with190

the soil layer below the water table depth. The soil properties were derived from a new191

version of the global high-resolution dataset of soil hydraulic and thermal parameters192

dataset for land surface modeling (Y. Dai, Xin, et al. (2019); Y. Dai, Wei, et al. (2019);193

https://globalchange.bnu.edu.cn). The spatial resolution of this dataset was 0.00833 ◦
194

covering from 90 ◦ N to 90 ◦ S, 180 ◦ W to 180 ◦ E, and the vertical soil profile was pro-195

vided in 8 layers (0–0.0451m, 0.0451–0.0906m, 0.0906–0.1655m, 0.1655–0.2891m, 0.2891–196

0.4929m, 0.4929–0.8289m, 0.8289–1.3828m and 1.3828–3.8019m). This dataset directly197

provided the volumetric fraction of soil organic matter and soil porosity. At the same198

time, mineral content and field capacity were calculated based on the approach in Y. Dai199

et al. (2013); Y. Dai, Xin, et al. (2019); Y. Dai, Wei, et al. (2019). Besides, we assumed200

the soil stratigraphy from 3.8019m to the bedrock depth Yan et al. (2020) was the same201

as that of the soil layer above it (i.e.1.3828–3.8019m). Below the bedrock depth, we as-202

sumed no soil organic matter existed, the soil porosity was arbitrarily set to 0.1, and the203

soil mineral content was set to 0.9. We utilized the geothermal gradient (0.031 ◦ Cm−1;204

Y. Pang et al. (2022)) to interpolate the four-layer ERA5Land soil temperature (Muñoz-205

Sabater et al., 2021) in January 1979 to the whole soil profile as the initial ground tem-206

perature profile. The constant geothermal heat flux was extracted from the Terrestrial207

Heat Flow Dataset Lucazeau (2019) to describe the lower boundary condition.208

To depict snowpack dynamics over time, five empty grid cells were set above the209

soil surface in the initial state to represent the maximum snow depth of 0.1m with a ver-210

tical resolution of 0.02m (Orsolini et al., 2019). We assumed a constant snow density (150211

kgm−3) across the snowpack (L. Dai et al., 2018; Yin et al., 2021) and the fresh snow212

albedo was set to 0.82 (W. Wang et al., 2020). The parameters used in this study for213

model setup are summarized in the Supporting Information Table S1. We applied nearest-214

neighbor interpolation for all input datasets (detailed information is provided in Table215

1) and further masked them with shape files of the boundary (Y. Zhang et al. (2014);216

https://www.geodoi.ac.cn), glaciers (W. Guo et al. (2015); https://www.tpdc.ac.cn),217

and lakes (G. Zhang et al. (2019); https://www.tpdc.ac.cn) of the TP to finalize the218

model setup for each grid cell in our simulations.219

2.2 Machine learning model220

In this study, we adopted two regression-based machine learning approaches to project221

the future NDVI change on the permafrost areas over the TP, which have been widely222

used in the prediction of future climate as well as environmental variables (Ukkonen &223

Mäkelä, 2019; Kondylatos et al., 2022; F. Chen et al., 2023; Veigel et al., 2023; C. Chen224

et al., 2024). The NDVI was collected from the Moderate Resolution Imaging Spectro-225

radiometer (MODIS; MOD13A2; Didan (2015)) with a 1km spatial resolution from 2000–226

2018 to match up the period of CMFD and be regarded as the baseline period in this227

study. We processed the raw NDVI data to aggregate them into monthly intervals, which228

was the time resolution used in our machine learning approaches, using the maximum229

value composition approach (G. Pang et al., 2022) and further applied a Savitzky-Golay230
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Table 1. Overview of datasets used in this study

Datasets Variable/Parameter Reference/Source Comments

China Meteorologi-
meteorological forcing He et al. (2020)

Historical forc-
cal Forcing Dataset ing 1979–2018

AWI-CM-1-1-MR
meteorological forcing

Semmler et al. (2020) Future forcing
MPI-ESM1-2-HR Müller et al. (2018) 2019–2100

Global high-resolu- Volumetric fractions
tion dataset of soil of mineral, organic, Y. Dai, Xin, et al. (2019) Soil stra-
hydraulic and ther- porosity, and field Y. Dai, Wei, et al. (2019) tigraphy
mal parameters capacity

Global water-
Watertable depth Fan et al. (2013)

Used to deter-
table depth mine initial wat-
dataset er/ice content

Terrestrial Heat
Geothermal heat flux

Lucazeau (2019) Lower bound-
Flow Dataset ary conditions

A Global Depth to
Bedrock depth Yan et al. (2020)

Used to
Bedrock Dataset for constrain soil
Earth System Modeling depth

ERA5-Land
Four-layer

Muñoz-Sabater et al. (2021)
Initial soil

soil temperature temperature

MODIS NDVI

NDVI Didan (2015)
(MOD13A2, Vegetation
Version 6.1, 1km condition
spatial resolution)

Vegetation map

Vegetation types Zhou et al. (2022)

Analyzing NDVI
from a digitized changes and dri-
1:1000000 ving factors acr-
vegetation atlas oss various vege-
of China tation types
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filter to smooth the NDVI time series (T. Wang et al., 2022). In addition, we assumed231

that there was no vegetation in the area with a multi-year (2000–2018) average grow-232

ing season NDVI (from May to September, NDVIGS ; Teng et al. (2021)) lower than 0.1233

(T. Wang et al., 2022). The spatiotemporal trend of NDVIGS over the TP (excluding234

the non-vegetation areas) from 2000 to 2018 based on the MODIS dataset is shown in235

the Supporting Information Figure S2. We incorporated six variables as explanatory fac-236

tors in the machine-learning model based on previous studies (J. Wang & Liu, 2022; T. Wang237

et al., 2022; Y. Wang et al., 2023). Among them, surface air temperature (SAT), total238

precipitation (PRE), and incoming shortwave radiation (SIN) originated from climate-239

forcing data. Furthermore, the soil temperature (ST) and liquid water content (LWC)240

at the root zone (0–20cm; T. Wang et al. (2022)), and ALT are derived from the out-241

put of the CryoGridLite model for each grid cell. The time interval of these six variables242

was monthly, corresponding with the temporal resolution of the NDVI. The flow of the243

machine learning approach was as follows: First, the MODIS NDVI dataset and six ex-244

planatory variables that correspond with the same grid cell were divided into two groups:245

data from 2000 to 2014 served as the training dataset (about 80% of the data), and the246

remaining data (2015–2018) as the testing dataset (about 20% of the data). Then, ac-247

cording to the results from the CryoGridLite in the baseline period, we constructed the248

training and testing datasets on permafrost and non-permafrost areas (excluded ALT).249

For tuning the hyperparameters of each machine learning model in the training dataset250

in each area, we used Bayesian optimization (Python; Optuna package) with 500 iter-251

ations and set the early stopping and pruning strategy. The range of possible values for252

the part of hyperparameters and the final best hyperparameters can be seen in the Sup-253

porting Information Table S2. In each iteration, we used mean squared error as a scor-254

ing criterion and performed 5-fold cross-validation using the TimeSeriesSplit (Python;255

Scikit-learn package) approach due to there being a time dependence within the NDVI256

data. The optimal model parameter combinations resulting from each iteration were recorded257

and utilized to train the final model. Moreover, we introduced a weighting parameter258

for each model to enhance the model’s emphasis on the growing season NDVIGS asso-259

ciated with individual grid cells. In comparison to the monthly NDVI values, our pref-260

erence was for the model to exhibit superior performance when modeling the NDVIGS261

value. Similar to the hyperparameters used for each model, this weighting parameter was262

employed to obtain the optimal solution during the Bayesian optimization process. To263

evaluate the performance of each model, we employed root mean squared error (RMSE),264

bias (BIAS), coefficient of determination (R2), and Kling-Gupta efficiency (KGE; Gupta265

et al. (2009)) as the evaluation metrics.266

RMSE =

√√√√ 1

N

N∑
i=1

(Si −Oi)2 (2)

BIAS =
1

n

n∑
i=1

(Si −Oi) (3)

R2 = 1−
∑n

i=1(Si −Oi)
2∑n

i=1(Oi − Ō)2
(4)

KGE = 1−

√
(r − 1)

2
+

(
S

O
− 1

)2

+

(
σS

σO
− 1

)2

(5)

where N is the number of validation data, Si and Oi(i = 1, 2, ..., N) are the values of267

simulated and observed data, respectively, S and O are the mean values of simulated and268

observed data, respectively, r is the Pearson correlation coefficient, σS , and σO are the269

standard deviations of simulated and observed data, respectively. We utilized the op-270

timal machine learning model and future explanatory data to produce the NDVI for each271

grid cell within the permafrost and non-permafrost region over the TP.272
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2.3 Statistical analysis273

We employed three indices including the MAGT (◦ C), ALT (m), and permafrost274

areas (km2) to quantify permafrost degradation. In this study, we obtained the MAGT275

from the depth of zero annual amplitude, which was typically at the 10–15m soil depth276

on the TP (Q. Wu & Zhang, 2010; Qin et al., 2017). We defined a grid cell as permafrost277

if its MAGT lies below the 0◦C isotherm at the specific year (Ran, Li, et al., 2022). The278

ALT was quantified as the maximum thaw depth within the upper 10m of the subsur-279

face (Langer et al., 2024) and there is no existing ALT and permafrost when the MAGT280

exceeds 0◦C at the specific year at a grid cell. We employed the Albers Equal Area pro-281

jection for area calculations to accurately represent permafrost areas. To better track282

the dynamics of vegetation conditions across the permafrost and non-permafrost areas283

on the TP, we used the annual NDVIGS to represent the vegetation at individual years284

for each grid cell. In this study, we used ridge regression to robustly estimate the indi-285

vidual contributions of explanatory variables (mean or sum value at the growing season,286

i.e. SATGS , PREGS , SINGS , STGS , LWCGS , and ALTGS) to the variability in annual287

NDVIGS across the permafrost and non-permafrost region (T. Wang et al., 2022; J. Li288

et al., 2023). This approach effectively mitigated the issue of multicollinearity inherent289

among the predictors. The incorporation of a regularization penalty term (λ) served to290

apportion variance across the coefficients efficiently, thereby enhancing the precision of291

the estimated impacts of the explanatory variables on NDVIGS . Preceding the regres-292

sion analysis, standardized explanatory variables and corresponding NDVIGS served as293

inputs for the ridge regression model. The optimal regularization parameter, λ, was sys-294

tematically determined through 5-fold cross-validation and the Grid Search algorithm,295

ensuring the most robust model performance. Variables exhibiting the largest absolute296

values of the regression coefficients post-regularization were interpreted as the dominant297

factors influencing NDVIGS within the specific grid cells. A comprehensive range of the298

λ values explored during the model tuning phase was from 1×10−6 to 1×106. Besides,299

trend estimations of time series in this study were based on Sen’s slope, which was se-300

lected over linear regression for its robustness against outliers and its nonparametric na-301

ture (Y. Wang et al., 2023). The flowchart of this study is shown in Figure 2.302

3 Results303

3.1 Model evaluations304

3.1.1 CryoGridLite305

For this study, we synthesized observational data, including MAGT and ALT, from306

a range of literature and public resources across the TP to assess the effectiveness of the307

CryoGridLite model (Q. Wu et al., 2020; H. Chen et al., 2015; J. Chen et al., 2016; Qin308

et al., 2017; Luo et al., 2018; Z. Zhang et al., 2020; Zhao et al., 2021; Mu & Peng, 2022;309

Y. Gao et al., 2023). Ultimately, we selected a total of nMAGT = 84 and nALT = 66310

different grid cells comprising 151 MAGT and 86 ALT data records within various per-311

mafrost regions of the TP from 2000 to 2015 in our model domain (Detailed informa-312

tion see Supporting Information Table S3). Figure 1 (a) displays the geographical dis-313

tribution of these sites across the TP. For MAGT, we utilized the model output at the314

depth closest to the measured for comparison while for ALT, we considered the annual315

maximum thaw depth to compare the observed. Our modeling results indicated the sim-316

ulated MAGT at most sites (53.6%) in the range of ± 1◦ C of the observed value (Fig-317

ure 3 (a)), and there was a positive correlation between simulated and observed MAGT318

(Pearson correlation coefficient = 0.46, p < 0.01). However, we noted that our model319

tended to underestimate observed MAGT across the TP (Bias = -0.77 ◦ C), which could320

be attributed to inaccuracies of forcing, soil stratigraphy dataset, and imitated processes321

representation (Langer et al., 2024) and setting for the maximum snow height (0.1m).322

Overall, our model displayed the ability to reproduce the MAGT in the TP permafrost323
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Figure 2. Flowchart of the process used to estimate the future vegetation change

areas well. Compared with the model capability on the MAGT, there was a poorer re-324

lationship between simulated and observed ALT, with a Pearson correlation coefficient325

of 0.17 (Figure 3 (b)). Similarly, the model exhibited a trend of underestimating the mea-326

sured ALT compared to the observed values (Bias = -0.03m), which aligns with the sim-327

ulated cold bias for MAGT. The deviations between measured and modeled ALT were328

likely to be explained by inadequate forcing and soil dataset, shortcomings of the model329

(Langer et al., 2024), the cooling effect of shallow snow cover (0.1m), and high spatial330

heterogeneity of ALT on the TP (B. Cao et al., 2017; Ni et al., 2021). Nevertheless, our331

model reproduced the observed ALT on the TP, with modeled ALT deviations of ± 1m332

for most sites (59.1%). A more detailed model evaluation was conducted for the soil tem-333

perature at upper soil depth across the TP due to the soil temperature at the root zone334

as an input index in machine learning (see Supporting Information Table S4 and Fig-335

ure S3). In this research, CryoGridLite, driven by CMFD data, was employed to model336

the distribution of permafrost across the TP during the historical period (Figure 3 (c)).337

To demonstrate the capability of CryoGridLite to reproduce spatial permafrost occur-338

rence, we juxtaposed our simulation results with five contemporary maps of permafrost339

distribution based on different approaches, thereby providing a comprehensive compar-340

ison and validation of our modeling results (Zou et al. (2017); Ran et al. (2018); Obu et341

al. (2019); Ni et al. (2021); Z. Cao et al. (2023); Figure 3 (d-h)). The comparison largely342

confirmed that the projected area of permafrost was consistent between our results and343

those of previous studies. Our modeling results indicated that the most likely permafrost344

areas on the TP were 1.10× 10 6 km2 for the period 2000–2018 (excluding lakes and glaciers),345

which agreed well with other five studies (1.04–1.28× 10 6 km2). However, local differ-346

ences were found between our results and other permafrost maps, which were most pro-347

nounced in the southern TP and along the southeast margin of the zone of continuous348

permafrost. It can be explained in several parts, first, spatial resolution and study pe-349
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riod differences; lower resolutions (i.e., 0.1 ◦) make it difficult to capture the dynamics350

of permafrost changes at the boundaries of permafrost zones (Ni et al., 2021) and study351

period leads a slight discrepancy for the modeled results. Second, simulated approach352

differences; our results offer a dynamic, transient modeling perspective. In contrast, other353

models, such as the temperature at the top of the permafrost model and the surface frost354

number model, while simpler and requiring less data input, are not as equipped to cap-355

ture transient effects or to project the evolution of permafrost accurately (Smith et al.,356

2022). Besides, the permafrost-modeled results of the machine learning model have data357

dependence and the risk of overfitting (Ni et al., 2021). Third, the definition of permafrost358

differences; we diagnose the absence or presence of permafrost relying on the MAGT at359

the zero depth of annual amplitude. Other studies adopt different criteria to determine360

the permafrost exists (e.g., the MAGT at the top of permafrost or the 10m depth). In361

summary, despite limitations our model provides a reasonable basis for describing spa-362

tially and temporally transient conditions of permafrost on the TP as input variable for363

the following analysis.364

3.1.2 Machine learning model365

We utilized the pre-partitioned test dataset to evaluate the performance of two machine-366

learning algorithms in modeling the NDVIGS over the permafrost and non-permafrost367

areas of the TP (Figure 4). A comparison analysis of the two results (Figure 4 (a-b)) re-368

vealed that each algorithm proficiently captured the satellite-derived NDVIGS values on369

the permafrost areas. The performance metrics (with R2 >= 0.65, BIAS<= 0.01, RMSE<=370

0.08, and KGE>= 0.59) suggested each model demonstrated robust capabilities in cap-371

turing the NDVIGS dynamics over the permafrost regions of the TP. In comparison, the372

LightGBM model has better performance. Consequently, we selected the lightGBM model373

for further analysis of the spatial and temporal variability of NDVIGS and its underly-374

ing drivers under different future climate scenarios. Additionally, complimentary assess-375

ments conducted for NDVIGS over the non-permafrost areas underscored the simulation376

ability of both algorithms were remarkably similar and both can well repeat the changes377

in NDVIGS (Figure 4 (c-d)).378

3.2 Spatial and temporal patterns of the permafrost dynamics on the379

TP380

To elucidate the spatiotemporal dynamics of permafrost variability on the TP through-381

out this century, we executed four distinct simulations driven by the AWI-CM-1-1-MR382

(Figure 5) and MPI-ESM1-2-HR (Supporting Information Figure S4) models, under both383

the SSP1–2.6 and SSP5–8.5 scenarios. Our findings revealed that spatial variability of384

permafrost distribution under the AWI-CM-1-1-MR, particularly by mid-century (2041–385

2060), manifested as a moderate reduction relative to the baseline period (2000–2018).386

This reduction was predominantly observed along the northern boundary of the contin-387

uous permafrost zone, southern regions of the TP, and the Three Rivers Sources (TRS)388

region (the red box in Figure 1 (a)), with negligible disparities between the lower and389

higher emission pathways (Figure 5 (a, c, e, g)). In contrast, by the end of the century390

(2081–2100), the majority of the permafrost areas were projected to remain relatively391

intact under SSP1-2.6, while areas that experienced permafrost thaw by mid-century con-392

tinued to show visible degradation (Figure 5 (b, f)). Under a scenario of intensified cli-393

mate warming, substantial thawing of existing permafrost was anticipated, particularly394

in the southwestern and southern parts of the TP, where the MAGT at the depth of zero395

annual amplitude was likely to approach or even exceed 0 ◦ C (Figure 5 (d, h)). The TRS396

region, in particular, was expected to undergo extensive permafrost degradation. Con-397

versely, the northwestern areas of the Changtang Plateau and the Qilian Mountains were398

projected to maintain their permafrost coverage (Figure 5 (d, h)). In examining the pro-399

jected changes in MAGT under the AWI-CM-1-1-MR, significant spatial heterogeneity400
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Figure 3. (a) Scatter plot illustrates the comparison results between the observed and sim-

ulated mean annual ground temperature (MAGT) for 151 records located within 84 different

grid cells. (b) Scatter plot compares the observed and modeled active layer thickness (ALT) for

86 records located within 66 different grid cells. (c) Spatial distribution of permafrost during

2000–2018 over the Tibetan Plateau based on CryoGridLite model. (d-h) Spatial distribution of

permafrost on the Tibetan Plateau from other studies. In (a) and (b), each point indicates the

average value of observed and modeled MAGT/ALT in the same grid cell. The horizontal error

bars represent the range of all observed MAGT/ALT located in the same grid cell, and vertical

error bars indicate the range of simulated MAGT/ALT in the same grid cell.
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Figure 4. Density scatter plot for comparison between observed and modeled mean annual

NDVIGS in the permafrost and non-permafrost areas from 2015 to 2018. (a, c) LightGBM, (b, d)

XGBoost. The black dashed line indicates a 1:1 line. The red line represents the regression line.
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was observed across the permafrost regions. Under the SSP1–2.6 scenarios, this variabil-401

ity contrasted with the SSP5–8.5 scenarios; specifically, the eastern permafrost regions402

were trending warmer, whereas the central Changtang Plateau and the Pamir Mountains403

experiencing cooling trends (Figure 5 (a-b)). The future dynamics of MAGT in these404

permafrost areas were expected to be largely influenced by the extent of climatic warm-405

ing (Figure 5 (c-d)). Figure 5 (e-h) depicts the changes in ALT across the permafrost406

areas on the TP under the AWI-CM-1-1-MR for both mid-century and end-century, un-407

der two contrasting scenarios, relative to the 2000–2018 baseline period. The pattern of408

ALT changes mirrored that of MAGT, with a notable increase in ALT observed in the409

TRS region and along the Qinghai-Tibet Engineering Corridor (QTEC), throughout the410

century under both scenarios. Therefore, additional actions are needed to maintain the411

stability of infrastructure in the QTEC in the future. However, in the western TP, the412

evolutionary trajectory of ALT was contingent upon the extent of climate warming, i.e.413

ALT was likely to decrease under stable climatic conditions, while it tended to increase414

in scenarios of ongoing climate warming. The spatial distribution of MAGT, ALT, and415

permafrost areas under both scenarios under the MPI-ESM1-2-HR was in correspondence416

with the results from AWI-CM-1-1-MR (Supporting Information Figure S4).417

We further detected the time evolution of permafrost areas, MAGT, and ALT across418

the TP from 2019 to 2100 under SSP1–2.6 and SSP5–8.5 scenarios (Figure 5 (i-k)). The419

projected permafrost area consistently showed a decreasing trend across different climate420

scenarios; however, the rate of this decline varied. Permafrost areas decreased gradually421

from 1.06± 0.00× 10 6 km2 (mean± standard deviation) to 0.87± 0.04× 10 6 km2 under422

SSP1-2.6 and 0.49± 0.02× 10 6 km2 under SSP5-8.5 during 2019–2100 at a rate of -0.02± 0.00× 10 6 km2
423

per decade (SSP1-2.6) and -0.07± 0.00× 10 6 km2 per decade (SSP5-8.5) under the lower424

and higher emission pathway, respectively (Figure 5 (i)). By 2100, the permafrost ar-425

eas, under SSP1-2.6 and SSP5-8.5, were projected to decrease by 22± 3% and 56± 2%,426

respectively, compared to the baseline period.427

Figure 5 (j) presents the changes in MAGT during the period 2019–2100. Although428

projected MAGT based on AWI-CM-1-1-MR and MPI-ESM1-2-HR varies considerably429

under SSP1–2.6, MAGT increases slightly in the first half-century and decreases further430

until the end of the century, with insignificant changes in MAGT throughout the cen-431

tury. Under SSP5–8.5 scenarios, MAGT increased significantly to around -1.0 ◦ C by 2100.432

Relative to the mean MAGT (-2.26± 0.17 ◦ C) in the baseline period, MAGT decreased433

by about -0.07± 0.18 ◦ C and -0.26± 0.15 ◦ C under SSP1–2.6 by mid-century (2041–2060)434

and end-century (2081–2100), respectively, while, under SSP5–8.5, MAGT increases by435

about 0.28± 0.03 ◦ C and 1.20± 0.05 ◦ C by the period 2041–2060 and 2081–2100, respec-436

tively.437

The time series of simulated ALT in the permafrost areas are shown in Figure 5438

(k). The temporal variation of ALT was different in both climate scenarios. Under the439

lower emission pathway, ALT had no evident change throughout this century, while in-440

creasing to around 5.0m by 2100 under severe climate warming. By the middle of this441

century, ALT in the permafrost areas of the TP increased by approximately 0.03± 0.17m442

to 0.37± 0.07m under SSP1–2.6 and SSP5–8.5 scenarios, respectively. However, ALT443

decreased by about 0.24± 0.11m under SSP1–2.6 and increased by about 1.87± 0.14m444

under SSP5–8.5 by the end of this century.445

3.3 Spatial and temporal patterns of the vegetation in the permafrost446

areas on the TP447

Analysis of satellite imagery data at the grid cell level (i.e. 0.1 ◦) revealed that, dur-448

ing the period from 2000 to 2018, NDVIGS trends in the majority of permafrost areas449

(67.17%) on the TP did not exhibit significant changes (p-value > 0.05). A portion of450

the permafrost areas, constituting 31.55%, displayed an increase in NDVIGS (p-value <451
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Figure 5. Spatial changes of the mean annual ground temperature (a-d) and active layer

thickness (e-h) on the Tibetan Plateau by mid-century (2041–2060) and end-century(2081–2100)

under SSP1–2.6 and SSP5–8.5 scenarios from AWI-CM-1-1-MR, related to the baseline period

(2000–2018), respectively. (i-k) Time evolution of the changes in permafrost areas, mean annual

ground temperature, and active layer thickness from 2019 to 2100 under the SSP1-2.6 and SSP5-

8.5 scenarios. The grey area indicates degraded permafrost areas compared with the baseline by

the mid-century (2041–2060) and end-century (2081–2100), and the blue, red, green, and orange

lines represent the SSP1–2.6 and SSP5–8.5 scenarios from AWI-CM-1-1-MR and SSP1–2.6 and

SSP5–8.5 scenarios from MPI-ESM1-2-HR, respectively.
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0.05), whereas a minimal area, representing only 1.28% experienced a decline in NDVIGS452

(p-value < 0.05) (Figure 6 (c)). Within the non-permafrost areas, 18.96% and 2.24% pro-453

portion of the area experienced an increased and decreased NDVIGS , respectively, dur-454

ing the same period (Figure 6 (d)). Although we utilized data from both permafrost and455

non-permafrost areas across all grid cells to construct our training dataset, the predic-456

tive accuracy for extrapolations beyond the training data range was notably constrained,457

especially under the high-emission SSP5–8.5 scenarios, due to the inherent data depen-458

dency in machine learning. To enhance the robustness of our future NDVI change sim-459

ulations, we narrowed down our predictions to 2050. Our machine learning analysis, based460

on the SSP1–2.6 scenarios using two ESMs, indicated a stable NDVIGS (ensemble mean)461

across the permafrost areas, with no significant alterations anticipated from 2019 through462

2050 (p-value > 0.05), maintaining an average NDVIGS of 0.25± 0.03 (Figure 6 (a); blue463

and green line). Spatial distribution analysis of the mean annual NDVIGS trend under464

both ESMs showed no considerable shifts in vegetation conditions over 85–97% of the465

permafrost regions up to the middle of the century (Figure 6 (e) and Supporting Infor-466

mation Figure S5 (a)), this stability likely attributable to the relatively stable climatic467

conditions associated with lower emission trajectories. In contrast, under the SSP5–8.5468

scenarios, results from the Mann-Kendall test suggested a marginally increasing trend469

in the ensemble mean of the NDVIGS anomaly time series (0.05 < p-value < 0.10), with470

a rate of 0.01± 0.00 per decade (Figure 6 (a); orange and red line). Moreover, over 7–471

29% of the permafrost areas exhibited increased NDVIGS , while a significant decrease472

in NDVIGS was observed in only about 0.33–1.17% of the area under both scenarios (Fig-473

ure 6 (g) and Supporting Information Figure S5 (c)). Consequently, our findings hint at474

a potential slightly increased NDVIGS within the permafrost areas over the TP, amidst475

the ongoing severe climate warming projected by the middle of the century. Figure 6 (b,476

f, h) and Supporting Information Figure S5 (b, d) outline the time series of the NDVIGS477

anomaly and spatial distribution of the mean annual NDVIGS trend across the non-permafrost478

areas. From 2019 to 2050, the ensemble mean of the time series for mean annual NDVIGS479

anomaly in the majority of non-permafrost areas was expected to remain relatively sta-480

ble under SSP1–2.6 scenarios (p-value > 0.05), while a slight increase in NDVIGS trend,481

similar with the permafrost areas, is anticipated under SSP5–8.5 scenarios (0.05 < p-482

value < 0.10). Spatially, 1.90–5.03% permafrost and 6.10–8.77% non-permafrost areas483

showed an increasing trend under the SSP1–2.6 and SSP5–8.5 scenarios, respectively. In484

summary, NDVIGS trends in most permafrost and non-permafrost areas were expected485

to remain stable under lower emission pathways till the midpoint of this century. Con-486

versely, under higher emission pathways, NDVIGS was likely to exhibit an increasing trend487

in permafrost and non-permafrost areas. According to the vegetation types dataset of488

the TP Zhou et al. (2022), the alpine meadow and alpine steppe constituted the primary489

vegetation in the permafrost areas. We further detected the annual NDVIGS change for490

different vegetation types (alpine steppe and alpine meadow) in the permafrost areas (Sup-491

porting Information Figure S6). Our results showed that areas with increased mean an-492

nual NDVIGS outnumbered those with decreased mean annual NDVIGS for both veg-493

etation types, although the extent of this disparity varied under the two scenarios.494

3.4 Important features of spatiotemporal variability of the vegetation495

in the permafrost areas on the TP496

The evolution of vegetation is influenced by an interplay of various climatic and497

terrestrial factors (Hawinkel et al., 2016; Y. Wei et al., 2022; Higgins et al., 2023). We498

performed ridge regression for both permafrost and non-permafrost areas to identify the499

absolute values of the contribution of each explanatory factor and detect the most im-500

portant variables to NDVIGS change. For the baseline period, climate variables (i.e. SATGS ,501

PREGS , and SINGS) contributed notably (59.34% of permafrost areas and 68.65% of non-502

permafrost areas) to the NDVIGS change, specifically, the contribution of SATGS was503

the largest (22.99%) in the permafrost and was the secondary important factor (21.53%)504
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Figure 6. (a-b) Time series of mean annual NDVIGS anomalies (minus the mean value dur-

ing 2000–2018) from 2019 to 2050 under the future climate conditions on the permafrost and

non-permafrost areas over the TP. The blue, red, green, and orange lines represent SSP1–2.6

and SSP5–8.5 scenarios from AWI-CM-1-1-MR and MPI-ESM1-2-HR, respectively. (c-h) Spatial

patterns of mean annual NDVIGS trend across the permafrost and non-permafrost areas during

the baseline (2000–2018) and future periods (2019–2050) under different climate scenarios from

AWI-CM-1-1-MR. N, NS, and P indicate negative, non-significant, and positive trends. * and **

represent significance at p-value < 0.05 and 0.01, respectively
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in the non-permafrost area of the plateau, the PREGS was identified as the third impor-505

tant factor and made similar contributions (17.52% and 19.67%) in the permafrost and506

non-permafrost areas, the SINGS had more contributions to the NDVIGS change in the507

non-permafrost areas (27.45%) than that of in the permafrost areas (18.84%) (Figure508

7 (a-d)). For the terrestrial variables (i.e. STGS , LWCGS , and ALTGS [excluded in non-509

permafrost areas]), they contributed to the NDVIGS change of approximately 40% of the510

permafrost areas and 30% of the non-permafrost areas. We used the same method to ex-511

amine the dominant factors controlling the change of annual NDVIGS during 2019–2050512

under different climate scenarios and different ESMs (Figure 7 (e-l) and Supporting In-513

formation Figure S7 (a-h)). The results revealed that predominant factors affecting the514

future NDVIGS changes in permafrost and non-permafrost areas under the different sce-515

narios remained largely consistent. That is, under the SSP1–2.6 and SSP5–8.5 scenar-516

ios, it was found that SATGS and LWCGS emerged as the primary determinants of the517

interannual variability in NDVIGS across permafrost areas, influencing between 61.24%518

and 76.26% of these areas. In non-permafrost areas on the TP, SINGS was identified as519

the predominant driver behind NDVIGS interannual variability, affecting 33.38% to 45.59%520

of the areas under both scenarios. Supporting Information Figure S8 depicts the spa-521

tial patterns and relative importance of each explanatory variable across diverse vege-522

tation types. The NDVIGS interannual variation in both vegetation types was respon-523

sive to variations of climatic factors in the baseline period (approximately 60%). Aim-524

ing at the future periods, SATGS and LWCGS explained a much larger portion of the525

NDVIGS variations than other factors in both vegetation types (Supporting Information526

Figure S8 (e-l)). Overall, the interannual variability of the NDVIGS tended to be pre-527

dominantly controlled by the climate variables in both permafrost and non-permafrost528

areas from 2000 to 2018. Compared to the baseline period, our study indicated that SATGS ,529

LWCGS and SINGS were the main contributors to the NDVIGS change in the permafrost530

and non-permafrost areas in the future periods (Figure 7 (e-l), Supporting Information531

Figure S7 (a-h)). Consequently, surface air temperature, liquid water content at the root532

zone, and incoming solar radiation played an important role in future NDVIGS evolu-533

tion on the TP.534

4 Discussion535

4.1 Comparison with previous modeling studies of the permafrost state536

and vegetation conditions on the TP537

In this study, we utilized a computationally efficient numerical permafrost model538

(CryoGridLite) driven by climatic forcing data to simulate the thermal state of permafrost539

and ALT over the TP from 1979 to 2100. Table S5 summarizes the simulation results540

of the thermal state of permafrost and ALT on the TP under present and future climate541

conditions in the past 10 years based on different approaches. For the historical period,542

our results fell within the range of these studies for the permafrost state (MAGT: [-3.32◦ C,543

-1.35◦ C]; Permafrost areas: [1.01× 10 6 km2, 1.66× 10 6 km2]) and ALT [1.24m, 3.23m].544

As previously mentioned, the differences among these simulation results can be attributed545

to spatial resolution and study period, study approaches, and the definition of the per-546

mafrost state and ALT, etc. For the future period, although there were variations in mag-547

nitude and trends for the permafrost state and ALT between our study and others, all548

demonstrated that permafrost degradation over the TP would be an inevitable conse-549

quence in the 21st century under the SSP5–8.5/Representative Concentration Pathway550

(RCP) 8.5 scenarios. Meanwhile, under the SSP1–2.6/RCP2.6 scenarios, permafrost was551

anticipated to exhibit relative stability or only slight warming until the end of the cen-552

tury and was most likely aggradation in the northwest of the plateau due to the cool-553

ing surface air temperature under the SSP1-2.6 scenarios. In addition to the reasons men-554

tioned above, the divergence in projections could largely be explained by the disparities555

among the ESMs employed in these studies. For instance, G. Zhang et al. (2022) used556
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Figure 7. Spatial distribution of the dominant factors to the NDVIGS changes over different

periods in the permafrost and non-permafrost areas. (a, c) Baseline period (2000–2018). (e, g)

Future period (SSP1–2.6; AWI-CM-1-1-MR). (i,k) Future period (SSP5–8.5; AWI-CM-1-1-MR).

The barplot (b, d, f, h, j, l) represents the proportion of the contribution of each variable in the

permafrost and non-permafrost areas under AWI-CM-1-1-MR.
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the Noah-LSM driven by five ESMs to project permafrost stability on the TP through-557

out this century. Their findings revealed significant variances among the ESMs’ projec-558

tions under identical scenarios (e.g. under the SSP5-8.5 scenarios, simulations driven by559

CESM2 and EC-Earth3 suggested that permafrost was highly likely to vanish by 2100,560

while, projections based on MPI-ESM1-2-HR (also used in our study) indicated that ap-561

proximately 0.5× 10 6 km2 (similar with our results) of permafrost might persist by the562

end of the century).563

To project the NDVI in the future on the TP, we employed statistical models trained564

by machine-learning algorithms under two contrasting climate scenarios in this study.565

For the historical period (2000–2018), MODIS imagery indicated that the NDVIGS showed566

an increasing trend over the TP, with a rate of 0.01 per decade, and 24% proportion of567

the area covered by plants exhibits greening (Supporting Information Figure S2 (a-c)).568

In addition to the MODIS NDVI data, other ecological indicators (e.g. LAI, NPP, EVI,569

fractional vegetation coverage [FVC]) demonstrated that vegetation greenness increased570

on the TP since 2000 (Piao et al., 2020; M. Shen et al., 2022; Yang et al., 2023; X. Zhang571

& Li, 2023). Regarding vegetation evolution in the future, although few studies have elu-572

cidated the magnitude and trends of NDVI in the permafrost areas on the TP (H. Li et573

al., 2024), studies based on other vegetation factors and methods showed that under the574

background of future climate change, there was a potential for vegetation greening on575

the TP (Q. Gao et al., 2016; Mahowald et al., 2016; W. Liu et al., 2020; Cuo et al., 2022;576

M. Shen et al., 2022; Kong et al., 2023), which aligns with our study. For example, Q. Gao577

et al. (2016) and Cuo et al. (2022) applied the Lund-Potsdam-Jena dynamic global veg-578

etation model (LPJ-DGVM) to quantify the annual NPP changes on the TP under CMIP5/CMIP6579

scenarios. Their findings indicated a general increase in annual NPP, with a notable shift580

in the dominant vegetation, as alpine shrubs are projected to replace alpine meadows581

and steppes. The simulation results from ESMs (CMIP5) and regional climate models582

indicated a continued increasing trend of LAI by the end of the century in the north-583

ern temperate region (25–50◦ N: including the TP) and TP (Mahowald et al., 2016; W. Liu584

et al., 2020). Kong et al. (2023) constructed a framework of machine learning algorithms585

to predict the evolution trajectory of FVC in China under four SSP scenarios from 2019586

to 2060, with FVC showing an increasing trend except for the east region of China. H. Li587

et al. (2024) indicated that under the various climate scenarios, along with significant588

permafrost degradation, the TP exhibited a greening (NDVI) trend in vegetation which589

persists until the end of the century. In addition to employing the vegetation indices to590

analyze future vegetation greenness, a recent review summarized the potential plant phe-591

nology changes on the TP in this century, which included the advanced start of the grow-592

ing season and the delayed end of the growing season, causing vegetation greening on593

the TP (M. Shen et al., 2022). Besides, we would like to point out that there are ongo-594

ing debates regarding the continued vegetation greening phenomenon that occurs on the595

TP and the prospect of the TP becoming a net carbon sink in the future, especially con-596

sidering carbon released by thawing permafrost and enhanced soil and plant respiration597

(X. Jin et al., 2021; D. Wei et al., 2021; Ehlers et al., 2022; T. Wang et al., 2022). Con-598

sequently, an enhanced focus on the vegetation conditions within the permafrost regions599

of the Tibetan Plateau is warranted in future studies.600

4.2 Important features of vegetation greening601

In our study, we used ridge regression to discern the absolute values of the contri-602

butions of the driving factors for the NDVI changes on the TP. For the baseline period,603

the climatic variables were the important features of NDVIGS on the TP in both per-604

mafrost (approximately 60%) and non-permafrost areas (approximately 70%) (Figure605

7, Supporting Information Figure S7). Piao et al. (2020) noted that dynamic global veg-606

etation models suggested that CO2 fertilization (a phenomenon widely acknowledged for607

enhancing vegetation growth) continued to be the predominant factor driving vegeta-608

tive greening on a global scale. However, in northern high latitudes and the TP, it is the609
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increasing temperatures that primarily contributed to the observed greening trends (LAI).610

Statistical analysis (Teng et al., 2021; X. Li et al., 2022; M. Shen et al., 2022; T. Wang611

et al., 2022) and sensitivity experiments (Y. Wang et al., 2023) also demonstrated that612

climate change played an important role in vegetation growth over the past 40 years on613

the TP, albeit with contributions of varying magnitudes. This variability in quantita-614

tive contributions was attributed to the differential impact of various input explanatory615

variables (e.g. climate variables, terrain, soil properties) and different data sources (e.g.616

MODIS data, Global Inventory Modeling and Mapping Studies NDVI product [GIMMS617

NDVI], and SPOT VEGETATION imagery [SPOT-VEG NDVI]). For the future period,618

our findings indicated that, compared with the baseline period, NDVIGS showed a po-619

tential increasing trend likely occurring in the permafrost areas under the SSP5–8.5 sce-620

narios, mainly attributed to the change of SATGS and LWCGS . Supporting Information621

Figure S9 and S10 indicate the spatiotemporal distribution of LWCGS and SATGS in622

the permafrost areas from 2019 to 2050. In the vast majority of permafrost regions, both623

the SATGS and the LWCGS have exhibited an increasing trend. This was in agreement624

with the results from J. Gao et al. (2017), who combined the LPJ-DGVM with the ge-625

ographical regression, and R. Cao et al. (2023), who conducted multiple sensitivity ex-626

periments based on machine learning algorithms. All indicated that temperature would627

more significantly affect vegetation changes over the TP. One potential explanation is628

that warmer temperatures extend the duration of growing seasons, enhance photosyn-629

thetic activity, and lead to greater biomass accumulation ((J. Gao et al., 2017; X. Li et630

al., 2022; M. Shen et al., 2022)). Additionally, our results emphasized the important role631

of LWCGS in vegetation growing in the permafrost areas. Besides, it is important to ac-632

knowledge that in this study we only considered the impact of a few variables on NDVIGS633

change over the TP, without taking into account other factors. Future studies should syn-634

thesize more driving factors and implement more analysis methods (e.g. partial corre-635

lation analysis or structural equation model) to improve our understanding of the veg-636

etation change on the TP.637

4.3 Model limitation and uncertainty638

While the CryoGridLite model capably replicates the mean state (Figure 3 (a-b),639

Table S4) and temporal evolution (Supporting Information Figure S3) of the permafrost640

thermal regime across the TP, there is a need for further development and enhancements641

to diminish the uncertainty of simulations. For instance, the single offline simulation driven642

by singular meteorological forcing data (He et al., 2020) and soil stratigraphy datasets643

(Y. Dai, Xin, et al., 2019; Y. Dai, Wei, et al., 2019) and a fixed maximum snow depth644

(i.e., 0.1m) and snow density (i.e., 150 kgm−3) for all grid cells may introduce a large645

degree of uncertainty for simulation (W. Wang et al., 2016; Lu et al., 2020; Langer et646

al., 2024). Hence, conducting ensemble parameter simulations (including forcing, soil,647

and snow properties datasets) should be the direction of our subsequent research endeav-648

ors (Nitzbon et al., 2023; Langer et al., 2024). This approach is crucial for a more ac-649

curate quantification of the permafrost thermal state across the TP. Furthermore, com-650

pared with Nitzbon et al. (2023) and Langer et al. (2024), in this tailored version of Cryo-651

GridLite, we implemented the surface energy balance (Supporting Information Text S1.1)652

and ”bucket” scheme (Supporting Information Text S1.2) to calculate the dynamics of653

upper boundary conditions and groundwater changes, respectively. However, as pointed654

out by Langer et al. (2024), the model calculated the ground freezing by an enthalpy–temperature655

relation of free water instead of accurate soil freezing characteristic curves, and the model656

does not account for the interactions between permafrost and vegetation (Stuenzi, Boike,657

Cable, et al., 2021; Stuenzi, Boike, Gädeke, et al., 2021), subsidence processes following658

excess ice melting (Nitzbon et al., 2019), and sub-grid lateral fluxes (Nitzbon et al., 2021),659

which are known to affect permafrost thaw trajectories in complex landscapes. Further660

detailed descriptions of model limitation and uncertainty can be found in Langer et al.661

(2024). Moreover, for future permafrost simulations, we employed two ESMs (AWI-CM-662
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1-1-MR and MPI-ESM1-2-HR) to drive our CryoGridLite model. These ESMs have demon-663

strated their capability in accurately reproducing mean annual and seasonal surface air664

temperatures over recent decades (R. Chen, Li, et al., 2022). However, significant dis-665

crepancies were observed in their representation of precipitation changes (R. Chen, Duan,666

et al., 2022), introducing a notable degree of uncertainty into our permafrost projections.667

This is due to the permafrost’s thermal state being highly sensitive not only to air tem-668

perature but also to precipitation; increased rainfall can significantly mitigate permafrost669

degradation on the Tibetan Plateau (TP) (G. Zhang et al., 2021; Hamm et al., 2023).670

Therefore, to enhance our understanding of permafrost evolution on the TP, it is imper-671

ative to conduct additional simulations using a variety of ESMs672

Regarding the NDVI changes predicted by our model, we acknowledge a certain673

degree of uncertainty inherent in the outputs of our machine learning algorithms. Pri-674

marily, these models are challenged by their reliance on data-driven approaches, which675

may lack a solid physical basis, transparency, interpretability, and a heightened sensi-676

tivity to outliers, potentially leading to instability or inaccurate predictions (G. Zhang677

et al., 2022; C. Shen et al., 2023). Therefore, in our study, although we implemented sev-678

eral strategies to overcome the inherent shortcomings of machine learning algorithms,679

to make our results more robust, we extrapolated the predicted NDVI only to 2050. In680

addition, while NDVI data are extensively utilized for assessing the vegetative state of681

the TP (Teng et al., 2021; T. Wang et al., 2022; Yang et al., 2023), the reliability of this682

satellite-derived data is considerably impacted by factors such as sensor characteristics,683

atmospheric interference, and soil background effects (Sha et al., 2020). Therefore, it is684

crucial for future research to incorporate a broad spectrum of vegetation indices (e.g. LAI,685

EVI, NPP, soil-adjusted vegetation index) and apply more data to feed machine learn-686

ing model to reduce these errors and enable a more comprehensive analysis of vegeta-687

tive dynamics on the TP, particularly against the backdrop of ongoing climatic warm-688

ing. Moreover, we would like to point out that NDVIGS predictions in this study were689

based on MODIS satellite imagery. Owing to the data dependency of the machine learn-690

ing model, the use of alternative NDVI products as response variables might yield di-691

vergent results. This is particularly evident in the study of Yang et al. (2023), which em-692

ployed multi-source data to investigate vegetation changes on the TP since 2000, reveal-693

ing significant spatiotemporal discrepancies among MODIS data, GIMMS NDVI, and694

SPOT-VEG NDVI (e.g. SPOT-VEG NDVI (p < 0.001) and MODIS NDVI (p < 0.05)695

indicated a significant increasing trend, while GIMMS NDVI data (p < 0.534) did not696

show a significant increasing trend in NDVI on the TP). Meanwhile, the selection of ex-697

planatory variables significantly influences the determination of the quantitative contri-698

butions of predominant factors. Additionally, vegetation browning events induced by abrupt699

permafrost thaw (Heijmans et al., 2022) and vegetation greening occurring in thermokarst-700

drained lake basins (Y. Chen et al., 2023) are not considered in our study, which play701

an important role in controlling vegetation growth. Despite several shortcomings in our702

permafrost model and machine learning algorithms, our results attempt to provide a frame-703

work for exploring future vegetation changes in cold regions and identified limitations704

give opportunities for future improvements in our modeling approach.705

5 Conclusions706

In this study, we combined a numerical permafrost model (CryoGridLite) with machine-707

learning algorithms to analyze the vegetation conditions in the permafrost areas over the708

TP under various climate scenarios. Our model simulations, when compared with ob-709

servational data, efficiently captured the spatiotemporal patterns of permafrost across710

the TP during the baseline period (2000–2018), and the machine learning algorithm ef-711

fectively reproduced the interannual NDVIGS for the testing period (2015–2018). Forced712

by different climate conditions, our CryoGridLite model projected a continual decline713

in the permafrost areas on the TP in response to future climate warming. Under the SSP1-714
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2.6 scenario, mean annual ground temperature and active layer thickness appeared sta-715

ble on average, but with regionally different responses i.e mean annual ground temper-716

ature and active layer thickness tended to increase in the Three River Source region and717

Qinghai-Tibet Engineering Corridor and decrease in the northwest of TP. However, un-718

der the SSP5-8.5 scenarios, there was a notable increase in both mean annual ground719

temperature and active layer thickness. Remote sensing imagery from MODIS suggested720

that approximately 30% of the permafrost areas on the TP showed an increasing trend721

in NDVIGS over the baseline period. The results of machine learning indicated that un-722

der the low emission scenario (SSP1–2.6), no significant change in NDVIGS was expected723

for >85% permafrost areas in the future. In contrast, under the high emission scenario,724

an increasing trend in NDVIGS in the future in about 7.31–29.10% of the permafrost ar-725

eas, with less than 2% of the area experiencing a significantly decreased NDVI. Anal-726

ysis of the contributory factors revealed that climatic factors during the growing season727

were the primary influence on NDVI alterations within the permafrost areas for the base-728

line period (2000–2018). For the future periods (2019–2050), it was found that the sur-729

face air temperature and liquid water content at the root zone during the growing sea-730

son were anticipated to play a crucial, undeniable role in the NDVIGS changes within731

the permafrost areas. Although our approach has not yet fully accounted for the pro-732

cesses affecting the thermal state of permafrost and vegetation growth on the TP, the733

coupling of process-based and data-driven models provides a potential and meaningful734

pathway for detecting future vegetation evolution on the plateau. Our future research735

will aim to address the limitations of our methodology and deliver more accurate pre-736

dictions, thereby enhancing our understanding of the carbon budget of the TP.737
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is available at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis753

-era5-land?tab=overview. The MODIS NDVI (MOD13A2, Version 6.1) is available754

from Google Earth Engine at https://developers.google.com/earth-engine/datasets/755

catalog/MODIS 061 MOD13A2. The CryoGridLite model code, machine-learning algorithms,756
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Text S1. Description of surface energy balance and hydrology scheme in Cryo-

GridLite

S1.1 The surface energy balance scheme

In comparison to the CryoGridLite model, as described in (Langer et al., 2024), where

the upper boundary conditions to the heat conduction equation were set by the air tem-

perature, the CryoGridLite version used in this study solves the surface energy balance

equation to calculate the ground heat flux Qg and translates it into a surface temperature

Tsurf:

Tsurf = T1 +
Qg∆z1
2 k1

(1)

where T1 is the current temperature, ∆z1 is the thickness, and k1 is the current thermal

conductivity of the uppermost grid cell (soil or snow). For this, Qg is calculated as the

residual of the heat fluxes at the surface:

Qg = Qnet −Qh −Qe (2)

where Qnet is the net radiation, Qh the sensible and Qe the latent turbulent heat flux. In

Eq. (2), Qnet is calculated from the incoming and outgoing fluxes of short- and longwave

radiation:

Qnet = Sin + Sout + Lin + Lout (3)

where Sin and Lin are incoming shortwave and longwave radiation provided by the forcing

data, and Sout and Lout are the outgoing shortwave and longwave radiation calculated by

albedo and Kirchhoff’s and Stefan-Boltzmann’s law:

Sout = −αSin (4)

Lout = −ϵ σ T t−1
surf

4 − (1− ϵ)Lin (5)
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with α the albedo and ϵ the emissivity, both depending on the surface condition (see table

Table S1 for values), and σ the Stefan-Boltzmann constant.

In Eq. (2), the turbulent fluxes are calculated according to the Monin-Obukhov simi-

larity theory where Qh and Qe are parameterized based on the gradients of temperature

and absolute humidity between the surface and a certain height above it. Differing from

the scheme used by Westermann et al. (2016), we adopted Byun’s scheme (Byun, 1990) to

calculate the Obukhov stability parameter L⋆, using the parameterizations of the atmo-

spheric stability functions suggested by Businger, Wyngaard, Izumi, and Bradley (1971).

Similar to Nitzbon et al. (2019), we reduced the latent heat flux Qe during the snow-free

season according to the availability of liquid water content (θ) close to the surface:

Qe = β Qpot
e (6)

where the water availability factor β ∈ [0, 1] is obtained by summing the following weight-

ing factors Θ∗ over the subsurface grid cells 1 to N :

β =
∑N

i=1ΘTi
Θθi Θzi (7)

where ΘTi
=

{
1 if Ti > 0◦C

0 else,
(8)

Θθi =

1 if θi > θfc

0.25
(
1− cos

(
πθi
θfc

))2

else,
(9)

Θzi = e
− zi

dE ∆zi∑
i e

− zi
dE ∆zi

(10)

Here ΘTi
ensures that only unfrozen grid cells are considered, Θθi reduces the water

availability if the liquid water content is below field capacity θfc, and Θzi is a depth-

weighting according to the evaporation depth dE and the denominator a normalization

such that β ∈ [0, 1].
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S1.1 The surface energy balance scheme

In this tailored version of the CryoGridLite model, we largely followed (Nitzbon et al.,

2019) to incorporate a simple ’bucket’ scheme to calculate the dynamics of soil water

content. The hydrology scheme is run at the hourly timestep (∆t = 1hour) of the model

and only in the absence of a snowpack. First, the potential water to be infiltrated into or

removed from the soil column (∆I (m)) is determined by taking the difference between

rainfall (Prain) and evapotranspiration.

∆I = Prain∆t− Qe∆t

ρw Lsl

(11)

If ∆I > 0, the distribution of soil water content along the vertical soil profile is derived

from the infiltration process under the influence of gravity: if the water content in a cell

exceeds the given value of maximum water content, the water is routed to the layer below

until it eventually reaches a frozen grid cell. If there is still excess water present, the

soil layers will commence saturation from the bottom upwards. In scenarios where excess

water remains even after completely saturating the pore space of soil, it is then removed

as surface runoff.

If ∆I < 0, soil water is successively removed in a similar procedure, by reducing the

water content to at least a residual water content (θrs) starting from the first subsurface

layer and continuing downwards until the water deficit is applied.
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Figure S1. Timeseries of forcing variables (surface air temperature (a), rainfall (b), snowfall

(c), specific humidity, surface air pressure (d), incoming shortwave radiation (e), incoming long-

wave radiation (f), and wind speed (g)) during 1979–2100 over the Tibetan Plateau under two

different scenarios and two Global Climate Models.
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Figure S2. Spatiotemporal patterns of the changes of the growing season (May to September)

NDVI on the Tibetan Plateau at 1km2 from MODIS satellite imagery. (a) Time evolution of

the growing season NDVI on the Tibetan Plateau. (b) spatial distribution of the trend of the

growing season NDVI on the Tibetan Plateau. The sub-barplot represents the percentage of the

number of grid cells of NDVI in each significant level to the total number of grid cells. N, NS,

and P indicate negative, non-significant, and positive trends, respectively. ∗ and ∗∗ represent

significance at p-value ≤0.05 and ≤0.01, respectively.
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Figure S3. Comparison of the simulated and observed soil temperature in the upper soil layer

(above 50cm). Observed soil temperature derived from Zhao et al. (2021).
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Figure S4. Spatial changes of the mean annual ground temperature (a-d) and active layer

thickness (e-h) on the Tibetan Plateau by mid-century (2041–2060) and end-century(2081–2100)

under SSP1–2.6 and SSP5–8.5 scenarios from MPI-ESM1-2-HR, related to the baseline period

(2000–2018), respectively.
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Figure S5. Spatial patterns of annual NDVIGS trend across the permafrost areas during

the historical (2000–2018) and future periods (2019–2050) from MPI-ESM1-2-HR. N, NS, and P

indicate negative, non-significant, and positive trends. * and ** represent significance at p-value

< 0.05 and 0.01, respectively.
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Figure S6. (a-b) Time series of annual NDVIGS anomalies (minus the mean value from 2000–

2018) from 2019 to 2050 under the future climate conditions on the alpine meadow and alpine

steppe on the permafrost areas over the Tibetan Plateau. The blue, red, green, and orange

lines represent SSP1–2.6 and SSP5–8.5 scenarios from AWI-CM-1-1-MR and MPI-ESM1-2-HR,

respectively. (c-l) Spatial patterns of annual NDVIGS trend during the historical (2000–2018)

and future periods (2019–2050) under different climate scenarios from AWI-CM-1-1-MR and

MPI-ESM1-2-HR. N, NS, and P indicate negative, non-significant, and positive trends. * and **

represent significance at p-value < 0.05 and 0.01, respectively.
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Figure S7. Spatial distribution of the dominant factors to the NDVIGS changes over different

periods in the permafrost and non-permafrost areas. (a-d) Future period (SSP1–2.6; 2019–2050;

MPI-ESM1-2-HR). (e-h) Future period (SSP5–8.5; 2019–2050; MPI-ESM1-2-HR). The barplot

(b, d, f, h) represents the proportion of the contribution of each variable in the permafrost and

non-permafrost areas with significantly increased NDVIGS from MPI-ESM1-2-HR.
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Figure S8. Spatial distribution of the dominant factors to the NDVIGS changes over different

periods in the alpine meadow and alpine steppe over the permafrost areas. (a-d) Historical period

(2000–2018). (e-h) Future period (SSP1–2.6; AWI-CM-1-1-MR). (i-l) Future period (SSP1–

2.6; MPI-ESM1-2-HR). (m-p) Future period (SSP5–8.5; AWI-CM-1-1-MR). (q-t) Future period

(SSP5–8.5; MPI-ESM1-2-HR). The barplot (b, d, f, h, j, l, n, p, r, t) represents the proportion

of the contribution of each variable in the permafrost and non-permafrost with significantly

increased NDVIGS from AWI-CM-1-1-MR and MPI-ESM1-2-HR.
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Figure S9. Spatiotemporal patterns of the changes of liquid water content at root zone across

the permafrost areas during 2019–2050 under different scenarios. (a-b) AWI-CM-1-1-MR. (c-d)

MPI-ESM1-2-HR. The line plots at each subplot indicate the time series of liquid water content

at the root zone (bottom left) and precipitation minus evapotranspiration over the permafrost

areas (top).
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Figure S10. Spatiotemporal patterns of the changes of surface air temperature across the

permafrost areas during 2019–2050 under different scenarios. (a-b) AWI-CM-1-1-MR. (c-d) MPI-

ESM1-2-HR. The line plots at each subplot indicate the time series of surface air temperature.
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Table S1. Overview of the CryoGridLite parameters used
Parameter Symbol Value Unit Source
Natural constants

Atmospheric pressure at sea level P 1.005×105 Pa —

Gravitational acceleration g 9.81 m s−2 —
Von Kármán constant κ 0.4 — —

Stefan-Boltzmann constant σ 5.6704×10−8 Wm−2 K−4 —

Specific gas constant of air R 287.058 J−1 kg−1 —
Surface properties
Albedo of fresh snow αsnow,max 0.82 — Wang et al. (2020)
Albedo of old snow αsnow,min 0.5 — Westermann et al. (2016)
Albedo of soil αsoil 0.20 — Westermann et al. (2016)
Albedo of water surface αwater 0.07 — Westermann et al. (2016)
Albedo of ice αice 0.20 — Westermann et al. (2016)
Emissivity of snow εsnow 0.99 — Westermann et al. (2016)
Emissivity of soil εsoil 0.97 — Westermann et al. (2016)
Emissivity of water surface εwater 0.99 — Westermann et al. (2016)
Emissivity of ice εice 0.98 — Westermann et al. (2016)
Resistance at snow surface rs,snow 0 sm−1 Westermann et al. (2016)
Resistance at soil surface rs,soil 50 sm−1 Westermann et al. (2016)
Resistance at water surface rs,water 0 sm−1 Westermann et al. (2016)
Resistance at ice surface rs,ice 0 sm−1 Westermann et al. (2016)
Material properties

Density of snow ρsnow 150 kgm−3 Dai, Che, Xie, and Wu (2018)

Density of water ρwater 1000 kgm−3 Westermann et al. (2016)

Density of ice ρice 1000 kgm−3 Westermann et al. (2016)

Density of air at sea level ρair 1.293 kgm−3 Westermann et al. (2016)
Evaporation Depth dE 0.2 m —

Volumetric heat capacity of water Cwater 4.2× 106 JK−1 m−3 Westermann et al. (2016)

Volumetric heat capacity of ice Cice 1.9× 106 JK−1 m−3 Westermann et al. (2016)

Volumetric heat capacity of air Cair 1.25× 103 JK−1 m−3 Westermann et al. (2016)

Volumetric heat capacity of mineral soil Cminear 2.0× 106 JK−1 m−3 Westermann et al. (2016)

Volumetric heat capacity of organic soil Corganic 2.5× 106 JK−1 m−3 Westermann et al. (2016)

Thermal conductivity of water kwater 0.57 Wm−1 K−1 Westermann et al. (2016)

Thermal conductivity of ice kice 2.2 Wm−1 K−1 Westermann et al. (2016)

Thermal conductivity of air kair 0.025 Wm−1 K−1 Westermann et al. (2016)

Thermal conductivity of mineral soil kmineral 3.00 Wm−1 K−1 Westermann et al. (2016)

Thermal conductivity of organic soil korganic 0.25 Wm−1 K−1 Westermann et al. (2016)

Specific latent heat of fusion water Lsl 0.334× 106 J kg−1 Westermann et al. (2016)

Specific latent heat of vaporization Llg 2.501× 106 J kg−1 Westermann et al. (2016)
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Table S2. Overview of the hyperparameter settings for the different machine learning models

Model Hyperparameter Searching space Best parameter

permafrost non-permafrost

LightGBM

n estimators [100, 2000] 1850 1880
max depth [3, 20] 19 20
learning rate [0.001, 0.3] 0.062 0.069
num leaves [5, 1000] 788 860
colsample bytree [0.4, 1] 0.957 0.947
subsample [0.4, 1] 0.917 0.986
subsample freq [1, 7] 4 4
min child samples [5, 100] 35 7
reg alpha [1×10−8, 10] 0.108 1.037×10−6
reg lambda [1×10−8, 10] 0.002 1.463×10−6

max bin [255, 511] 353 290

XGBoost

n estimators [100, 2000] 1395 1583
max depth [3, 15] 15 15
learning rate [0.001, 0.3] 0.015 0.019
min child weight [1, 20] 2 14
colsample bytree [0.4, 1] 0.936 0.983
subsample [0.4, 1] 0.878 0.763
reg alpha [1×10−8, 10] 1.425×10−6 5.357×10−8

reg lambda [1×10−8, 10] 3.657×10−4 2.977×10−6

gamma [1×10−8, 10] 1.382×10−6 5.202×10−6

Note: Searching space of weight parameters for both models is from 1 to 100.
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Table S3. Information on MAGT and ALT boreholes from 2000–2015 was used for validating

the modeled results
Variables Sites Lon Lat Altitude Reference/ Sites Longitude Latitude Altitude Reference/

(◦E) (◦N) (m) Source (◦E) (◦N) (m) Source

MAGT

K512 79.39 35.86 4766 H. Chen et al. (2015) YH 70.40 35.77 4850 H. Chen et al. (2015)
K521 79.42 35.79 4928 Qin et al. (2017) K572 79.46 35.72 4690 Qin et al. (2017)
K529 79.46 35.72 4952 H. Chen et al. (2015) MPQT 79.49 35.68 5175 H. Chen et al. (2015)
TSH 79.55 35.36 4834 H. Chen et al. (2015) TSHGT 79.55 35.36 — Zhao et al. (2021)
K610 79.64 35.08 4926 Qin et al. (2017) SLMC 80.39 34.56 5050 H. Chen et al. (2015)
LN2 80.39 34.63 5001 Qin et al. (2017) NLMC 80.39 34.64 5016 H. Chen et al. (2015)
MPJS 80.42 34.54 5117 H. Chen et al. (2015) LZL 81.33 34.80 5009 H. Chen et al. (2015)
LZL3 81.33 34.81 5009 Qin et al. (2017) DLSW 84.18 33.00 4919 Qin et al. (2017)
NO.GZ 85.13 33.80 4990 Qin et al. (2017) GM 85.63 33.39 5095 Qin et al. (2017)
FCKGT 88.57 37.46 — Zhao et al. (2021) STG 88.60 37.58 4500 Qin et al. (2017)
AYK2 88.61 37.52 4645 Qin et al. (2017) AYKGT 88.61 37.52 — Zhao et al. (2021)
AYK3 88.70 37.51 4500 Qin et al. (2017) NO.72 91.40 33.01 4930 Qin et al. (2017)
AD2 91.58 32.31 4814 Q. Wu et al. (2020) NO.39 91.53 32.42 4995 Qin et al. (2017)
TJ1 91.53 32.51 4868 Q. Wu et al. (2020) TJ2 91.62 32.39 4887 Q. Wu et al. (2020)
QTB18 91.74 31.82 — Zhao et al. (2021) TG4 91.75 33.07 4974 Q. Wu et al. (2020)
ZNHW 91.86 35.49 4768 Qin et al. (2017) TG3 91.80 33.09 4926 Q. Wu et al. (2020)
TG2 91.87 33.30 4841 Q. Wu et al. (2020) WQ 91.90 33.10 4960 Qin et al. (2017)
TGLGT 91.94 33.07 — Zhao et al. (2021) WQ1 91.94 33.47 4778 Q. Wu et al. (2020)
WQ2 91.95 33.40 4817 Q. Wu et al. (2020) ZNHGT 91.96 35.49 — Zhao et al. (2021)
ZNH5 91.96 35.49 4784 Qin et al. (2017) NO.64 92.14 33.46 4620 Qin et al. (2017)
No.62 92.20 34.01 4680 Qin et al. (2017) NO.61 92.26 34.13 4550 Qin et al. (2017)
KKXL1 92.28 35.53 4701 Qin et al. (2017) TT2 92.20 33.76 4647 Q. Wu et al. (2020)
TT1 92.23 33.88 4640 Q. Wu et al. (2020) KL1 92.34 34.01 4672 Q. Wu et al. (2020)
KL3 92.34 33.96 4622 Q. Wu et al. (2020) KL5 92.34 33.94 4622 Q. Wu et al. (2020)
NO.59 92.44 34.29 4579 Qin et al. (2017) NO.34 92.44 34.29 4583 Qin et al. (2017)
NO.56 92.47 34.37 4714 Qin et al. (2017) NO.32 92.56 34.49 4634 Qin et al. (2017)
NO.31 92.57 34.51 4595 Qin et al. (2017) QTB11 92.66 34.39 — Zhao et al. (2021)
YM2 92.73 34.53 4616 Q. Wu et al. (2020) YM1 92.74 34.58 4654 Q. Wu et al. (2020)
WL1 92.73 34.48 4587 Q. Wu et al. (2020) FH3 92.78 34.61 4715 Q. Wu et al. (2020)
FH2 92.90 34.67 4894 Q. Wu et al. (2020) NO.11 92.93 34.82 4637 Qin et al. (2017)
NO.9 92.95 34.85 4592 Qin et al. (2017) KKXL3 92.96 35.48 4554 Qin et al. (2017)
NO.54 93.02 35.04 4570 Qin et al. (2017) NO.53 93.03 35.08 4731 Qin et al. (2017)
NO.52 93.07 35.12 4610 Qin et al. (2017) NO.4 93.07 35.21 4635 Qin et al. (2017)
HR3 93.03 35.07 4675 Q. Wu et al. (2020) WD4 93.04 35.14 4734 Q. Wu et al. (2020)
QTB09 93.03 35.13 — Zhao et al. (2021) QTB08 93.08 35.22 — Zhao et al. (2021)
WD3 93.11 35.20 4613 Q. Wu et al. (2020) NO.50 93.27 35.22 4510 Qin et al. (2017)
CM7 93.22 35.28 4589 Q. Wu et al. (2020) QTB06 93.27 35.29 — Zhao et al. (2021)
NO.27 93.32 35.24 4487 Qin et al. (2017) NO.21 93.45 35.31 4568 Qin et al. (2017)
CM5 93.45 35.36 4507 Q. Wu et al. (2020) CM6 93.45 35.36 4504 Q. Wu et al. (2020)
QTB05 93.45 35.36 — Zhao et al. (2021) NO.46 93.58 35.33 4640 Qin et al. (2017)
NO.66 93.78 35.52 4560 Qin et al. (2017) QTB03 93.78 35.52 — Zhao et al. (2021)
CM3 93.96 35.55 4547 Q. Wu et al. (2020) BD1 93.96 35.62 4636 Q. Wu et al. (2020)
KLS 94.06 35.63 4753 Qin et al. (2017) KM2 94.05 35.62 4757 Q. Wu et al. (2020)
QTB02 94.06 35.63 — Zhao et al. (2021) QTB01 94.08 35.72 — Zhao et al. (2021)
XDTGT 94.13 35.72 — Zhao et al. (2021) QSH-1 97.15 33.78 4413 Luo et al. (2018)
QSH-2 97.17 33.74 4395 Luo et al. (2018) QSH-3 97.17 33.74 4403 Luo et al. (2018)
K634–1 97.38 33.98 4532 Luo et al. (2018) K634–2 97.38 33.98 4536 Luo et al. (2018)
CLQ-1 97.56 34.04 4634 Luo et al. (2018) CLQ-2 97.57 34.04 4614 Luo et al. (2018)
BSKN 97.65 34.11 4744 Luo et al. (2018) BSK 97.66 34.13 4833 Luo et al. (2018)
CLP3 97.87 34.27 4663 Qin et al. (2017) CLP-1 97.85 34.26 4721 Luo et al. (2018)
CLP-2 97.85 34.26 4724 Luo et al. (2018) CLP-3 97.87 34.27 4663 Luo et al. (2018)
CLP4 97.90 34.31 4564 Qin et al. (2017) YNG1 97.95 34.40 4452 Qin et al. (2017)
NO.YNP3 97.97 34.50 4333 Qin et al. (2017) CLP-4 97.90 34.31 4564 Luo et al. (2018)
YNG-1 97.95 34.40 4446 Luo et al. (2018) YNG-2 97.94 34.44 4395 Luo et al. (2018)
YNG-3 97.97 34.50 4324 Luo et al. (2018) MDB 98.44 34.85 4225 Luo et al. (2018)
K445 98.55 34.97 4282 Luo et al. (2018) ZK3 99.15 35.37 4228 Qin et al. (2017)
ZK21 99.56 35.40 4602 Qin et al. (2017)

ALT

K512 79.39 35.86 4766 H. Chen et al. (2015) YH 70.40 35.77 4850 H. Chen et al. (2015)
K529 79.46 35.72 4952 H. Chen et al. (2015) MPQT 79.49 35.68 5175 H. Chen et al. (2015)
TSH 79.55 35.36 4834 H. Chen et al. (2015) SLMC 80.39 34.56 5050 H. Chen et al. (2015)
NLMC 80.39 34.64 5016 H. Chen et al. (2015) MPJS 80.42 34.54 5117 H. Chen et al. (2015)
LZL 81.33 34.80 5009 H. Chen et al. (2015) AD2 91.58 32.31 4814 Q. Wu et al. (2020)
TJ1 91.53 32.51 4868 Q. Wu et al. (2020) TJ2 91.62 32.39 4887 Q. Wu et al. (2020)
TG4 91.75 33.07 4974 Q. Wu et al. (2020) TG3 91.80 33.09 4926 Q. Wu et al. (2020)
TG2 91.87 33.30 4841 Q. Wu et al. (2020) WQ1 91.94 33.47 4778 Q. Wu et al. (2020)
WQ2 91.95 33.40 4817 Q. Wu et al. (2020) TT1 92.23 33.88 4640 Q. Wu et al. (2020)
TT1 92.23 33.88 4640 Z. Zhang et al. (2020) CLP1 92.35 33.96 4627 Qin et al. (2017)
KL1 92.34 34.01 4672 Q. Wu et al. (2020) KL3 92.34 33.96 4622 Q. Wu et al. (2020)
KL5 92.34 33.94 4622 Q. Wu et al. (2020) KL3 92.34 33.96 4672 Z. Zhang et al. (2020)
YM2 92.73 34.53 4616 Q. Wu et al. (2020) YM1 92.74 34.58 4654 Q. Wu et al. (2020)
WL1 92.73 34.48 4587 Q. Wu et al. (2020) FH3 92.78 34.61 4715 Q. Wu et al. (2020)
FHS1 98.89 34.73 4896 Qin et al. (2017) FH2 92.90 34.67 4894 Q. Wu et al. (2020)
BLR1 92.92 34.86 4633 Qin et al. (2017) BL1 92.93 34.83 4635 Z. Zhang et al. (2020)
FH4 92.90 34.68 4992 Z. Zhang et al. (2020) WD4 93.04 35.14 4734 Q. Wu et al. (2020)
HR3 93.03 35.07 4675 Q. Wu et al. (2020) WD4 93.04 35.14 4734 Z. Zhang et al. (2020)
WD3 93.11 35.20 4613 Q. Wu et al. (2020) CM7 93.22 35.28 4589 Q. Wu et al. (2020)
CM5 93.45 35.36 4507 Q. Wu et al. (2020) CM6 93.45 35.36 4504 Q. Wu et al. (2020)
CM5 93.45 35.36 4507 Z. Zhang et al. (2020) KKXL 93.60 35.45 4488 Qin et al. (2017)
BD1 93.96 35.62 4636 Q. Wu et al. (2020) CM3 93.96 35.55 4547 Q. Wu et al. (2020)
S308 5 94.07 35.08 4512 Qin et al. (2017) XDT2 94.09 35.71 4530 Qin et al. (2017)
XDT1 94.04 35.71 4602 Qin et al. (2017) KM2 94.05 35.62 4757 Q. Wu et al. (2020)
ZD 94.40 32.82 4775 Qin et al. (2017) S308 4 94.79 34.90 4475 Qin et al. (2017)
S308 3 95.19 34.68 4661 Qin et al. (2017) S308 2 95.97 34.16 4733 Qin et al. (2017)
S308 1 96.96 33.77 4676 Qin et al. (2017) ZLH2 97.31 34.69 4402 Qin et al. (2017)
GST-51 97.38 33.98 4532 Gao et al. (2023) GST-49 97.38 33.98 4536 Gao et al. (2023)
GST-7 97.57 35.01 4299 Gao et al. (2023) GST-6 97.58 35.02 4299 Gao et al. (2023)
GST-46 97.65 34.11 4749 Gao et al. (2023) CLP2 97.85 34.26 4717 Qin et al. (2017)
GST-37 97.85 34.26 4724 Gao et al. (2023) GST-31 97.87 34.27 4663 Gao et al. (2023)
GST-8 98.44 34.85 4219 Gao et al. (2023) PT1 98.75 38.78 4128 Mu and Peng (2022)
PT2 98.78 38.83 3985 Mu and Peng (2022) PT3 98.85 38.84 3827 Mu and Peng (2022)
PT4 98.95 38.83 3770 Mu and Peng (2022) PT5 99.03 38.81 3691 Mu and Peng (2022)
PT6 98.96 38.95 4153 Mu and Peng (2022) PT7 98.96 38.90 3970 Mu and Peng (2022)
PT10 99.07 38.79 3681 Mu and Peng (2022) Ebo TA 100.92 38.00 3691 Mu and Peng (2022)
Ebo TB 100.91 38.00 3615 Mu and Peng (2022) KHW 99.15 35.36 4166 Qin et al. (2017)
KHE 99.28 35.33 4338 Qin et al. (2017) JLLW 99.33 35.40 4324 Qin et al. (2017)
ELS 99.50 35.49 4330 Qin et al. (2017) ZK21 85.13 33.80 5020 J. Chen et al. (2016)
ZK13 85.31 33.18 5120 J. Chen et al. (2016) ZK14 85.35 33.21 5130 J. Chen et al. (2016)
ZK18 85.36 33.39 5120 J. Chen et al. (2016) ZK15 85.63 33.39 5130 J. Chen et al. (2016)
ZK16 85.63 33.39 5120 J. Chen et al. (2016) ZK17 85.63 33.39 5120 J. Chen et al. (2016)
ZK19 85.65 33.35 5050 J. Chen et al. (2016) ZK22 85.63 33.39 5120 J. Chen et al. (2016)
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Table S4. Comparison of observed and modeled soil temperature at 0–40cm depth.

Sites Longitude Latitude Altitude Period Observation Simulation Bias

(◦ E) (◦N) (m) (◦C) (◦C) (◦C)

Mean Std Mean Std
51886 90.85 38.25 2945 1988–2012 8.3 11.4 9.8 11.3 -1.5
52602 93.33 38.75 2770 1980–2012 7.6 11.5 8.5 11.8 -0.9
52633 98.42 38.80 3367 2004–2012 2.5 9.2 2.1 8.9 0.4
52657 100.25 38.18 2787 2004–2012 5.8 9.7 3.5 9.4 2.3
52707 93.68 36.80 2767 2004–2012 9.8 10.6 10.5 11.3 -0.7
52713 95.37 37.85 3173 2004–2012 8.6 11.1 9.0 12.0 -0.4
52737 97.37 37.37 2982 1980–2012 7.2 10.1 9.6 11.3 -2.4
52754 100.13 37.33 3345 1980–2012 3.6 8.0 2.9 8.3 0.7
52765 101.62 37.38 2938 1982–2012 4.6 8.2 4.0 9.3 0.6
52825 96.42 36.43 2790 2004–2012 9.2 11.3 12.6 11.8 -3.4
52833 98.48 36.92 2950 2004–2012 8.0 10.2 8.2 10.9 -0.2
52836 98.10 36.30 3191 2004–2012 6.6 9.1 7.3 10.4 -0.7
52856 100.62 36.27 2835 1982–2012 7.9 9.4 9.4 9.8 -1.5
52943 99.98 35.58 3323 1992–2012 5.5 8.1 7.5 8.6 -2.0
52955 100.75 35.58 3203 2004–2012 6.2 9.1 6.4 9.0 -0.2
52974 102.02 35.52 2491 2004–2012 9.1 8.7 11.1 9.0 -2.0
55228 79.59 32.11 4279 1994–2012 6.8 10.8 5.6 10.8 1.2
55248 84.25 32.09 4415 2007–2012 5.5 8.9 7.8 9.7 -2.3
55279 89.40 31.48 4700 2007–2012 4.6 7.0 5.3 7.8 -0.7
55294 91.06 32.21 4800 2006–2012 3.3 7.5 4.0 7.3 -0.7
55299 92.16 32.06 4507 2006-2012 4.8 7.0 -0.5 5.5 5.3
55437 81.15 30.17 4900 1994–2012 10.4 8.8 6.7 9.2 3.7
55472 83.8 30.57 4672 2007–2012 5.4 8.2 1.7 7.3 2.7
55493 91.05 30.29 4200 2006–2012 7.7 7.2 7.1 7.5 0.6
55569 87.38 29.05 4000 2007–2012 11.9 7.2 6.1 7.5 5.8
56021 95.78 34.13 4175 1982–2012 3.1 7.7 2.7 7.8 0.4
56029 97.02 33.02 3681 2004–2012 7.3 7.5 6.8 8.0 0.5
56033 98.22 34.92 4272 1980–2012 1.5 7.6 -0.9 8.6 2.4
56034 97.13 33.80 4415 2004–2012 1.5 6.5 -0.4 7.1 1.9
56043 100.25 34.47 3719 2004–2012 4.5 7.3 4.6 6.3 -0.1
56065 101.60 34.73 3670 1981–2012 3.9 7.0 3.0 8.4 0.9
56125 96.48 32.20 3644 1993–2012 8.6 7.3 6.8 7.9 1.8
56151 100.75 32.93 3530 2004–2012 7.2 7.1 5.5 7.7 1.7
56434 97.28 28.39 2328 2007–2012 15.0 5.9 7.4 4.9 7.6
S6 89.47 28.30 4450 2018 4.9 7.4 6.8 5.9 -1.9
S9 94.43 29.54 2992 2018 10.1 6.2 13.5 5.2 -3.4

Note: Study sites were selected based on their location and the observational periods. These

sites need to be located in our model domain and within the period of historical simulation. Data

derived from Cuo, Zhang, and Li (2022).
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Table S5. Comparison of the average thermal state permafrost and active layer thickness

over the Tibetan Plateau between this study and other research
Variables Historical pe-

riod
Mid-century End-century Methods Reference

SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5
/RCP2.6 /RCP4.5 /RCP7.0 /RCP8.5 /RCP2.6 /RCP4.5 /RCP6.0 /RCP8.5

MAGT(◦ C)

-2.26±0.17 -2.33±0.20 — — -1.98±0.17 -2.52±0.18 — — -1.06±0.12 TNM this study
-1.35±0.42 — — — — -0.66 -0.14 — 0.25 ML Ni et al. (2021)
-1.56 — — — — — — — — TNM X. Wu et al.

(2018)
-1.72 -0.43 -0.17 0.02 0.33 -0.43 0.65 1.93 2.96 ML&EQM Ran et al.

(2022)
-3.32 — — — — — -2.52 -1.32 -0.72 TNM G. Zhang et al.

(2022)

ALT (m)

3.04±0.09 3.07±0.18 — — 3.41±0.19 2.80±0.14 — — 4.91±0.29 TNM this study
2.01 — — — — — — — — TNM Guo and Wang

(2013)
2.30±0.60 — — — — 2.50 2.50 — 2.70 ML Ni et al. (2021)
3.23 — — — — — — — — TNM X. Wu et al.

(2018)
2.46 — — — — — — — — EQM Xu and Wu

(2021)
1.35±0.33 — — — — — — — — TNM Yin et al.

(2021)
2.11 2.65 2.74 2.80 2.90 2.65 3.00 3.42 3.73 ML&EQM Ran et al.

(2022)
1.24 — — — — — 1.94 2.74 4.24 TNM G. Zhang et al.

(2022)
2.54 — — — — 2.78 2.95 — 3.91 EQM Ji et al. (2022)
2.43 — — — — — — — — ML R. Li et al.

(2023)
2.39 — — — — — — — — ML&EQM Shen et al.

(2023)

PA (×106km2)

1.10±0.02 0.96±0.03 — — 0.92±0.04 0.88±0.04 — — 0.59±0.06 TNM this study
1.52 TNM Guo and Wang

(2013)
1.24±0.03 — — — — 0.67±0.13 0.40±0.11 0.34±0.12 0.09±0.06 EQM Guo and Wang

(2016)
1.48 1.09 0.96 0.96 0.78 1.10 0.88 0.80 0.55 EQM W. Zhang et al.

(2016)
1.66 1.26 1.12 1.21 0.97 1.29 0.93 0.89 0.59 EQM Lu et al. (2017)
1.06 EQM Zou et al.

(2017)
1.27 1.06 1.01 1.12 0.93 1.06 0.85 0.87 0.53 EQM Chang et al.

(2018)
1.29 — — — — — — — — TNM X. Wu et al.

(2018)
1.11 — — — — — — — — EQM Ran et al.

(2018)
1.04 — — — — 0.91 0.62 — 0.44 ML Ni et al. (2021)
1.15 — — — — — — — — ML Ran et al.

(2021)
1.42 — — — — 1.04 0.57 — 0.28 TNM Yin et al.

(2021)
1.01 — — — — — — — — ML&EQM Ran et al.

(2022)
1.07 0.85 0.85 0.83 0.79 0.77 0.60 0.44 0.31 TNM G. Zhang et al.

(2022)
1.34 — — — — — — — — ML R. Li et al.

(2023)
1.04 — — — — — — — — ML&EQM Shen et al.

(2023)
1.21±0.02 0.81±0.04 0.72±0.04 0.68±0.04 0.57±0.05 0.76±0.05 0.44±0.06 0.14±0.04 0.04±0.03 EQM H. Li et al.

(2024)

Note: The abbreviations MAGT, ALT, PA, TNM, EQM, and ML refer to mean annual ground temperature, active
layer thickness, permafrost areas, transient numerical model, empirical equilibrium model, and machine learning algorithm,
respectively. This study defines the historical period (2000–2018), mid-century (2041–2060), and end-century (2081–2100).
Different studies have various definitions.
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