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Abstract

Mesophyll conductance ( g m ) describes the efficiency with which CO 2 moves from substomatal cavities to chloroplasts.

Despite the stipulated importance of leaf architecture in affecting g m , there remains a considerable ambiguity about how and

whether anatomy influences g m . This is, in part, because studies exploring the relationship between leaf architecture and

g m have often relied on simple linear or exponential models to identify correlations. Here, we employed non-linear machine

learning models to more comprehensively assess the relationship between ten leaf architecture traits and g m . These models

achieved excellent predictability of g m , which depended on the leaf architecture traits considered as predictors. Dissection

of the importance of leaf architecture traits in the models indicated that cell wall thickness and chloroplast area exposed to

internal airspace have a large impact on interspecific variation in g m . Additionally, other leaf architecture traits, such as:

leaf thickness, leaf density, and chloroplast thickness emerged as important predictors of g m . We found significant differences

in the predictability between models trained on different plant functional types (PFTs): those trained on woody species could

predict g m by anatomical traits on other woody PFTs, ferns, and C 3 herbaceous plants, whereas the converse did not hold

in general. By moving beyond simple linear and exponential models, our analyses demonstrated that a larger suite of leaf

architecture traits drive differences in g m than has been previously acknowledged. These findings pave the way for modulating

g m by strategies that modify its leaf architecture determinants.
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Abstract1

Mesophyll conductance (gm) describes the efficiency with which CO2 moves from sub-2

stomatal cavities to chloroplasts. Despite the stipulated importance of leaf architecture in af-3

fecting gm, there remains a considerable ambiguity about how and whether anatomy influences4

gm. This is, in part, because studies exploring the relationship between leaf architecture and gm5

have often relied on simple linear or exponential models to identify correlations. Here, we em-6

ployed non-linear machine learning models to more comprehensively assess the relationship7

between ten leaf architecture traits and gm. These models achieved excellent predictability8

of gm, which depended on the leaf architecture traits considered as predictors. Dissection of9

the importance of leaf architecture traits in the models indicated that cell wall thickness and10

chloroplast area exposed to internal airspace have a large impact on interspecific variation in11

gm. Additionally, other leaf architecture traits, such as: leaf thickness, leaf density, and chloro-12

plast thickness emerged as important predictors of gm. We found significant differences in the13

predictability between models trained on different plant functional types (PFTs): those trained14

on woody species could predict gm by anatomical traits on other woody PFTs, ferns, and C315

herbaceous plants, whereas the converse did not hold in general. By moving beyond simple16

linear and exponential models, our analyses demonstrated that a larger suite of leaf architecture17

traits drive differences in gm than has been previously acknowledged. These findings pave the18

way for modulating gm by strategies that modify its leaf architecture determinants.19

keywords: mesophyll conductance, leaf architecture traits, plant functional types, machine20

learning, non-linear regression models, impurity-based feature importance21

1 Introduction22

Mesophyll conductance, gm, is a numerical measure of the rate of diffusion of CO2 from the23

substomatal cavities to RuBisCO, the site of carboxylation in the chloroplasts. An increase in mes-24

ophyll conductance is thus expected to elevate the rate at which RuBisCO can fix CO2, thereby de-25

creasing the water and nitrogen costs for carbon acquisition and fixation. Therefore, understanding26

factors controlling gm is considered important for increasing the availability of CO2 at RuBisCO’s27

site of carboxylation, with expected concomitant improvement in the rate of photosynthesis (Zhu28

et al., 2010).29

Relatively few leaf anatomical traits have been linked to interspecific variation in gm. Existing30

evidence has indicated that cell wall thickness, Tcw, and surface area of chloroplasts exposed to31

the intercellular airspaces per unit leaf area, Sc, are important determinants of gm, as these traits32

negatively and positively correlate with gm, respectively (Clemente-Moreno et al., 2019; Carriquı́33

et al., 2020; Veromann-Jürgenson et al., 2020; Tosens et al., 2016; Veromann-Jürgenson et al.,34

2017 ; Gago et al., 2019 and references therein). However, there is still considerable ambiguity35
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regarding the extent to which Tcw and Sc affect gm, as their predictive power can be weak or36

even nonsignificant. For example, (Xiong, 2023) found that neither of these anatomical traits37

correlated with gm in C3 crops, using simple linear regression models. Furthermore, other studies38

presenting regression analyses on data collected from the literature (Flexas et al., 2021; Knauer39

et al., 2022a) have generally yielded weak models based on the two aforementioned anatomical40

traits for different plant functional types (PFTs). Whilst it is true that some exceptional cases have41

shown very high predictive power, these are based on only very few data points (e.g. seven), and42

thus the generalizability of these models remains unexplored (Peguero-Pina et al., 2017; Carriquı́43

et al., 2020). In addition, it remains unclear if other leaf architecture traits, besides Tcw and Sc,44

contribute to explaining variance of gm.45

The ambiguity surrounding the importance of anatomy is perhaps not surprising if one consid-46

ers that gm is a composite parameter that integrates the effects of multiple factors, including: cell47

wall, plasma membrane (via its permeability, affected by aquaporins), cytosol, chloroplast enve-48

lope and stroma (Evans, 2021). This problem is further exacerbated by the differences in gm values49

obtained by different measuring approaches. As leaf development will often be governed by allo-50

metric scaling rules (John et al., 2013), and anatomical traits may have antagonistic and/or complex51

impacts on gm, it is likely that simple models based on one or two explanatory variables may be52

insufficient to robustly capture the relationships between anatomy and gm. However, to date, the53

majority of models have applied this approach, describing the relationship between anatomy and54

gm have been based on single- and two-variable linear or exponential relationships.55

Advances in machine learning approaches provide one suitable means to obtain data-driven56

insights in the determinants of gm. Modern machine learning approaches can capture non-linear57

relationships, and comparisons of models built using different plant functional types (PFTs) can58

test the generalizability of the resulting models. Here, we used machine learning techniques to59

address four questions: (1) Can machine-learning approaches be used to improve the predictive60

power of models describing the relationship between anatomy and gm? (2) Do Sc and Tcw emerge61

as important determinants of gm when several leaf architecture traits are used as inputs into non-62

linear models? (3) Can these non-linear models identify other leaf architecture traits (besides Sc63

and Tcw) influence gm? (4) Do the best fitting models vary between different PFTs, and are they64

generalizable?65

To address these questions, we make use of the largest compendium of gm values along with66

leaf cell architecture traits published to date, measured over different PFTs and species. These data67

allow us to also investigate and fully address the extent of generalizability of the developed non-68

linear models between different PFTs. Lastly, we show how exhaustive consideration of different69

combinations of predictors can help in characterizing the role of leaf cell architecture in the control70

of gm, and, thereby, photosynthesis.71
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2 Results72

2.1 Predictive performance of the random forest models within PFTs73

To identify and analyze the relationships between leaf architecture traits and gm, we used a recently74

published comprehensive data set (Knauer et al., 2022b) providing measurements of diverse leaf75

traits on the same set of plants. This is currently the largest available data set for gm, collecting76

measurements from 563 peer-reviewed studies over 617 species partitioned into 13 major PFTs.77

To train random forest (RF) models, we then constructed all possible combinations of traits for the78

global data set (consisting of all PFTs) and for each of the individual PFTs, respectively. Further,79

we considered only those combinations with at least 50 samples, with no missing data, allowing80

us to avoid data imputation that may bias the findings (see section Data and preprocessing, for81

details).82

Some of the random forest (RF) models (see section The model), assessed by cross-validation83

on the global data set, revealed excellent relationships between different combinations of leaf ar-84

chitecture traits and gm across all PFTs and species (Fig. 1). The performance of the models,85

i.e. predictability, was assessed by the adjusted coefficient of determination, R2
adj , that controls86

for the number of predictors, and the Pearson correlation coefficient, r, between the predicted and87

measured gm values. We note that R2
adj assesses the quantitative agreement, while r captures the88

qualitative agreement between the measured and predicted gm values.89

The model based on the combination of five anatomical traits, namely, Tcw, Sc, Tleaf , Tchl,90

and Dleaf (model 1 in Fig. 1), showed both quantitatively and qualitatively the best predictability91

(R2
adj = 0.63 and r = 0.90). Combinations involving some of these five traits were included as92

predictors in seven of the ten models ranked high with respect to their predictability (i.e., models93

2− 5, 7, 8, and 10 in Fig. 1). Furthermore, the model that considered Tcw and Sc (model 14 in Fig.94

1), the model that considered Tcw, Tleaf , and Dleaf (model 3 in Fig. 1), and the one based on the95

combination of Tcw, Sc, Tchl, and Dleaf (model 4 in Fig. 1) were the best-performing among those96

trained on two to four anatomical traits as predictors.97

The best-performing model (R2
adj = 0.55 and r = 0.89) based on a combination of six traits98

included: Tcw, Sc, Tleaf , Tchl, Dleaf , and Sm, while the best-performing model (R2
adj = 0.49 and99

r = 0.88) on seven traits included: LMA, Tmes, Tcw, Tchl, Sm, Sc, and Tleaf . Interestingly, the100

best-performing model (R2
adj = 0.22 and r = 0.85) with eight traits, namely: LMA, Tmes, Tcw,101

Tcyt, Tchl, Sm, Sc, and Tleaf (R2
adj = 0.22 and r = 0.85), was considerably weaker in comparison102

to the top performing models with fewer traits as predictors.103

This raised the question of why the introduction of additional predictors did not result in a104

further increase in model performance. The considerably smaller number of models on six or more105

traits in comparison to the number of models based on five traits (i.e. 80 models with six traits, 19106
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models with seven, one model with eight, and no models with nine or ten traits in comparison to107

157 models on five traits) seemed as a plausible explanation (see section Data and preprocessing).108

To address the concern about the data limitations for models that include more than five traits as109

predictors, we then considered a different data-splitting approach. To this end, we used a smaller110

value (of 25 rather than 50) for the minimum number of data points required for a combination of111

traits, and performed the same model training and cross-validation. In this robustness analysis, we112

did not use R2
adj as a performance measure since the number of traits and test data points was equal113

or close to each other for some trait combinations, resulting in infinity or out-of-bound values for114

R2
adj . Interestingly, the traits contributing to the best model with respect to the r values were the115

same as in the previous analysis; in addition, other models with at most six traits again displayed116

high performance scores (Fig. S1). Therefore, the robustness analysis indicated that the models on117

a larger number of traits as predictors did not outperform the best model with five traits, identified118

based on the stricter data consideration.119

Other factors that can contribute to a poor performance of a RF model include (multi)collinearity120

of predictors and presence of irrelevant predictors. In other words, adding irrelevant and highly121

correlated predictors is not expected to improve model performance and may also have an opposite122

effect on model performance due to the increasing model uncertainty and complexity (Kuhn et al.,123

2013). Indeed, we found pairwise correlations between different traits, indicating their collinearity124

(Fig. 2a). For example, Tleaf and Tmes, Tleaf and LMA, Dleaf and LMA as well as Tmes and LMA125

represent trait pairs showing strong, moderate, weak, and no correlations, respectively (Fig. S2).126

Thus, (multi)collinearity of the predictors can explain the negative effect of increasing number of127

predictors on the performance of RF models.128

Feature selection is a common strategy to resolve the problem of (multi)collinearity among the129

predictors. This is performed either by preselecting the predictors according to defined criteria (fil-130

ter methods) or by iteratively identifying the predictors that maximize the performance of the target131

model (wrapper methods) (Kuhn et al., 2013). Both approaches aim to remove non-informative132

and highly correlated traits and reach an optimal subset with respect to different criteria (e.g. min-133

imum number of predictors retained). In our setting, having only ten predictors allowed us to134

investigate all possible combinations of predictors along with the respective models. As a result,135

we did not rely on selection of features since we performed exhaustive training of models of each136

of these combinations of predictors. We expected the five traits appearing in our best-performing137

model (model 1 in Fig. 1) to be the best representatives for the rest of the traits and have no138

high correlations with each other. Indeed, as expected, we found that all pairs of predictors in the139

best-performing model show weak correlations, except for Dleaf and Tcw that exhibit moderate140

correlations (Fig. 2b). In addition, removing Dleaf from the set of predictors resulted in the second141

best-performing model (R2
adj = 0.61, model 2 in Fig. 1). This demonstrates that Dleaf , despite the142
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moderate correlations to the other predictors, still contributes to explaining some of the variance in143

gm. Therefore, our modeling strategy contributed to understanding how (multi)colinearity between144

leaf architecture traits impacts on the predictability of the resulting models.145

To better assess the last claim, we observed that a trait can be excluded from a model either146

because it is correlated to another predictor present in the model or because it does not contribute to147

explaining variance in gm. Inspection of models for all possible combinations of traits as predictors148

allows us to assess the reasons for not considering a trait in a predictive model for gm. Having more149

models with a positive R2
adj , with different combination of traits, indicate one or both of the two150

possibilities: i) more traits significantly contribute to explaining variance in gm, and ii) correlated151

traits also contribute to explanation of variance in gm, due to lack of high correlation between152

each other. In this way, the number of models with positive R2
adj and the distribution of their153

predictability values provide a general view in assessing the relationship between leaf anatomy and154

gm. The information provided by this metric can also be more robust than the information obtained155

by the best-performing model, considering the possible overfitting due to the number of data points156

and biological differences between species appearing in each model (i.e. trait combination).157

Following this logic, we summarized the information about the performance of the models on158

the global data set and on data of individual PFTs using the distribution of predictability scores159

(Fig. 3). In addition to the global data set (as discussed above), the cross-validation over the data160

of eight individual PFTs showed several models with non-negative R2
adj . For instance, woody ev-161

ergreens, woody evergreen angiosperms, gymnosperms, evergreen gymnosperms, C3 − C4 herba-162

ceous, woody angiosperms, C3 herbaceous, and extended ferns were the PFTs with at least one163

model with positive R2
adj . Excluding C3 herbaceous, the best models of the mentioned PFTs164

showed weak to moderate R2
adj scores alongside high values for r between the measured and pre-165

dicted values of gm in the test set (Table 1). These results provide further, strong evidence for the166

effect of leaf anatomy on gm within PFTs, in agreement with what has already been presented in167

the literature (e.g., Knauer et al., 2022a).168

However, these results raise the question of why there are such differences in the predictive169

performance scores between the global data set and the PFTs, as well as between the PFTs them-170

selves. To address this issue, we aimed to further examine the clear statistical differences in the171

data of the different PFTs. We observed that data from individual PFTs contained fewer data points172

compared to the global data set, which, as mentioned above, can negatively affect the performance173

of the models when trained on the data from the individual PFTs. Moreover, the data sets of each174

of the considered PFTs omit some traits, resulting in the consideration of only a fraction of the175

possible combinations with the ten traits as predictors (Table S2).176

To investigate the effect of missing traits and combinations, we focused on the most special177

case, that of C3 herbaceous PFT, which showed very poorly performing models (R2
adj <= 0.04)178
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Figure 1: Predictive performance of random forest models using different combinations of
leaf anatomical traits. The UpSet plot shows the predictability evaluation of top 30 models for
gm, based on average R2

adj , consisting of ten anatomical traits LMA, Tmes, FIAS , Tcw, Tcyt, Tchl,
Sm, Sc, Tleaf , and Dleaf over all available species and PFTs of Knauer et al. (2022b) data set. The
lower panel shows the intersection of traits contributing to the training model. The middle panel
indicates the average R2

adj and r between the measured and predicted values of gm in the test set.
The error bars show the standard errors of the predictability measures. The upper panel shows the
average Gini importance of the corresponding traits at each combination of the traits. The number
of data points in each model is provided above the importance bars. For all models, the average
predictability scores were achieved by the RF model in 150 executions, with 70% randomly chosen
data elements used for the training set and the remaining 30% used for the test set.

across the 49 trained models. To this end, we applied the same analyses to the data set of a recently179

published paper (Xiong, 2023), providing the gm data for eight of our anatomical traits across ten180

C3 crops. This yielded several models with considerably higher predictive performance for C3181

herbaceous plants, i.e., moderate R2
adj and high r values, where at least one of the traits involved in182

each of the top 30 models was missing in our C3 herbaceous data set (Fig. S3). The observed effect183

of missing traits and combinations in this particular case, along with strong correlation values184

in all PFTs, suggests that increasing the available data for individual PFTs may improve model185

performance.186

2.2 Predictive performance of the RF models between PFTs187

Our other approach to assess the relationships between leaf structural traits and gm was cross-188

prediction over PFTs, i.e., prediction of the gm values in one PFT by the RF models trained on the189

data set of another PFT. This approach allowed us to assess if and to what extent the models are190
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Table 1: Best-performing models for gm in cross-validation within different PFTs.

PFT R2
adj r n

Global data set 0.63 0.90 599
Woody evergreens 0.42 0.75 72

Woody evergreen ang. 0.3 0.74 63
C3 − C4 herbaceous 0.37 0.69 49

Evergreen gym. 0.3 0.41 31
Extended ferns 0.22 0.78 7

Woody angiosperms 0.21 0.68 72
C3 herbaceous 0.04 0.51 49

Cross-validation predictability scores of the model with the highest R2
adj for global data set and

each of seven individual PFTs with at least one model with positive R2
adj . The number of trained

models, n, for each data set is also given in the table.

generalizable, i.e. their performance remains good on unseen data sets. This modeling strategy also191

sharply decreases the probability that a pair of data samples from an identical study is split such that192

one lies in the training set and the other on the test set, given the majority of the studies in the data193

set provide measured gm for a few species from one PFT. As a result, this strategy overcomes the194

bias in the models due to possible systematic errors in measurements of different studies. Finally,195

by following this strategy, we aimed to investigate if the same relationship, captured in a RF model,196

holds across PFTs.197

First, we developed RF models in a setting where the data of one PFT was considered as198

the test set and the remaining data as the training set. This resulted in numerous models with199

moderate to strong R2
adj and r values (Fig. 4a). The prediction of gm on woody angiosperms,200

including both evergreen and deciduous species, showed the largest number of RF models with201

a positive R2
adj set as well as the model with the highest predictability across all scenarios (Fig.202

4a and Table 2). The two subgroups of these species, woody evergreen angiosperms and woody203

deciduous angiosperms, also showed several models with moderate R2
adj and strong r values. A204

special case was the scenario with C3 annual herbaceous as the test set, which showed a weak205

performance for one model and a negative R2
adj for the rest of 347 trained models. This finding206

distinctly contrasts the scenario in which C3 perennial herbaceous was considered as a test set,207

showing several models with moderate to strong predictability scores on only 83 trained models.208

In addition, the union of these PFTs, i.e., C3 herbaceous and C3 − C4 herbaceous, as the test209

sets also showed predictability scores with performances between these two cases. The prediction210

of gm on evergreen gymnosperms and woody evergreens as test sets showed 28 and four models211

with a positive R2
adj , respectively. Finally, the scenarios with the (extended) ferns as the test sets212

also showed ten models with non-negative R2
adj , with the best models showing moderate to strong213

8



predictability scores. The data on the remaining PFTs either did not result in a model with non-214

negative R2
adj or did not contain sufficient points to apply the same prediction scenarios (Tabel215

S2).216

In the next step, we investigated prediction scenarios in which the different pairs of non-217

overlapping PFTs were considered as the training and test sets for the RF models, respectively.218

Among all the possible pairs of PFTs, 121 scenarios had at least one combination of traits with219

sufficient training and test data points, with 31 of them resulting in at least one model with pos-220

itive R2
adj values (Fig. 4b and Fig. S4). Different groups of woody plants, i.e., woody (ev-221

ergreen/deciduous) angiosperms and evergreen gymnosperms, C3 (annual/perennial) herbaceous222

plants, and (extended) fern plants were included in the training and the test sets of all 31 scenarios.223

The RF models trained on data from selected woody species and tested on the other woody224

species, C3 herbaceous plants, and ferns were generally the best-performing (Fig. 4b, Fig. S4 and225

Table 2).226

Woody angiosperm species represented a special case, since: (i) the model trained on the global227

set (excluding this PFT) resulted in the best-performing model when tested on this PFT (Table 2)228

and (ii) the model trained on data from this PFT predicted gm with the best performance on data229

from C3 perennial herbaceous species (Table 2). In addition, models trained on data from woody230

plants resulted in 40 models with positive R2
adj when tested on data from (extended) ferns (Fig.231

4b and S4). However, the models trained on (extended) ferns could only predict gm on C3 (−C4)232

herbaceous and woody plants in 8 and 2 models, respectively. On the other hand, the models trained233

on C3 herbaceous plants could only predict the gm from the other C3 herbaceous plants (15 models)234

and woody deciduous plants (2 models). The scenarios with the C3 perennial herbaceous as the235

test sets showed several models with positive R2
adj , including the one with the best predictability236

scores. However, this was not the case for the C3 annual herbaceous. This result was in line with237

the significant difference between the predictability of the models tested on C3 annual herbaceous238

and C3 perennial herbaceous, both of which were trained on the rest of the global data set (Table239

2).240

2.3 Importance of anatomical traits in predicting gm241

The relative importance of the traits contributing to the RF models is of particular interest when242

interpreting the nonlinear relationships between anatomical traits and gm.243

Previous works investigating the relationships between gm and leaf architecture generally con-244

sidered and investigated models with one or two traits. They then identified the traits with and245

without significant regression scores as important and unimportant, respectively (e.g., Knauer246

et al., 2022a, Flexas et al., 2021, Xiong, 2023). However, here we follow a different approach:247

we developed a model for each possible combination of ten traits, available in our data set, and248
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computed the performance of the RF models in predicting gm by anatomical traits. Hence, we249

required different strategies to identify which traits were more important in explaining gm. To this250

end, we considered three different aspects to evaluate the importance of the traits: i) the contri-251

bution of a trait in the given model, ii) the relative importance of a contributing trait in the given252

RF model, and iii) the overall impact of a trait in a set of models in terms of its contribution and253

relative importance, taking into account the performance of the models containing the trait.254

The traits contributing to the optimal model can initially be considered as the most important in255

explaining gm. However, the contribution of a trait still does not provide details about its share in256

predicting the gm in the optimal model. Therefore, we considered the average impurity-based Gini257

importance of each trait across different runs of the RF model as its relative importance (Fig. 5).258

The first surprising result was the major share of importance of one or two traits included in each259

model. Further, in most models, one trait accounted for at least 50% of the Gini importance and260

another trait accounted for most of the remaining portion. Interestingly, Sc and Tcw were among261

the important traits in the majority of models. This is in line with several previous works that262

recognized these traits as the two essential anatomical traits to explain the variation of gm across263

PFTs and species (see Section Introduction). In addition, each of the other eight traits contributed264

to at least one of the best-performing models. This provides evidence that the ten investigated265

anatomical traits contribute to explaining the variance in gm across plant species.266

Next, we investigated the contribution and importance of the traits in other RF models. Similar267

to the best-performing, the remaining models with a non-negative performance showed a large268

proportion of Gini importance for only one or two traits (e.g., the upper panel of Fig. 1, S1).269

To summarize the importance of each trait over all the models with positive R2
adj we used two270

total importance measures IMPC and IMPG (see Section Measures of predictor importance in RF271

models). Interestingly, except in three cases (i.e., the scenario trained on the C3 annual herbaceous272

and tested on C3 perennial herbaceous plants along with the scenarios trained on C3 and C3 − C4273

herbaceous and tested on woody deciduous angiosperms), one or both of Sc and Tcw were again274

the most important traits based on IMPG in all the scenarios (Fig. 3, 4a, 4b, and S4). However,275

the ordering of traits based on importance values assessed by IMPC were different: in ten cases,276

neither Sc nor Tcw were found to be among the top two important traits, and the importance share277

of the most important traits small compared to the results obtained by IMPG. Excluding Sc and278

Tcw, again, all the remaining eight traits showed a considerable contribution of total importance, at279

least in one of the prediction scenarios, particularly when using IMPC . As special cases, Dleaf and280

Sm were the most important traits in two scenarios, and LMA and fIAS were the most important in281

one scenario in terms of both measures of total importance.282

In summary, our findings indicated that the ten considered anatomical traits are important in283

explaining gm in different prediction scenarios, based on considering the best-performing models284
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or all the models with a positive R2
adj . We also showed that the relative importance of a few285

of the traits in explaining gm is considerably higher than the others. Meanwhile, there are still286

uncertainties in ranking the importance of the traits due to data limitations. More specifically,287

except for two prediction scenarios (i.e., cross-validation over the global data set and the scenario288

with woody angiosperms as the test set and the rest of the global data set as the training set), one289

or more traits were missing in other scenarios. Therefore, we avoid ranking the contribution of the290

traits and only highlight the main trends, such as the major importance of the two traits, namely,291

Sc and Tcw.292

3 Discussion293

Our study aimed to address the relationship between leaf architecture traits and gm, thus helping294

assess the suitability of modulating leaf anatomy as a way towards engineer gm. Several studies295

have already investigated and attempted to find significant empirical relationships between leaf296

architecture traits and variability of gm across plant species. The models reported in the existing297

studies mainly suggested that two anatomical traits, Tcw and Sc, can explain a small proportion298

of the variability in gm, as assessed by weak to moderate R2; these models were developed often299

using a limited number of data points (see section Introduction). In addition, these modelling300

efforts generally failed to find a significant relationship between leaf structural traits (e.g., LMA,301

Dleaf , Tleaf , and Tmas) and variation of gm across PFTs and species (Knauer et al., 2022a). As a302

result, the existing models tend to not generalize well on unseen data. Further, the existing models303

are rooted in different linear and nonlinear regression approaches. For instance, different studies304

have used linear (Carriquı́ et al., 2020), exponential (Tosens et al., 2016), logarithmic (Tomás et al.,305

2013; Veromann-Jürgenson et al., 2017, 2020), and power-law (Flexas et al., 2021; Knauer et al.,306

2022a) models to fit the gm based on Tcw.307

However, comprehensive models that consider the majority of measured leaf architecture traits308

as predictors have not yet been carefully investigated and compared. Here, we ask if non-linear309

machine-learning models, with more than two leaf architecture traits as predictors, can be used310

to improve the predictive power of models describing the relationship between anatomy and gm.311

Interestingly, the RF model built based on data for the two anatomical traits, Tcw and Sc, found312

moderately correlated with gm, demonstrated that increases in any of these traits does not neces-313

sarily lead to an increase in gm (see the rugged surface on Fig. S5). This was a further motivation to314

employ multivariate nonlinear models that consider other anatomical and structural traits describ-315

ing different parts of leaf architecture. In this regard, we created an RF model for each possible316

combination of ten leaf architecture traits on the available data across 34 distinct prediction sce-317

narios, representing the global data set, different PFTs, and combinations thereof.318
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Following these strategies, we identified several models, considering both anatomical and319

structural traits, with strong predictability scores for different prediction scenarios. Particularly,320

we found that the model trained on all the PFTs can predict gm based on three anatomical traits321

(i.e., TCW , SC , and Tchl) and two structural traits (i.e., Dleaf , and Tleaf ) over unseen data with322

R2
adj = 0.63 and r = 0.9. This evidence reliably indicates that the leaf architecture is a primary de-323

terminant of the variation of gm within and between PFTs. Furthermore, these findings suggest that324

a comprehensive analysis of both leaf structure and anatomy is necessary to explain the variation of325

gm across species. On the other hand, our analysis indicated that in addition to the best-performing326

model for each scenario, other models based on different combinations of the traits should also327

be taken into account. This can result in an exhaustive understanding of different aspects of the328

effect of leaf architecture on gm, considering weak to strong (but not perfect) correlations between329

anatomical and structural traits.330

The aim of this study was to also provide robust and generalizable models allowing to assess the331

extent to which different parts of the leaf architecture associate to gm across PFTs and species. To332

this end, we also examined whether and how the models trained on one or more PFTs can predict333

gm from other, unseen PFTs. This resulted in the identification of the most robust models tested334

on completely unseen species. Moreover, this strategy can uncover similarities and differences335

in the association of gm with leaf architecture across different PFTs. Our results yielded strong336

predictability for several models built based on this idea. For instance, the models trained on337

the global data set, with no overlap with the test sets, could predict gm on woody angiosperms,338

C3 herbaceous, and (extended) ferns with an R2
adj > 0.5. On the other hand, among the models339

trained and tested on individual PFTs, the ones either trained or tested on woody plants generally340

showed higher performances. The models trained on data from these plants could predict gm on341

other woody plants, C3 herbaceous plants, and ferns. However, the models trained on data from342

ferns and C3 annual herbaceous generalized to a much smaller degree to other PFTs.343

Interestingly, our analysis of the data from Xiong (2023) found that only two of the 30 best-344

performing models contained both Tcw and Sc as, with these traits making up only a small fraction345

of the Gini importance scores (Fig. S3). This outcome varies considerably from the analysis based346

on the Knauer et al. (2022b) data set including all PFTs (Fig. 1). Furthermore, the observation that347

Tcw seems less important in the crop species studied by Xiong (2023) is in stark contrast with a348

published comparison of anatomy across 15 species, spanning multiple PFTs. Tomás et al. (2013)349

showed that the slope between gm (standardised by Sc) and Tcw was much steeper within herba-350

ceous C3 species, than for evergreen trees, suggesting that Tcw plays a larger role in determining351

gm within the C3 herbaceous annual leaves. The importance of Tcw in determining gm has also352

been difficult to assess from experimental studies. For example, work on tobacco found that the353

reduction in gm coinciding with leaf age was strongly correlated with an increase in Tcw (Clarke354
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et al., 2021). However, knocking down cell wall mixed-linkage glucan production in rice plants355

resulted in lower gm, alongside concurrent reductions to Tcw (Ellsworth et al., 2018). As a result356

of these contrasting observations, it remains unclear if, and to what extent, Tcw is influencing gm357

within C3 herbaceous annuals.358

One open question from this study is why models to describe C3 annual plants underperformed,359

compared to other PFTs. One possible explanation is that this is an artifact, caused by the aver-360

aging of gm values derived from different experimental methods. Knauer et al. (2022a) showed361

that linear regressions between gm and Vcmax fit the data considerably better when separate mod-362

els were built depending on the method used to estimate gm (i.e. isotope, fluorescence or curve363

fitting). Whilst Vcmax bears no importance for our analysis, this indicates that averaging gm val-364

ues may not always yield the most reliable results. Estimations of gm rely on several assumptions365

(e.g., fractionation factors, the photorespiratory compensation point, methods chosen to estimate366

respiration). As such, it is conceivable that combining independent estimations of gm may have367

introduced unforeseen errors into the dataset that may interfere with model construction. Given368

that there is a bias towards research on C3 annual species (which the majority of the world’s staple369

crop species belong), a greater number of measurements have been recorded, per species, for this370

PFT. Consequently, within the data set collated by Knauer et al. (2022b) C3 annual herbaceous371

species had 538 measurements for 52 species, whereas the ratio of measurements to species was372

< 2.5 for all other PFTs. This remains to be tested, but it may also explain why models could be373

built to describe the relationship between anatomy and gm based on data from Xiong (2023), as374

these were derived from a single source and were not subject to the same averaging.375

4 Conclusions376

By using well-established machine learning approach, that of random forest, we demonstrated377

that one can obtain models based on leaf architecture traits that achieve excellent predictability of378

gm. In addition, we showed that these models are generalizable, particularly if trained with data379

from specific PFTs. We also presented a systematic approach for determining the importance of380

anatomical and structural traits based on the Gini importance of traits in best-performing models381

and two total importance measures that consider all models with a positive R2
adj in each predic-382

tion scenario. Using the systematic approach, we found that not only Tcw and Sc are two critical383

traits in explaining the variation of gm across plant species, but the remaining eight structural and384

anatomical traits considered play a role in explaining gm. In future work, our approach can also385

be used for the exact ranking of the importance of the traits by increasing the data availability or386

considering natural variability within species.387
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5 Methods388

5.1 Data and preprocessing389

To identify and analyze the relationships between anatomical traits and gm, we used a recently390

published comprehensive data set (Knauer et al., 2022b) providing leaf structural, anatomical,391

biochemical, and physiological traits measured on the same set of plants. This is currently the392

largest available data for gm, which collected measurements from 563 peer-reviewed studies over393

617 species partitioned to 13 major PFTs, namely: evergreen gymnosperms, deciduous gym-394

nosperms, woody evergreen angiosperms, woody deciduous angiosperms, semi-deciduous an-395

giosperms, CAM plants, ferns, fern allies, mosses, C3 perennial herbaceous, C3 annual herbaceous,396

C4 annual herbaceous, and C4 perennial herbaceous.397

Since most of the individual PFTs do not contain enough data points to train a model for many398

of the possible combinations of the traits as predictors, we also formed five more groups from the399

union of the above PFTs. This was performed according to the shared functional characteristics400

among the PFTs. The groups involved the following: woody evergreens (union of woody ever-401

green angiosperms and evergreen gymnosperms), woody angiosperms (union of woody evergreen402

angiosperms, woody deciduous angiosperms, and semi-deciduous angiosperms), extended ferns403

(union of ferns and fern allies), C3 herbaceous (union of C3 perennial herbaceous and C3 annual404

herbaceous), and (C3 −C4) herbaceous (union of C4 annual herbaceous, C4 perennial herbaceous,405

C3 perennial herbaceous, and C3 annual herbaceous). This strategy allowed us to not only increase406

the data available for model training, but also to compare the findings for different groups and407

their subgroups. This modeling strategy also facilitated the investigation of whether or not the408

combination of data from PFTs increase the generalizability of the models.409

In our analyses, we used gm values standardized to temperature of 25◦C and atmopheric pres-410

sure of 1 bar (105Pa), as provided in the data set (see Knauer et al., 2022a). The data set contains411

information about all the published methods for estimating gm in each study. Except for a few412

cases, all collected measurements were based on one of three methods: isotope (Evans et al., 1986;413

Caemmerer and Evans, 1991; Lloyd et al., 1992; Scartazza et al., 1998; Tazoe et al., 2009, 2011;414

Evans and Von Caemmerer, 2013; Mizokami et al., 2015), fluorescence (Harley et al., 1992; Loreto415

et al., 1992; Epron et al., 1995; Maxwell et al., 1997; Bernacchi et al., 2002; Yin and Struik, 2009;416

Yin et al., 2009), and curve fitting (Ethier and Livingston, 2004; Ethier et al., 2006; Sharkey et al.,417

2007; Gu et al., 2010; Sharkey, 2015). To have only one value for each individual experiment, we418

aggregated the repeated data by calculating per-species gm as the average of its values measured419

with the different methods. After aggregation, we used all the remaining data with no additional420

filters.421

The data sets includes measurements for 31 anatomical traits. However, in addition to the two422
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frequently reported traits (Tcw and Sc), we selected eight other anatomical and structural traits423

that have received the most attention in the literature in terms of published data (Table S1): Leaf424

dry mass per area (LMA), leaf density (Dleaf ), leaf thickness (Tleaf ), mesophyll thickness (Tmes),425

cytosol thickness (Tcyt), chloroplast thickness (Tchl), surface area of mesophyll cells exposed to426

the intercellular airspaces per unit leaf area (Sm), and fraction of intercellular airspaces in leaf427

mesophyll (FIAS). In this way, we kept all the data samples with a value for standardized gm and428

at least one of the mentioned anatomical traits, resulting in 882 data samples from 453 species and429

all the mentioned PFTs. The number of data samples and species for individual PFTs and groups430

are provided in Table S2.431

To investigate the performance of selected models, we used the data set from Xiong (2023)432

consisting of eight anatomical and structural traits Tmes, FIAS , Tcw, Tcyt, Tchl, Sm, Sc, and Tleaf433

measured for ten C3 crops. The measurements of gm in this data set were obtained using online434

carbon isotope discrimination and chlorophyll fluorescence methods, and we used the gm provided435

by the second method in our analyses.436

To perform the model training based on data for each PFT, we then constructed all possible437

combinations of traits for the global data set (consisting of all PFTs) and for each of the individual438

PFTs, respectively. In each combination, we removed the data samples with a missing value in one439

or more traits. We then kept only the combinations with at least 50 data samples, with no missing440

data, and ignored the rest. This strategy allowed us to avoid data imputation, that may bias the441

findings given that the measurements are made across different plant species. Future studies may442

consider investigating the effect of bias by relying on recently proposed imputation techniques443

(Ellington et al., 2015; Scherer and Emslander, 2023; Lee and Beretvas, 2023). This resulted in444

599 combinations for the set of all PFTs, each containing from one to ten anatomical traits as445

independent variables and the corresponding standardized gm as a response variable (Table S2).446

We also ensured that the training set was larger than the test set, to achieve generalizable models.447

5.2 The model448

The random forest (RF) model in a regression setting (Breiman, 2001) was used to predict gm449

by the anatomical traits, used as predictors. To achieve a robust result for the prediction scenar-450

ios within PFTs, for each combination of predictors we performed the training in a Monte-Carlo451

cross-validation setting (Smyth, 1996), by running 150 independent executions with 70% randomly452

chosen data points for the training set and the remaining 30% used for the test set. We also run453

the RF model 150 times for prediction scenarios between PFTs, with fixed training and test sets, to454

capture the effect of different random seeds controlling the bootstrapping and feature sampling in455

the trees (Raste et al., 2022). The training models and splitting data were implemented using the456

Python package Scikit-learn (Pedregosa et al., 2011). The source code ensuring reproducibility of457
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our analyses is available on GitHub: github.com/MRahimiMajd/leaf gm architecture.458

The predictive performance of the models was assessed quantitatively and qualitatively by us-459

ing the coefficient of determination (R2
adj) and Pearson correlation (r), respectively. The coefficient460

of determination (R2) is used as a quantitative measure of how much variance in gm is explained461

by the anatomical traits, employed as predictors. However, our models have different numbers of462

independent variables (i.e., anatomical traits as predictors). To capture the effect of this difference463

on the performance of models, we relied on the R2
adj , which adjusts the R2 value based on the464

number of predictors (Hocking, 1976).465

5.3 Measures of predictor importance in RF models466

To assess the relative importance of a trait contributing to a RF model, we used the impurity-467

based feature importance (Gini importance). Since the RF model is an ensemble of decision trees468

(obtained by node splitting), Gini importance measures the total reduction of the impurity of the469

RF model attributed to that feature, averaged over all trees in the ensemble (Pedregosa et al.,470

2011). For a single run or an ensemble of runs, we ensure that the (average) values of the relative471

importance of the contributing traits always sum up to one, as explained in the following.472

For the case where we have several models with different combinations of traits as predictors,473

we are interested in obtaining a total importance for each trait across all these models. In our anal-474

yses, the number of models is given by the number of possible combinations of traits. However,475

poorly performing models do not provide any information about trait importance. Thus, by exclud-476

ing these models, based on a threshold for the measure of performance, the number of models that477

include a given trait can simply be used as a measure of total importance for the trait. While seem-478

ingly sound, this measure does not discriminate between models of weak, moderate, and strong479

performance. To address this issue, we also employ the quality of the regression and the Gini im-480

portance of the traits in each model to define two total importance measures: the total contribution481

importance (IMPC) and the total Gini importance (IMPG). More specifically, IMPC of a trait is482

defined as the average of R2
adj values of all models with positive R2

adj including the trait. This483

measure captures the contribution of the traits in the models weighted by the performance of the484

models. The IMPG follows the same steps, but the R2
adj values for each model are also multiplied485

by the Gini importance of the traits before averaging these values. This total importance measure486

captures more detail about the impact of the traits on achieving models of good performance while487

considering the importance of features in the RF model. Having the average values for each trait,488

we normalize them such that the sum of the importance values of all the traits equals to one. In489

our analyses, we set the threshold at which a model contributes to the total importance measures490

as R2
adj = 0. This threshold indicates that the model explains the variance of gm better than the491

average of its values (Chicco et al., 2021).492
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Figure 2: Correlation structure of anatomical traits. Pearson correlation between a) all anatom-
ical traits and b) the anatomical traits of the best-performing model for cross-validation on the
global data set. The correlation was calculated on the available data for each trait pair, regardless
of other traits. Missing entries in matrices indicate that the p-value of the correlation was larger
than our considered significance level 0.05.
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Figure 3: The predictive performance and total feature importance ratios of the trained
models within PFTs. Evaluation of the performance of models in different prediction scenarios
based on cross-validation within different PFTs. The upper panels show the violin plots of the
average predictability scores (r and R2

adj) of the models for the global data set and each PFT. The
number of models with positive R2

adj in each scenario is given above the violin plots. The dashed
red lines indicate the maximum predictability scores across all models. The bar charts in the lower
panel show the total importance measures, IMPC and IMPG, of the contributing traits in the models
of the global data set and individual PFTs. The position of traits in the bar charts has been sorted
from top to bottom based on their total importance. For all the cases, the average predictability
scores were achieved by RF model in 150 executions, with 70% randomly chosen data elements
used for the training set and the remaining 30% used for the test set.
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Figure 4: The predictive performance and total feature importance ratios of the trained
models between PFTS. The evaluation of the performance of the models in different prediction
scenarios with the test sets of individual PFTs and the training sets of: a) non-overlapping global
data set with corresponding test sets and b) other individual PFTs. Figure b) contains the 15 of the
31 scenarios with at least one model with a positive R2

adj . The rest of the scenarios are illustrated in
Fig. S4. The upper panels show the violin plots of the average predictability scores (r and R2

adj) of
the models for each prediction scenario. The number of models with positive R2

adj in each scenario
is given above the violin plots. The dashed red lines indicate the maximum of predictability scores
across all the models. The bar charts in the lower panels show the total importance measures, IMPC

and IMPG, of the contributing traits in the models of each scenario. The position of traits in the
bar charts has been sorted from top to bottom based on their total importance. For all models, the
average predictability scores and importance ratios were achieved by RF model in 50 executions,
with the fixed training and test sets.
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Table 2: Best-performing models for gm between PFTs.

Prediction scenario R2
adj r n

Non-overlapping global set - Woody angiosperms 0.67 0.84 371
Non-overlapping global set - C3 perennial herbaceous 0.62 0.85 83
Non-overlapping global set - Woody deciduous ang. 0.55 0.89 210

Non-overlapping global set - Extended ferns 0.52 0.76 57
Non-overlapping global set - Woody evergreen ang. 0.51 0.94 387

Non-overlapping global set - Ferns 0.49 0.79 55
Non-overlapping global set - Evergreen gym. 0.42 0.84 442
Non-overlapping global set - C3 herbaceous 0.30 0.81 441

Non-overlapping global set - C3 − C4 herbaceous 0.30 0.81 436
Non-overlapping global set - Woody evergreens 0.16 0.56 171

Non-overlapping global set - C3 annual herbaceous 0.09 0.62 347
Woody angiosperms - C3 perennial herbaceous 0.54 0.86 40

Woody angiosperms - Extended ferns 0.45 0.79 30
Woody angiosperms - Ferns 0.42 0.83 30

Woody evergreen angiosperms - Extended ferns 0.40 0.85 23
Woody evergreen angiosperms - Ferns 0.38 0.86 23

C3 annual herbaceous - C3 perennial herbaceous 0.28 0.63 37
Woody evergreen angiosperms - Evergreen gymnosperms 0.28 0.67 35

Woody evergreens - Ferns 0.26 0.66 47
Woody evergreens - Extended ferns 0.27 0.66 43

Woody angiosperms - evergreen gymnosperms 0.27 0.65 55
Extended ferns - C3 perennial herbaceous 0.26 0.84 16

Evergreen gymnosperms - C3 perennial herbaceous 0.21 0.87 23
Evergreen gymnosperms - Woody angiosperms 0.19 0.52 29
Woody evergreens - C3 perennial herbaceous 0.17 0.85 65

Evergreen gymnosperms - Woody evergreen angiosperms 0.16 0.48 30
Predictability scores of the models with the highest R2

adj for 9 prediction scenarios between the
non-overlapping global data set and different PFTs (upper side) and 15 prediction scenarios be-
tween different PFTs (lower side), with at least one model with a positive R2

adj . The number of
trained models for each scenario is also given in the table by n.
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Figure 5: The importance of the traits in the best models of different prediction scenarios.
The average Gini importance of the contributing traits on the optimal models of different prediction
scenarios, based on R2

adj . The position of traits in the bar charts has been sorted from top to bottom
based on their relative importance. The prediction scenarios were classified into three groups based
on the data splitting methods: i) cross-validation scenarios, ii) scenarios with the individual PFTs
as the test sets and the non-overlapping part of the global data set with them as the training set, and
iii) scenarios in which the training and test sets are non-overlapping individual PFTs.
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Figure S1: Predictive performance of random forest models, with at least 25 data points,
using different combinations of leaf anatomical traits. The UpSet plot shows the predictability
evaluation of top 30 models, with 25 data points or more, for gm, based on average r, consisting of
ten anatomical traits LMA, Tmes, FIAS , Tcw, Tcyt, Tchl, Sm, Sc, Tleaf , and Dleaf over all available
species and PFTs of Knauer et al. (2022b) data set. The lower panel shows the intersection of
traits contributing to the training model. The middle panel indicates the average r between the
measured and predicted values of gm in the test set. The error bars show the standard errors of the
predictability measures. The upper panel shows the average Gini importance of the corresponding
traits at each combination of the traits. The number of data points in each model is provided above
the importance bars. For all models, the average predictability scores were achieved by the RF
model in 150 executions, with 70% randomly chosen data elements used for the training set and
the remaining 30% used for the test set.
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Table S1: Available data for anatomical traits.

Trait No. of data points
1 Leaf dry mass per area (gm−2) 712
2 Surface area of chloroplasts exposed to the intercellular

airspaces per unit leaf area (m2m−2)
408

3 Surface area of mesophyll cells exposed to the intercellular
airspaces per unit leaf area (m2m−2)

377

4 Cell wall thickness (µm) 362
5 Leaf thickness (µm) 346
6 Chloroplast thickness (µm) 237
7 Fraction of intercellular airspaces in leaf mesophyll 225
8 Mesophyll thickness (µm) 191
9 Leaf density (g cm−3) 170

10 Cytosol thickness (µm) 131
11 Stomatal density abaxial (mm−2) 111
12 Stomatal density adaxial (mm−2) 84
13 Chloroplast length (µm) 79
14 Palisade mesophyll thikness (µm) 71
15 Spongy mesophyll thickness (µm) 71
16 Stomatal density (mm−2) 52
17 Single stomatal area on abaxial leaf side (µm2) 39
18 Single stomatal area (µm2) 33
19 Leaf width (mm) 33
20 Epidermis thickness on adaxial leaf side (µm) 31
21 Single stomatal area on adaxial leaf side (µm2) 31
22 Stomatal length on abaxial leaf side (µm) 31
23 Stomatal length on adaxial leaf side (µm) 30
24 Epidermis thickness on abaxial leaf side (µm) 30
25 Interveinal distance (µm) 26
26 Stomatal length (µm) 24
27 Stomatal width (µm) 22
28 Stomatal index (%) 21
29 Chloroplast surface area (µm2) 16
30 Chloroplast width (µm) 14
31 Surface area of bundle sheath cells per unit leaf area

(m2m−2)
7

The number of data points in the data set of Knauer et al. (2022a) for all measured anatomical
traits. Due to the size of the available data points, we used the first ten traits in our analyses.
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Figure S2: Linear regression between different anatomical traits. Linear regression between
the pairs of anatomical traits: a) Tleaf and Tmes, b) Tleaf and LMA, c) Dleaf and LMA, and d) Tmes

and LMA.
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Figure S3: Predictive performance of random forest models using different combinations of
leaf anatomical traits. The UpSet plot shows the predictability evaluation of top 30 models for
gm, based on average R2

adj , consisting of eight anatomical and structural traits Tmes, FIAS , Tcw,
Tcyt, Tchl, Sm, Sc, and Tleaf over all available species of Xiong (2023) data set. The lower panel
shows the intersection of traits contributing to the training model. The middle panel indicates
the average R2

adj and r between the measured and predicted values of gm in the test set. The
error bars show the standard errors of the predictability measures. The upper panel shows the
average Gini importance of the corresponding traits at each combination of the traits. The number
of data points in each model is provided above the importance bars. For all models, the average
predictability scores were achieved by the RF model in 150 executions, with 70% randomly chosen
data elements used for the training set and the remaining 30% used for the test set. The data set
consists of ten C3 crops, glycine max, oryza sativa, arundo donax, helianthus annuus, triticum
aestivum, gossypium hirsutum, beta vulgaris, astragalus sinicus, lycopersicon esculentum, and
solanum tuberosum, where our C3 data set contain the first 6 species.
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Figure S4: The predictive performance and total feature importance ratios of the trained
models between PFTS. The evaluation of the performance of the models in 16 prediction scenarios
with the test sets of individual PFTs and the training sets of other individual PFTs. The figure shows
the results for the rest of the scenarios shown in Fig. 4b. The upper panels show the violin plots
of the average predictability scores (r and R2

adj) of the models for each prediction scenario. The
number of models with positive R2

adj in each scenario is given above the violin plots. The dashed
red lines indicate the maximum of predictability scores across all the models. The bar charts in the
lower panel show the total importance measures, IMPC and IMPG, of the contributing traits in the
models of each scenario. The position of traits in the bar charts has been sorted from top to bottom
based on their total importance. For all models, the average predictability scores and importance
ratios were achieved by RF model in 50 executions, with the fixed training and test sets.
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Figure S5: Variation of gm based on Tcw and Sc The surface plot of gm based on a trained model
on Tcw and Sc. The model was built by cross-validation on the global data set with 70% randomly
chosen data elements used for the training set and the remaining 30% used for the test set. After
training the model, 30 equally spaced data points were determined for each of the predictors, and
then gm values were predicted for all 900 pairs of Tcw and Sc data points. The ranges of both
predictors were based on their minimum and maximum in the test set, except for the maximum of
Tcw where we reduced it to 0.4 to indicate the fluctuations of gm.
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Table S2: The statistics of the data for global data set and individual PFTs.

Plant functional type No. of data samples No. of species No. of n >= 50
global data set 882 453 599

C3 − C4 herbaceous 382 116 49
C3 herbaceous 354 93 49

Woody evergreens 302 214 72
Woody angiosperms 287 185 72
C3 annual herbaceous 255 35 22

Woody evergreen angiosperms 176 122 63
Evergreen gymnosperms 126 92 31

Woody deciduous angiosperms 108 60 1
C3 perennial herbaceous 99 58 2

Extended ferns 64 44 7
Ferns 58 39 1

C4 annual herbaceous 17 12 0
C4 perennial herbaceous 11 11 0
Deciduous gymnosperms 10 4 0

Mosses 10 10 0
Fern allies 6 5 0

Semi-deciduous angiosperms 3 3 0
CAM plants 3 2 0

The number of data samples with a value for gm and at least one of the anatomical traits for the
global data set and different PFTs are provided in the first column. The second column shows
the number of species contributing to each set. The number of combinations with at least 50 data
points in each set is given in the following column.
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