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Abstract

Climate feedbacks over the historical period (1850–2014) have been investigated in large ensembles of historical, hist-ghg, hist-

aer, and hist-nat experiments, with 47 members for each experiment. Across the historical ensemble with all forcings, a range in

estimated Effective Climate Sensitivity (EffCS) between approximately 3–6 K is found, a considerable spread stemming solely

from initial condition uncertainty. The spread in EffCS is associated with varying Sea Surface Temperature (SST) patterns

seen across the ensemble due to their influence on different feedback processes. For example, the level of polar amplification is

shown to strongly control the amount of sea ice melt per degree of global warming. This mechanism is responsible for the large

spread in shortwave clear-sky feedbacks and is the main contributor to the different forcing efficacies seen across the different

forcing agents, although in HadGEM3-GC3.1-LL these differences in forcing efficacy are shown to be small. The spread in

other feedbacks is also investigated, with the level of tropical SST warming shown to strongly control the longwave clear-sky

feedbacks, and the local surface-air-temperatures and large scale tropospheric temperatures shown to influence cloud feedbacks.

The metrics used to understand the spread in feedbacks can also help to explain the disparity between feedbacks seen in the

historical experiment simulations and a more accurate modeled estimate of the feedbacks seen in the real world derived from

an atmosphere-only experiment prescribed with observed SSTs (termed amip-piForcing).
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Key Points:7

• Natural variability causes a 3-6K range in Effective Climate Sensitivity in a large8

single model ensemble of historical simulations.9
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backs in historical and amip-piForcing experiments.13
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Abstract14

Climate feedbacks over the historical period (1850–2014) have been investigated in large15

ensembles of historical, hist-ghg, hist-aer, and hist-nat experiments, with 47 members16

for each experiment. Across the historical ensemble with all forcings, a range in estimated17

Effective Climate Sensitivity (EffCS) between approximately 3–6 K is found, a consid-18

erable spread stemming solely from initial condition uncertainty. The spread in EffCS19

is associated with varying Sea Surface Temperature (SST) patterns seen across the en-20

semble due to their influence on different feedback processes. For example, the level of21

polar amplification is shown to strongly control the amount of sea ice melt per degree22

of global warming. This mechanism is responsible for the large spread in shortwave clear-23

sky feedbacks and is the main contributor to the different forcing efficacies seen across24

the different forcing agents, although in HadGEM3-GC3.1-LL these differences in forc-25

ing efficacy are shown to be small. The spread in other feedbacks is also investigated,26

with the level of tropical SST warming shown to strongly control the longwave clear-sky27

feedbacks, and the local surface-air-temperatures and large scale tropospheric temper-28

atures shown to influence cloud feedbacks. The metrics used to understand the spread29

in feedbacks can also help to explain the disparity between feedbacks seen in the histor-30

ical experiment simulations and a more accurate modeled estimate of the feedbacks seen31

in the real world derived from an atmosphere-only experiment prescribed with observed32

SSTs (termed amip-piForcing).33

Plain Language Summary34

Understanding how the Earth’s climate responds to an imposed forcing such as an35

increase in greenhouse gases or aerosols is an important issue relevant to climate mit-36

igation and adaptation policies on the global scale. One way we can understand this is37

by analysing the historical period (1850–2014), a period over which the climate has al-38

ready changed substantially due to human induced forcings, and also a period over which39

observations allow us to compare modeled changes in climate with the changes seen in40

the real world. Here, we use a large ensemble of climate model simulations of the his-41

torical period were we aim to understand a) how natural variability causes differences42

in the global temperature response to the same imposed forcing, b) what causes differ-43

ent forcing agents (e.g. greenhouse gases or aerosols) to be more or less effective at warm-44

ing or cooling the planet, and c) whether historical simulations - where the climate model45

simulates its own sea surface temperatures - capture the same response to historical forc-46

ings as an atmosphere-only simulation prescribed with observed sea surface temperatures.47

We find that the pattern of sea surface temperatures (particularly the levels of tropical48

and polar warming) is key to understanding each of these points.49

1 Introduction50

Climate sensitivity and feedbacks provide valuable information about how the Earth’s51

temperature changes in response to an imposed forcing such as an increase in greenhouse52

gases, aerosols, or volcanic emissions (Sherwood et al., 2020; Forster et al., 2021). Typ-53

ically, equilibrium climate sensitivity (ECS) is defined as the equilibrium global temper-54

ature increase in response to a doubling of CO2 and can be related to CO2 forcing and55

climate feedbacks using a simple energy balance model (Equation 1) (e.g. Sherwood et56

al. (2020)).57

ECS = −F2×CO2/λ (1)58

Here, F2×CO2
is the radiative forcing associated with a doubling of CO2 and the59

feedback parameter λ is the radiative response per degree of global temperature change.60

Currently, the assessed likely range of ECS extends from 2.5°C – 4.0°C (Forster et al.,61
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2021). Since constraining ECS is important for improving our understanding of how the62

Earth’s climate is likely to change in the future, informing climate related mitigation and63

adaptation policy on the global scale, improving our understanding of different climate64

feedbacks and why they vary is vital.65

The feedback parameter λ can be defined using Equation 2 (e.g. Gregory et al. (2004)).66

λ = d(N − F )/dTs (2)67

Here F is the radiative forcing, N is the top of atmosphere radiative flux, and Ts68

is the surface-air-temperature (in this case, all terms are global mean quantities).69

In Atmosphere-Ocean General Circulation Models (AOGCMs), λ and ECS are typ-70

ically estimated via a linear regression of global Ts and N over the first 150 years of an71

abrupt-4xCO2 simulation (T. Andrews et al., 2012; Dong et al., 2021; Gregory et al., 2004).72

The abrupt-4xCO2 simulation is an AOGCM experiment where the atmospheric con-73

centration of CO2 is abruptly quadrupled and then held constant. This regression method74

is used in favour of calculating ECS directly from two equilibrium states due to the long75

timescales needed to equilibrate the deep ocean and the substantial computational cost76

associated with this (T. Andrews et al., 2022; Rugenstein et al., 2019). ECS estimates77

produced from these non-equilibrium states are called the Effective Climate Sensitivity78

(EffCS) (Dong et al., 2021; Sherwood et al., 2020; T. Andrews et al., 2015; Rugenstein79

& Armour, 2021).80

λ and EffCS can also be estimated from simulations of the historical record (185081

to present day), estimating λ over the historical period and applying this to Equation82

1 where F2×CO2
has been diagnosed from an abrupt-4xCO2 run (Gregory et al., 2020).83

These estimates tend to produce an EffCS smaller than that predicted solely from an84

abrupt-4xCO2 experiment, largely due to the time variations in λ caused by evolving85

SST patterns and the different timescales involved in the response to an imposed forc-86

ing (T. Andrews et al., 2019; Gregory et al., 2020; Proistosescu & Huybers, 2017). This87

”pattern effect” describes how a different global radiative response can be generated by88

the same global temperature change due to different patterns of SSTs (Rugenstein & Ar-89

mour, 2021; Gregory & Andrews, 2016). In this context, the pattern effect is often quan-90

tified as the difference in λ between historical and abrupt-4xCO2 experiments (T. An-91

drews et al., 2018).92

Estimates of λ from historical and abrupt-4xCO2 simulations may also differ due93

to the different forcing agents involved (Marvel et al., 2015). Whilst the abrupt-4xCO294

experiment is only forced by increases in CO2 concentrations, the historical simulations95

are also influenced by changes in aerosols and natural forcings such as volcanic emissions96

(C. J. Smith & Forster, 2021; Salvi et al., 2023). These different forcing agents may vary97

in how effective they are at warming or cooling the planet; this is called forcing efficacy98

(Marvel et al., 2015; Richardson et al., 2019; Hansen et al., 2005). Again AOGCMs can99

be used to investigate this, with experiments simulating the historical period but only100

applying the forcing for individual forcing agents. Salvi et al. (2022) use this approach101

to demonstrate that, in the multi-model mean, greenhouse gases tended to have a more102

stabilising feedback (lower EffCS) compared to aerosols, although substantial variation103

across different models exists. It is suggested that across different forcing agents, vari-104

ations in SST pattern changes lead to differing feedbacks (Haugstad et al., 2017). Ceppi105

and Gregory (2019) suggest that the changes in atmospheric stability induced by these106

differing SST patterns is a key factor determining the efficacy of a particular forcing (Salvi107
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et al., 2023). Assuming temperature changes and the radiative responses to each forc-108

ing agent add linearly, understanding each component of the full historical forcing can109

help inform our interpretation of historical feedbacks and how they relate to future cli-110

mate change.111

Historical estimates of a model’s EffCS can also be deduced from an Atmosphere112

only General Circulation Model (AGCM) experiment with prescribed SSTs and sea ice113

from observations between 1870 and 2014 and atmospheric constituents set to pre-industrial114

levels, termed amip-piForcing (Gregory & Andrews, 2016; Gregory et al., 2020). Because115

this experiment is forced with observed SSTs it is able to more accurately simulate his-116

torical changes in climate compared to the coupled AOGCMs (Gregory & Andrews, 2016).117

It is found that the EffCS calculated using the amip-piForcing experiment tends to pro-118

duce an EffCS smaller than that derived from AOGCM historical experiments (i.e. amip-119

piForcing has a larger pattern effect relative to abrupt-4xCO2) (Gregory et al., 2020; T. An-120

drews et al., 2019). Again, this difference is often attributed to differences in SST pat-121

terns between the two experiments, with coupled historical simulations struggling to sim-122

ulate observed SST patterns (Gregory et al., 2020; Wills et al., 2022). Over recent years,123

observed SSTs demonstrate a marked cooling in the East Pacific and Southern Ocean124

and more warming over the West Pacific, leading to more negative feedbacks and a lower125

EffCS. The inability of AOGCM simulations to capture observed trends in SST patterns126

is a key issue currently facing the scientific community and raises questions regarding127

how this impacts our understanding of climate sensitivity and feedbacks. The “peculiar”128

trend in SST patterns as termed by Fueglistaler and Silvers (2021) may have occurred129

through unforced variability and it may then be by chance that the real world SSTs have130

evolved in a way that induces a more strongly stabilising feedback. Or, it is possible that131

the trend is forced, e.g. by aerosols or volcanic emissions (D. Smith et al., 2016; Gregory132

et al., 2020; Hwang et al., 2024), and our AOGCMs struggle to simulate the real world133

SSTs accurately due to limitations in our current modelling capabilities.134

To date, most of the work examining radiative feedbacks, pattern effects and ef-135

ficacies has been limited to idealised experimental designs or small ensembles of histor-136

ical AOGCM simulations with a single model, or via model intercomparisons such as the137

Coupled Model Intercomparison Project (CMIP) (Eyring et al., 2016), where still only138

relatively small ensemble sizes are available. Questions remain on the influence of nat-139

ural variability in historical climate change on diagnosed estimates of feedbacks, the quan-140

tification of the forced response to different forcings and whether radiative feedback sim-141

ulated in AOGCM historical simulations are consistent with observed estimates. Large142

initial condition ensembles with a single model are useful to address this. For example,143

previously, large ensembles have been shown to provide valuable insight into the sepa-144

ration of forced climate change and internal variability (Kay et al., 2015). From a sea145

ice sensitivity perspective, Kay et al. (2011) demonstrate that using an ensemble to quan-146

tify internal variability shows that recent trends in sea ice decline cannot be reproduced147

from modeled internal variability alone. Adams and Dessler (2019) employ a 100 mem-148

ber ensemble of historical simulations to show that internal variability could be a key149

contributor to the difference in Transient Climate Response (TCR) estimates between150

models and observations. Applying the analysis of this 100 member ensemble to the study151

of climate sensitivity and feedbacks over the historical period, Dessler et al. (2018) high-152

light a large range in EffCS estimates between 2.1 and 3.9K. They note that given that153

the real world 20th century is just one realisation of a range of possible realities, due to154

that large internal variability, we should not expect estimates of EffCS from observations155

to be a precise guide to the real world’s forced response. Alongside this, they note that156

that different forcing efficacies, imperfect observations, and uncertainty in 20th century157

forcing also pose challenges for interpreting EffCS from the historical period. Gregory158

et al. (2020) also noted the high levels of internal variability over the historical record159

showing how this variability contributed to uncertainty to estimates of EffCS.160
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In this paper we use a new set of four large ensembles of HadGEM3-GC3.1-LL his-161

torical and single forcing simulations performed for the Large Ensemble Single Forcing162

Model Intercomparison Project (LESFMIP) (D. Smith et al., 2022), aiming to address163

the following questions.164

1. how does natural variability cause differences and spread in climate feedbacks in165

response to the same imposed forcing?166

2. What causes different efficacies of different historical forcing agents?167

3. Can AOGCM historical simulations – where the model simulates it’s own SSTs168

- capture the radiative feedback and EffCS estimated from AGCM experiments169

prescribed with observed SSTs?170

Previously, T. Andrews et al. (2019) investigated EffCS and feedbacks in HadGEM3-171

GC3.1-LL in a 4 member ensemble of historical simulations, finding a net feedback (λ)172

of -0.86 ± 0.4 Wm-2K-1 (5-95%). This ensemble mean estimate is more negative than173

the abrupt-4×CO2 feedback in HadGEM3-GC3.1-LL of -0.63 Wm-2K-1, although the174

5-95% confidence range does extend up to -0.46 Wm-2K-1. The large spread in λ was found175

to be partly caused by considerable variations in Antarctic sea ice. This variability in176

sea ice inhibited accurate evaluation of the model’s historical forced EffCS. There, T. An-177

drews et al. (2019) were limited to an ensemble of only 4 simulations, so questions re-178

main about whether the full diversity of variability was sampled. Here we investigate this179

with a much larger ensemble of 47 members.180

In the following section we describe the model and experimental setup used. Sec-181

tion 3 presents the results and Section 4 provides a discussion and conclusions.182

2 Methods183

2.1 HadGEM3-GC3.1-LL184

The analysis in this paper uses simulations performed using HadGEM3-GC3.1-LL,185

an AOGCM with an atmospheric resolution of 135 km with 85 vertical levels and an ocean186

resolution of 1°and 75 vertical levels (M. B. Andrews et al., 2020). Further details can187

be found in Williams et al. (2017) where a description of the model’s configuration is given.188

2.2 Large Historical Ensemble189

In this analysis, ensembles of historical, hist-ghg, hist-aer, and hist-nat experiment190

are used, with 47 members of each experiment mostly consisting of simulations performed191

for LESFMIP. These experiments are AOGCM simulations analysed between 1850–2014192

with atmospheric constituents set to historical levels. Here, the historical experiment in-193

cludes all forcing agents, whilst the hist-ghg, hist-aer, and hist-nat contain only the forc-194

ing associated with well mixed greenhouse gases, anthropogenic aerosols, and natural forc-195

ings respectively (Gillett et al., 2016). Each ensemble member differs only in their ini-196

tial conditions branching from the piControl experiment at different times (1850, 1885,197

and every 10 years between 1860 and 2300). The piControl experiment is an AOGCM198

experiment with atmospheric constituents set to pre-industrial levels. The 47 ensemble199

members consist of 45 simulations performed as part of the LESFMIP ensemble (D. Smith200

et al., 2022), and two simulations previously analysed in T. Andrews et al. (2019). Only201

two of the four simulations used in T. Andrews et al. (2019) were analysed here since202

the other two members had identical branch times to members of the LESFMIP ensem-203

ble.204

–5–
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Figure 1. (a) Timeseries of global annual mean Ts in the piControl experiment (grey line),

500 year trend (dashed black line), and branch times for each of the historical and single forcing

experiment ensemble members (dots). Red dots indicate the ensemble members that have been

excluded due to the strong warming seen in the piControl experiment. (b) 190 year piControl

trend for each ensemble member branch date (red), and 500 year piControl trend (horizontal

black dashed line).

2.3 piControl and Detrending205

To compare ensemble members in the 47 member ensembles, the control drift must206

be removed from each simulation. For this analysis, this drift is removed by calculating207

the trend over the first 500 years of the piControl experiment via linear regression and208

subtracting the corresponding time period from each ensemble member. The piControl209

timeseries of global annual mean Ts and the 500 year trend is shown in Figure 1a where210

the dots depict the branch dates for each member of the historical ensemble. This method211

of control drift removal is chosen in favour of subtracting the piControl year by year to212

avoid unnecessarily introducing more noise into the historical simulations. The 500 year213

trend is also preferred above subtracting the 190 year trend across the corresponding pi-214

Control period due to issues introduced towards the end of the piControl simulation, where215

a marked global warming is seen at around 2350. This warming has been previously doc-216

umented by Ridley et al. (2022) where it is attributed to the onset of deep convection217

in the Weddell and Ross Sea gyres due to a destabilising of the Southern Ocean. When218

removing the control drift from the historical ensemble, any drift removed is assumed219

to be present in the historical ensemble member. For the trend seen over the first 500220

years of the control run this is a reasonable assumption, however in the case of the large221

warming seen around 2350, this assumption may not hold. The impact that this warm-222

ing has on the 190 year control trend for the respective historical ensemble branch dates223

is shown in Figure 1b. Here, unsurprisingly, a strong positive trend is seen for ensem-224

ble members that branch after the year 2150. We found no evidence that the warming225

seen in the piControl experiment is present in historical ensemble members initiated up226

to 2300, but to avoid this feature contaminating the comparison of ensemble members,227

the last 5 ensemble members have been removed from the analysis. This is why although228

the LESFMIP ensemble consists of 50 members, only 45 of them are used here.229

2.4 Diagnosing Historical Forcing230

Whilst λ can be calculated for the abrupt-4xCO2 and amip-piForcing experiments231

from only Ts and N (since the F is constant), the time varying F over the historical pe-232

riod means that in order to estimate λ, we must first diagnose F .233
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Table 1. Description of experimental setup used.

Experiments

Experiment
Name

Atmospheric Constituents SSTs Run Time Ensemble
Size

Coupled experiments

piControl pre-industrial free running 1850 – 3850 1
abrupt-4xCO2 pre-industrial CO2×4 free running 1850 – 2350 1
historical historical free running 1850–2014 47
hist-ghg historical well mixed green-

house gases
free running 1850–2014 47

hist-aer historical aerosols free running 1850–2014 47
hist-nat historical natural forcing free running 1850–2014 47

Atmosphere-only experiments

amip-
piForcing

pre-industrial historical
observed

1870 – 2014 1

piClim-control pre-industrial piControl 1850 – 1890 3
piClim-histall historical to 2014 then ssp-

245 to 2100
piControl 1850 – 2100 3

piClim-histghg historical well mixed green-
house gases only to 2014
then ssp-245 to 2100

piControl 1850 – 2100 3

piClim-histaer historical aerosols only to
2014 then ssp-245 to 2100

piControl 1850 – 2100 3

piClim-histnat historical natural forcing
only to 2014 then ssp-245 to
2100

piControl 1850 – 2100 3

Typically, the historical F is diagnosed using RFMIP experiments piClim-control234

and piClim-histall (Forster et al., 2016; Pincus et al., 2016). These are two AGCM ex-235

periments with prescribed SSTs from the piControl simulation. For piClim-control, at-236

mospheric constituents are set to pre-industrial levels and the experiment is run for 30237

years. Averaging over the 30 years provides the control state. For piClim-histall atmo-238

spheric constituents are set to historical levels between 1850 – 2014 and to ssp-245 lev-239

els between 2015 and 2100. Subtracting the 30 year mean piClim-control top of atmo-240

sphere radiative flux from the 1850 – 2100 piClim-histall top of atmosphere flux provides241

F , with years 1850–2014 relevant for the analysis of the historical period.242

In order to diagnose F for the individual forcing components that correspond to243

the hist-ghg, hist-aer, and hist-nat experiments, a similar experimental setup to the piClim-244

histall experiment is used but only the forcing from the relevant component is applied.245

These experiments are termed piClim-histghg, piClim-histaer, and piClim-histnat (Forster246

et al., 2016; Pincus et al., 2016).247

A summary of the setup for each experiment used in this paper is presented in Ta-248

ble 1.249
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3 Results250

3.1 Diagnosing Feedbacks in Historical and Single Forcing Ensembles251

As discussed in the introduction, the feedback parameter (λ) can be estimated via252

linear regression of global annual mean surface-air-temperatures (Ts) against top of at-253

mosphere radiative fluxes (N) minus the changes in flux associated with the radiative254

forcing (F ). Timeseries of these diagnostics are presented in Figure 2, where 2a and b255

show the anomalous global annual mean Ts and anomalous global annual mean N re-256

spectively in every ensemble member and in each experiment, and 2c shows the global257

annual mean F associated with each experiment. From Figure 2a it can be seen that the258

cooling effect of anthropogenic aerosols and natural forcings is approximately offset by259

the warming effect of increased greenhouse gases between 1850 and 1990. Here, the F260

associated with greenhouse gases and aerosols gradually increase, however, after approx-261

imately 1990 the aerosol F remains relatively constant (around -1.5 Wm−2) whilst the262

F associated with greenhouse gases continues to increase (Figure 2c) (T. Andrews et al.,263

2019). This leads to a net positive F after 1990 in the historical experiment which re-264

sults in an increase in global mean Ts, warming by approximately 0.8 K by 2014. A de-265

tailed analysis of HadGEM3-GC3.1-LL historical simulations is presented in M. B. An-266

drews et al. (2020). An example of how λ is calculated from these timeseries of Ts, N ,267

and F is presented in Figure 2d, where, for the first ensemble member in the historical268

experiment, a feedback parameter of -0.85 ± 0.15 Wm−2K−1 is estimated. There the un-269

certainty is estimated as ±1.645 standard deviations, calculated from the standard er-270

ror of the linear fit.271

One assumption made when estimating λ using timeseries of Ts, N , and F is that272

the changes in global mean Ts associated with the forcing is zero (i.e. the surface-air-273

temperature change between piClim-control and piClim-histall is zero). This is gener-274

ally a reasonable assumption to make, given that the prescribed SSTs do not warm and275

therefore any changes in land surface temperatures are constrained to be small (Lambert276

et al., 2011). However, despite this temperature change being small, taking this into ac-277

count can substantially affect the values of λ estimated. This caveat is noted in Hansen278

et al. (2005) and Vial et al. (2013) and becomes a particularly relevant issue when com-279

paring feedbacks in the historical experiment to feedbacks in the amip-piForcing exper-280

iment, since there is no forced temperature change in the amip-piForcing experiment where281

F = 0 by construction. To handle this issue, in this paper, λ has been calculated ac-282

counting for this forced temperature change (Equation 3).283

λ = d(N − F )/d(Ts − δTsforced
) (3)284

Where δTsforced
is calculated as the change in global surface-air-temperature be-285

tween piClim-control and the relevant piClim-hist experiment used to diagnose F . To286

simplify the notation, we refer to (Ts−δTsforced
) simply as Ts. Similarly, later when analysing287

atmospheric temperatures (Ta), we refer to (Ta − δTaforced
) simply as Ta.288

To summarise the feedbacks seen across the different experiments analysed, box-289

plots of feedbacks in the historical and single forcing experiments and markers showing290

the feedbacks in both amip-piForcing and abrupt-4xCO2 experiments are shown in Fig-291

ure 3b. Here the net feedback has been decomposed into shortwave clear-sky (SWcs),292

longwave clear-sky (LWcs), and cloud radiative effect (cre) components. Such a decom-293

position is useful since it can help isolate the different processes and feedback mecha-294

nisms involved. λSWcs, λLWcs, and λcre are calculated by decomposing N and F into295

the relevant fluxes when applying Equation 3. From Figure 3b, a large spread in feed-296

backs across the historical ensemble can be seen, ranging from approximately -0.7 to -297

1.3 Wm−2K−1. Using a 2×CO2 F of 4.05 Wm−2 for HadGEM3-GC3.1-LL (T. Andrews298

–8–
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Figure 2. (a) Timeseries of anomalous global annual mean Ts in the historical and single

forcing experiments. Thick lines indicate the ensemble mean and thinner lines represent each

individual ensemble member. (b) Timeseries of anomalous global annual mean N in the historical

and single forcing experiments. Again, thick lines indicate the ensemble mean and thinner lines

represent each individual ensemble member. (c) Timeseries of global annual mean F for historical

and single forcing scenarios averaged across the three ensemble members for each experiment. (d)

Example of method used to estimate λ, where λ is calculated by linearly regressing Ts against

(N − F ). Each dot represents a year in the historical experiment and the black line shows regres-

sion line where the slope (λ) is estimated to be -0.85 ± 0.15 Wm−2K−1. Here, the uncertainty is

estimated as ±1.645 standard deviations, calculated from the standard error of the linear fit.

et al., 2019), and applying Equation 1, such a range in feedbacks leads to an estimate299

of EffCS between approximately 3 and 6K (Figure 3a). This highlights the role of in-300

ternal variability in causing different feedback and EffCS estimates over the historical301

period. The spread in feedbacks seen in the historical and single forcing experiments is302

largest in the hist-nat experiment and smallest in the hist-ghg experiment, possibly due303

to the varying signal to noise ratios across the different experiments. The Ts changes in304

the hist-nat experiment are generally small (Figure 2a), and the natural F is also small305

with an occasional strong but short-lived signal caused by volcanic emissions (Figure 2c).306

This causes the regression of Ts against (N−F ) to be relatively noisy compared to the307

hist-ghg experiment where both Ts and (N −F ) have a much stronger signal. This is308

also consistent with the contrast in estimated uncertainty of the linear fit of Ts and (N−309

F ) where for each experiment, the standard error of the linear fit of every ensemble mem-310

ber has be estimated. The estimation of λnet in the hist-ghg experiment has an average311

5-95% interval of ± 0.066 Wm−2K−1, whereas for hist-nat, the mean 5-95% interval is312

±0.25 Wm−2K−1.313
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Figure 3. (a) Boxplot of EffCS across the historical ensemble (1850–2014). (b) Boxplots of

feedbacks in the historical and single forcing ensembles (1850–2014), amip-piForcing experiment

(1870–2014), and abrupt-4xCO2 experiment (first 150 years). For each boxplot, the vertical black

lines indicate each ensemble member, the whiskers indicate the maximum and minimum feed-

backs seen in the ensemble, the boxes indicate the interquartile range, and the vertical orange

line represents the median value. Error bars on amip-piForcing indicate the 5-95% confidence

interval, calculated from the standard error of the linear fit.

A further decomposition of λcre into shortwave and longwave components is shown314

in Figure S1. There, the largest contribution to the spread in λcre comes from the short-315

wave component, consistent with the strong influence of low cloud feedbacks, and the316

cancelling of the longwave and shortwave response to changes in high cloud.317

The feedbacks seen in each historical and single forcing experiment are largely con-318

sistent with each other (i.e. differing forcing efficacies do not appear to be strongly ev-319

ident in HadGEM3-GC3.1-LL), although a slightly more negative median feedback is seen320

in the hist-ghg experiment, consistent with the findings of Salvi et al. (2022). In Figure321

3, the more negative median feedback in the hist-ghg experiment is shown to be caused322

by a weaker λSWcs, although due to the large spread in historical, hist-aer, and hist-nat323

feedbacks, the lower tails of the feedbacks in these experiments extend to be more neg-324

ative than the lower tail of the hist-ghg experiment. The amip-piForcing and abrupt-325

4xCO2 feedbacks are also shown in Figure 3b. For each component of λnet, the amip-326

piForcing feedback lies towards the lower tail of the historical ensemble, a behaviour most327

strongly seen in the λSWcs, and λLWcs components.328

Maps of the ensemble mean feedbacks and amip-piForcing feedbacks are shown in329

Figure 4 to help identify where different feedbacks are located and to highlight regions330

where feedbacks differ across the range of experiments analysed. The spatial feedback331

map is calculated by regressing the local (N−F ) against the global mean Ts changes.332

Here the ensemble mean feedbacks are calculated by taking the regression of the mean333

rather than calculating the feedback for each ensemble member and averaging across the334

ensemble. This was done to help reduce the noise in the regression of (N−F ) and Ts335

when calculating the feedbacks.336
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From Figure 4, it can be seen that different feedbacks dominate in different regions.337

For example, in general λSWcs is strongly positive at higher latitudes and small at lower338

latitudes. This is because the sea ice feedback is a key feedback affecting the SWcs fluxes.339

The strong positive λSWcs seen over the northern hemisphere land masses is likely re-340

lated to snow and land ice feedbacks, and the strong negative λSWcs seen in the South-341

ern Ocean in the hist-aer experiment may be caused by ocean convective events that bring342

warmer water to the surface due to destabilization of the ocean, similar to those discussed343

in (Ridley et al., 2022).344

With the exception of the Southern Ocean feature seen in the hist-aer experiment,345

the λLWcs is generally negative everywhere across all experiments, although a few small346

regions in the amip-piForcing experiment also have positive λLWcs. The λLWcs is largely347

composed of the Planck, lapse rate, and water vapour feedbacks. This term is generally348

large and negative due to the strong Planck response. Over the Southern Ocean in the349

hist-aer experiment, since this region warms, which is of opposite sign to the cooling seen350

over the rest of the planet, the λLWcs is strongly positive in this region. In the tropics,351

the lapse rate and Planck feedbacks are typically negative, therefore the positive λLWcs352

regions in the amip-piForcing experiment over the tropics are likely caused by the wa-353

ter vapour feedback (Stephens et al., 2016).354

λcre exhibits relatively large spatial variations. In the historical and single forcing355

experiments (particularly hist-aer) a strongly positive λcre is seen over the North Pa-356

cific, highlighting the role of positive cloud feedbacks in the sub-tropical cloud decks in357

subsidence regions. Again, λcre has been decomposed into longwave and shortwave com-358

ponents (Figure S2). The strong λcre over the North Pacific is caused by shortwave cloud359

feedbacks, and over tropical high cloud regions, e.g. the Indo-Pacific warm pool region,360

strong shortwave and longwave cloud feedbacks cancel, causing the relatively weak λcre361

over much of the tropics.362

From these maps of feedbacks, it can be seen that although in the global mean, dif-363

ferent efficacies are not particularly large in HadGEM3-GC3.1-LL, spatially, large vari-364

ations do exist between the different experiments.365

As mentioned in the introduction, differences in feedbacks across experiments and366

ensemble members are generally thought to be fundamentally caused by differing SST367

patterns. Therefore, to help understand the differences in feedbacks seen in Figure 4, en-368

semble mean Ts patterns are shown in Figure 5. Similar to the maps of λ, these have been369

calculated by regressing the ensemble mean local changes in Ts against the ensemble mean370

global mean Ts, written as dTs/dT̄s, where the bar indicates a global mean. In Figure371

5, the strongest regions of dTs/dT̄s occur in the Arctic, with weaker more spatially uni-372

form dTs/dT̄s seen over the tropics. Over the Southern Ocean, large variations in dTs/dT̄s373

are seen across the different experiments. Here, hist-nat exhibits the strongest dTs/dT̄s374

whilst hist-aer exhibits a negative dTs/dT̄s (i.e. although global mean Ts is decreasing375

in the hist-aer experiment, the southern ocean warms). As previously mentioned, this376

may be caused by ocean convective events that bring warmer water to the surface due377

to destabilization of the ocean (Ridley et al., 2022). In the northern hemisphere high lat-378

itudes, hist-aer exhibits the strongest dTs/dT̄s, possibly due to the aerosol F being pre-379

dominantly based in the northern hemisphere. Over the tropics dTs/dT̄s is relatively con-380

sistent across each experiment.381

Since one of the key aims of this paper is to understand the ensemble spread in feed-382

backs, maps of the standard deviation in λ in the historical experiment help to highlight383

the regions that contribute most to this spread (Figure 6). From Figure 6 it can be seen384
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Figure 4. Maps of ensemble mean λnet, λSWcs, λLWcs, and λcre in amip-piForcing, historical,

hist-ghg, hist-aer, and hist-nat experiments. Here, λ has been calculated by regressing the ensem-

ble mean local annual mean (N − F ) against the ensemble mean global annual mean Ts between

1850 – 2014 for historical and single forcing experiments, and 1870 – 2014 for amip-piForcing.

that for λSWcs most of the spread comes from the higher latitudes. In contrast, for λcre,385

variations in cloud feedbacks across the tropics and subtropics contribute to the spread.386

λLWcs exhibits the smallest standard deviations suggesting that this component contributes387

less to the ensemble spread in feedbacks. This is likely due to the fact that the Planck,388

lapse rate and water vapour feedbacks are highly constrained by model physics.389

The three main scientific aims of this paper were to a) understand how natural vari-390

ability causes different feedbacks in response to the same imposed forcing (for example,391

what is it that causes one historical ensemble member to have an net feedback of -1.3392

Wm−2K−1 whilst another has a feedback of -0.7 Wm−2K−1?), b) understand what causes393

different efficacies across different forcing agents, and c) investigate whether the AOGCM394

historical simulations - where the model simulates its own SSTs - can capture the radia-395

tive feedback and EffCS estimated from AGCM experiments prescribed with observed396

SSTs (i.e. are the feedbacks seen in the historical experiment consistent with those seen397

in amip-piForcing?). To address these questions, the different components of λnet are398

investigated in isolation, with Section 3.2 investigating λSWcs, Section 3.3 investigating399

λLWcs, and Section 3.4 investigating λcre.400

3.2 Processes Affecting Shortwave Clear-sky Feedbacks (λSWcs)401

This section aims to understand λSWcs in the historical and single forcing exper-402

iments, addressing the cause of the ensemble spread, the disparity between historical and403

amip-piForcing, and the cause of different efficacies across the different forcing agents.404

Figure 3 shows that λSWcs is a key contributor to the ensemble spread in λnet, and the405

correlation between the two feedbacks is 0.82 across the historical experiment ensemble.406

Both the maps of λSWcs and standard deviation in λSWcs (Figure 4 and Figure 6b) in-407

dicate that most of the signal and spread in λSWcs comes from the higher latitudes, a408

region where the sea ice albedo feedback is a key process. We suggest that this feedback409
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Figure 5. (left) maps of dTs/dT̄s in KK−1 in each experiment; amip-piForcing, historical,

hist-ghg, hist-aer, and hist-nat. Here, dTs/dT̄s has been calculated by regressing the ensemble

mean local annual mean Ts against the ensemble mean global annual mean Ts between 1850 –

2014 for historical and single forcing experiments, and 1870 – 2014 for amip-piForcing. (right)

Zonal mean of maps to the left.

is a key contributor to the spread in λSWcs and a scatter plot of λSWcs against global410

sea ice fraction change per degree of warming (d(Sea Ice)/dT̄s) shown in Figure 7a con-411

firms this. There, a correlation of -0.84 is seen between the two variables in the histor-412

ical experiment over the full time period from 1850 – 2014. As previously mentioned,413

ultimately, the cause of differing feedbacks can be explained through variations in SST414

patterns. To understand the varying d(Sea Ice)/dT̄s and λSWcs across the ensemble, scat-415

ter plots of polar dTs/dT̄s against global d(Sea Ice)/dT̄s and λSWcs are shown in Fig-416

ure 7b and c respectively. Here polar dTs/dT̄s is characterised by averaging over latitudes417

greater than 60°N and lower than 60°S. From Figure 7b and c, a strong relationship be-418

tween polar dTs/dT̄s and both d(Sea Ice)/dT̄s and λSWcs can be seen. This suggests that419

the spread in λSWcs can be understood by the degree of polar amplification across the420

ensemble.421

Figure 7a also indicates that the sea ice albedo feedback is a key reason for the dif-422

ferences in λSWcs between the historical and amip-piForcing experiments. Here, the amip-423

piForcing experiment has been analysed only between 1980 and 2014 due to the unre-424

alistic evolution of sea ice in the amip-piForcing experiment prior to 1980 when sea ice425

observations were sparse (Titchner & Rayner, 2014; T. Andrews et al., 2018). It is there-426

fore important to note that much of the absolute difference in λSWcs and d(Sea Ice)/dT̄s427

between the amip-piForcing and historical experiments in Figure 7 may be due to the428

different time frames analysed. The historical experiment has also been analysed between429

1980 and 2014 (Figure 7 non-filled circles) and no substantial change in the relationship430

between each variable is seen. This does not rule out the possibility that the amip-piForcing431

evolution of sea ice, polar temperatures, and λSWcs may have been different for the longer432
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Figure 6. Maps of standard deviation in λnet, λSWcs, λLWcs, λcre, and dTs/dT̄s in the histor-

ical experiment. Here, λ has been calculated by regressing the local changes in (N − F ) against

the global mean Ts change, and dTs/dT̄s is the local Ts regressed against global mean Ts.

Figure 7. Scatter plots of (a) change in global sea ice per degree of warming against λSWcs,

(b) change in Ts at latitudes greater than 60°N or lower than -60°S per degree of global warming

against change in global sea ice per degree of global warming, and (c) change in Ts at latitudes

greater than 60°N or lower than 60°S per degree of global warming against λSWcs. Here, each

black dot represents a historical ensemble member where values are calculated between 1850–

2014 for the filled black dots, and 1980–2014 for the unfilled black dots. The magenta dots

represent the amip-piForcing experiment calculated between 1980–2014 (due to sparse sea ice

observations prior to 1980).

period, however, the fact that the amip-piForcing experiment is consistent with the re-433

lationship seen in the historical experiment (demonstrated in Figure 7a) would suggest434

that differences in λSWcs between historical and amip-piForcing experiments can be ex-435

plained through this mechanism, and the smaller λSWcs in amip-piForcing is related to436

the smaller d(Sea Ice)/dT̄s. The fact that in 7b the amip-piForcing experiment does not437

fit the historical ensemble relationship between polar dTs/dT̄s and d(Sea Ice)/dT̄s sug-438

gests that that the AOGCMs simulation of the relationship between SSTs and sea ice439

melt is not the same as the observed relationship in the real world (assuming the rela-440

tionship seen in amip-piForcing is a good analogue for the real world).441

Thus far the ensemble spread and the disparity between historical and amip-piForcing442

estimates of λSWcs has been investigated. It is shown that the sea ice albedo feedback443

is a key process responsible for both, with the level of arctic amplification providing the444

link between ensemble spread in λSWcs and Ts patterns. Previously, Dessler (2020) also445
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investigated changes in sea ice and its impact on feedbacks. Consistent with the results446

shown in Figure 7, Dessler (2020) also found sea ice variability to cause a large spread447

in λSWcs in their historical ensemble with a different model, where these feedback vari-448

ations were linked to changes in different modes of ocean variability. Since Figure 7 high-449

lights a strong relationship between polar SSTs and sea ice, understanding causes of po-450

lar SST change and how they are predicted to evolve in a future climate is important.451

Other processes could also contribute to the spread in λSWcs, such as snow melt.452

This could be responsible for the strong λSWcs seen over the Northern Hemisphere land453

masses in Figure 4 f, g, h, i, and j, and the spread in λSWcs seen in Figure 6b. However,454

this process is not investigated further here since the strongest spread in λSWcs is seen455

over the Arctic and Southern Oceans.456

With the understanding gained from Figure 7, the different efficacies of each forc-457

ing agent are investigated. Maps of ensemble mean λSWcs and dTs/dT̄s are shown in Fig-458

ure 8. Here, the hist-ghg experiment is shown and each of the other experiments are shown459

relative to the hist-ghg values. This enables clearer identification of the differences be-460

tween each forcing agent.461

From Figure 8 the spatial pattern of dTs/dT̄s and λSWcs are shown to be similar,462

suggesting that the regional change in dTs/dT̄s leads to regional changes in λSWcs due463

to the close relationship between Ts and sea ice. This is true for both the northern and464

southern hemisphere and also across each of the experiments. The spatial correlations465

between dTs/dT̄s and λSWcs across all experiments and each hemisphere are between466

0.64 – 0.88, further highlighting the strong coupling between local Ts patterns and lo-467

cal feedbacks. For the historical experiment, in the southern hemisphere, a stronger λSWcs468

is associated with a larger Southern Ocean dTs/dT̄s relative to hist-ghg. The northern469

hemisphere maps in 8b show contrasting feedbacks between the Arctic Ocean regions and470

the slightly lower latitude regions around the Labrador Sea. Over the Arctic Ocean hist-471

ghg has a stronger λSWcs compared to the historical simulations, whereas around the472

Labrador Sea, the historical experiment has the stronger λSWcs. This is reflected in the473

dTs/dT̄s patterns, where the historical experiment has a weaker dTs/dT̄s over the Arc-474

tic Ocean, but a stronger dTs/dT̄s over the Labrador Sea. This northern hemisphere pat-475

tern in λSWcs and dTs/dT̄s relative to hist-ghg is similar to that seen in the hist-aer and476

hist-nat experiment, where the hist-aer experiment demonstrates the largest positive λSWcs477

values and also extends these positive values furthest south.478

In the southern hemisphere, unlike the historical experiment, the hist-aer exper-479

iment shows strongly negative λSWcs and dTs/dT̄s relative to the hist-ghg experiment.480

As previously mentioned, this may be due to ocean convection in the Southern Ocean481

triggered by the ocean becoming unstable (Ridley et al., 2022). This convection could482

bring warmer water up from below, warming the surface, melting sea ice, and resulting483

in a negative λSWcs.484

Here, it has been shown that the sea ice albedo feedback and the level of arctic am-485

plification is a key process in producing the large spread in λSWcs across the ensemble486

and is also a key reason for the different feedback seen in the historical and amip-piForcing487

experiments. It has also been shown that the different efficacies seen across the differ-488

ent historical and single forcing experiments can be explained through differing SST pat-489

terns (in agreement with Haugstad et al. (2017)), with the experiments with a stronger490

λSWcs locally, also exhibiting a larger dTs/dT̄s.491
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Figure 8. Maps of (top rows) surface warming pattern (KK−1) and (bottom rows) λSWcs

over the (right columns) northern and (left columns) southern hemisphere poles in the (a) hist-

ghg experiment and (b) historical, (c) hist-aer and (d) hist-nat experiments relative to hist-ghg.

3.3 Processes Affecting Longwave Clear-sky Feedbacks (λLWcs)492

From Figure 3 it can be seen that whilst the λLWcs does not contribute much to493

the different efficacies seen in each of the historical and single forcing experiments, it does494

contribute to the spread in λnet and is also a large source of disparity between the his-495

torical and amip-piForcing experiments. Understanding the spread in λLWcs and the dis-496

parity between the historical and amip-piForcing experiments is the aim of this section.497

λLWcs is determined by a combination of the Planck feedback, the water vapour498

feedback and the lapse rate feedback (T. Andrews & Webb, 2018). The water vapour499

and lapse rate feedbacks have been shown to be strongest in the tropical troposphere (Soden500

et al., 2008; T. Andrews & Webb, 2018), since the tropical atmosphere closely follows501

a moist adiabatic lapse rate and therefore any warming at the surface is amplified ver-502

tically in the atmosphere (Po-Chedley et al., 2018). To investigate the λLWcs in the his-503

torical ensemble, first, plots of zonal mean atmospheric temperature regressed against504

global mean Ts (dTa/dT̄s) are analysed (Figure 9). Note that as previously discussed,505

here, the atmospheric temperature (Ta) has had any changes associated with the forc-506

ing subtracted from it (see discussion following Equation 3). This means that the CO2507
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Figure 9. Zonal mean changes in temperature per degree of global warming in the (a) histori-

cal and (b) amip-piForcing experiments.

driven stratospheric cooling in the historical experiment is removed, and a more accu-508

rate comparison between historical and amip-piForcing experiments can be made.509

From Figure 9 the pattern of dTa/dT̄s seen in both the historical and amip-piForcing510

experiments demonstrates a marked warming over the tropical troposphere. Compar-511

ing Figure 9b and c it can be seen that this tropospheric dTa/dT̄s is stronger in amip-512

piForcing compared to the historical experiment. The amip-piForcing experiment also513

exhibits a stronger dTa/dT̄s over the southern hemisphere troposphere, whilst the his-514

torical experiment has a larger dTa/dT̄s signal over the northern hemisphere high lat-515

itudes. This is potentially due to the different Ts patterns seen in the historical and amip-516

piForcing experiments, with the subtropical dTs/dT̄s being slightly greater in the North-517

ern Hemisphere in the historical ensemble and in the Southern Hemisphere in amip-piForcing518

(Figure 5f).519

Since the tropical troposphere is a key region in causing variations in λLWcs, a re-520

gion between 30°S – 30°N and between 100 – 500 hPa has been analysed further. A scat-521

ter plot of tropical tropospheric dTa/dT̄s against λLWcs is shown in Figure 10a. There522

it can be seen that a strong correlation between the two variables exists with a corre-523

lation coefficient of -0.8, consistent with physical expectations that a larger upper trop-524

ical tropospheric temperature results in a larger lapse rate feedback and a more nega-525

tive λLWcs (T. Andrews & Webb, 2018). The amip-piForcing tropical tropospheric dTa/dT̄s526

and λLWcs has also been indicated in Figure 10a, where it can be seen that the tropi-527

cal tropospheric dTa/dT̄s does well to capture why the feedbacks in historical and amip-528

piForcing experiments differ.529
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Figure 10. Scatter plots of (a) tropical tropospheric dTa/dT̄s against λLWcs, (b) tropical

Lower Tropospheric Stability (LTS) change per degree of global warming (d(LTS)/dT̄s) against

λLWcs, and (c) tropical dTs/dT̄s against λLWcs. Here the tropics have been characterised by

averaging between 30°S and 30°N, and the tropical troposphere has used the same latitudinal

bounds and averaged between 100–500 hPa (see red boxes in Figure 9). In each plot, black dots

represent the historical ensemble and amip-piForcing values are represented by a magenta dot.

Since the spread in feedbacks can ultimately be derived from differing SST patterns,530

and given the strong relationship between tropical tropospheric temperature and λLWcs,531

the relationship between tropical mean dTs/dT̄s and λLWcs has been investigated (Fig-532

ure 10c). Figure 10c follows a similar analysis to that performed by Soden and Held (2006).533

There, they demonstrated that across a range of models, due to the approximately adi-534

abatic lapse rate of the tropical atmosphere, the strong coupling between the surface and535

free troposphere in the tropics, and the relatively weak coupling present over higher lat-536

itudes, the ratio between tropical and global warming was a good metric for determin-537

ing the inter-model spread in lapse rate feedback. In Figure 10c it is shown that across538

the historical ensemble, the tropical dTs/dT̄s is well correlated with λLWcs with a cor-539

relation coefficient of -0.79. It is clear that ensemble members with a stronger warming540

over the tropics relative to the global mean also have a more strongly negative λLWcs.541

As well as explaining the ensemble spread in λLWcs, tropical dTs/dT̄s changes can542

also be used to explain the disparity between amip-piForcing and historical experiments.543

Figure 10c shows that the amip-piForcing experiment has a strong dTs/dT̄s in the trop-544

ics and also has a strong negative λLWcs.545

3.4 Processes Affecting Cloud Feedbacks (λcre)546

Although the historical ensemble used in this paper indicates that λcre is not the547

feedback with the largest spread (λSWcs has a standard deviation of 0.073 Wm−2K−1
548

whilst λcre has a standard deviation of 0.06 Wm−2K−1), for long term estimates of Ef-549

fCS across different models, cloud feedbacks are the largest source of uncertainty and550

are the least understood (Forster et al., 2021; Ceppi & Nowack, 2021; Zelinka et al., 2016;551

Ceppi et al., 2017). Because of this, over recent years, cloud feedbacks have been the fo-552

cus of many studies. Cloud controlling factor analyses such as Ceppi and Nowack (2021)553

and Blanco et al. (2023) aim to relate changes in clouds to other meteorological factors,554

such as free tropospheric humidity (van der Dussen et al., 2015), SSTs (Bretherton &555

Blossey, 2014), surface wind speed (Brueck et al., 2015) and inversion strength (Qu et556

al., 2015; Klein et al., 2017; Kawai et al., 2017). By better understanding what factors557
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cause clouds to change, it is possible to understand differences in cloud feedbacks across558

models/ensembles.559

In this section, λcre is investigated, primarily focusing on the spread across the his-560

torical experiment ensemble. Previously, Salvi et al. (2022) suggested that the different561

efficacies of well mixed greenhouse gases and aerosols were linked to changes in clouds562

due to differing changes in stability (although a large variability is seen across different563

models and a relatively small ensemble of 7 models was used). However here, the results564

shown in Figure 3 would suggest that for HadGEM3-GC3.1-LL, λcre does not contribute565

substantially to different forcing efficacies in the global mean. To understand the spa-566

tial distribution of λcre, Figure 4q is analysed. Here, strong positive cloud feedbacks are567

seen over the North Pacific and North Atlantic, and slightly weaker cloud feedbacks are568

seen over the Southern Indian Ocean and South Atlantic (each caused by positive short-569

wave cloud feedbacks - Figure S2). To understand the spread in λcre, maps of standard570

deviation in λcre, λSWcre, and λLWcre and standard deviation in dTs/dT̄s are shown in571

Figure 11. From Figure 11a it is possible to identify regions where the spread in λcre is572

largest and therefore which regions contribute most to the spread seen in Figure 3. The573

regions with the largest spread in λcre are the North Pacific and North Atlantic, due to574

a large spread in λSWcre. The Southern Ocean and low cloud deck regions off the east575

coast of South America, Australia and Southern Africa, also exhibit a moderately large576

standard deviation in λcre, again due to shortwave cloud feedbacks. The map of stan-577

dard deviation of λLWcre shows a large spread in feedbacks over the tropical ascent re-578

gions, however as previously discussed, in these regions, longwave and shortwave responses579

to changes in cloud cancel, and therefore the standard deviation in net cloud feedbacks580

in these regions is generally small.581

The spatial distribution of the standard deviation in dTs/dT̄s shown in Figure 11f582

is relatively similar to the pattern of standard deviation in λcre. Calculating the spatial583

correlation between Figures 11a and f, a correlation coefficient of 0.47 is found. Given584

surface temperatures are a key cloud controlling factor, as shown by Ceppi and Nowack585

(2021), we would expect the spread in λcre to be partly controlled by the spread in dTs/dT̄s.586

To better understand the cause of the spread in λcre shown in Figure 3b and 11a,587

two key cloud controlling factors are investigated; changes in Ts and changes in Lower588

Tropospheric Stability (LTS), both of which have strong statistical relationships with589

changes in clouds (Cutler et al., 2022; Klein & Hartmann, 1993; Ceppi & Nowack, 2021).590

Here LTS is defined as the 700hPa potential temperature minus the surface potential tem-591

perature (Cutler et al., 2022). Regarding the physical mechanisms of these relationships,592

LTS has been shown to influence cloud changes by controlling the amount of entrain-593

ment between the moist boundary layer and the drier free troposphere. The physical mech-594

anism whereby surface temperatures effect cloud changes is less well established. Webb595

et al. (2024) investigate a range of possible mechanism relating surface temperatures to596

changes in cloud, such as the impact of surface latent heat flux changes, vertical gradi-597

ents in humidity or moist static energy, or changes in downwelling longwave radiation598

caused by changing free tropospheric humidity. It was found that different mechanisms599

were plausible in some models and not in others. For HadGEM3-GC3.1-LL, only one sug-600

gested mechanism was not ruled out based on the models behaviour. This mechanism601

involved a reduction in low cloud due to a warming and a decrease in specific humidity602

due to an increase in upward longwave radiation from the surface (Ogura et al., 2023).603

To relate changes in LTS and surface temperatures to changes in λcre, first two re-604

gions are investigated, the North West (NW) Pacific and North East (NE) Pacific (see605

Figure 11 boxes). These two regions were selected as being regions with a strong λcre606
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Figure 11. Maps of standard deviation in (a) λcre, (b) λSWcre, (c) λLWcre, and (d) dTs/dT̄s

across the historical ensemble. Dashed black boxes indicate regions analysed in Figure 12 with

the NW Pacific region extending from 150–185°E and 26–41°N, and the NE Pacific region extend-

ing from 215–235°E and 15–30°N.

signal (Figure 4q) and spread (Figure 11a). The two regions also capture different cli-607

matological regimes, with the NE Pacific a region of climatological subsidence where the608

surface is decoupled from the free troposphere due to a strong inversion, whereas the NW609

Pacific region is a region of climatological ascent where the surface is not decoupled from610

the free troposphere. Scatter plots of d(LTS)/dT̄s and dTs/dT̄s against λcre over the NW611

Pacific and NE Pacific regions are shown in Figure 12a, b, c, and d. Here, it can be seen612

that in both the NE and NW Pacific there is a strong correlation between dTs/dT̄s and613

λcre, and d(LTS)/dT̄s and λcre. This is consistent with Ceppi and Nowack (2021). Al-614

though the amip-piForcing and historical estimates of λcre were not particularly differ-615

ent, for completeness, amip-piForcing values have also been indicated in Figure 12. Here616

it can be seen that the amip-piForcing values fit the historical relationship between λcre617

and both dTs/dT̄s and d(LTS)/dT̄s suggesting that any differences in λcre between his-618

torical and amip-piForcing experiments in these regions can be explained through these619

cloud controlling factors.620

Since the LTS is defined as the 700hPa potential temperature minus the surface621

potential temperature, it is possible that the strong correlations between d(LTS)/dT̄s622

and λcre exist primarily because of the strong relationship between λcre and dTs/dT̄s.623

To investigate this, scatter plots of 700hPa dTa/dT̄s against λcre are shown in Figure 12e624

and f. Here, differing relationships between the two variables exist over the two regions625

analysed. Over the NW Pacific, a strong correlation remains with a correlation coeffi-626

cient of 0.84. Over the NE Pacific however, this is not the case and a weak correlation627
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Figure 12. Scatter plots of (a and b) dTs/dT̄s, (c and d) d(LTS)/dT̄s, and (e and f) 700hPa

dTa/dT̄s against λcre over the (a, c, and e) NW Pacific region, and (b, d, and f) NE Pacific re-

gion. Black dots represent the historical ensemble and magenta markers indicate amip-piForcing

values.

of 0.36 is seen. This differing relationship may be due to the different convective regimes628

that exist over the two regions. Over the NE Pacific, the strong inversion and the de-629

coupling between the boundary layer and the free troposphere means that any surface630

warming in this region will be trapped under the strong inversion. Over the NW Pacific,631

this is not the case and surface warming can be transported efficiently into the free tro-632

posphere. Therefore, to some degree, over the NW Pacific the 700hPa temperature is still633

controlled by the temperatures at the surface.634

An alternative approach is taken in Figure 13. Here, the local effect of surface warm-635

ing and the remote effect of large scale stability changes on λcre is investigated using maps636

of the correlation across the historical ensemble between local λcre and either the local637

dTs/dT̄s or the 50°S – 50°N mean 700hPa dTa/dT̄s. These latitudinal bounds were pre-638

viously used by Ceppi and Gregory (2019) and Salvi et al. (2023) to capture large scale639

tropospheric stability.640

From Figure 13 it can be seen that generally, the local dTs/dT̄s is the most strongly641

correlated, with many regions exhibiting correlations greater than 0.7. The correlations642

between λcre and the 50°S – 50°N mean 700hPa dTa/dT̄s tend to be weaker, although643

the subtropical cloud deck regions over the East Pacific and the Indian Ocean do exhibit644

positive correlations (note these are not statistically significant at the 95% confidence645

range). A decomposition of Figure 13 into shortwave and longwave components is shown646

in Figure S3. Here the strong correlations seen in the low cloud deck regions in Figure647

13 are associated with the shortwave cloud feedbacks, and similar to Figure 11 and S2,648

the tropical ascent regions exhibit relatively strong correlations with both local dTs/dT̄s649

and 50°S – 50°N mean 700hPa dTa/dT̄s in the shortwave and longwave, however these650
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Figure 13. Maps of correlation between local λcre against (a) local dTs/dT̄s, and (b) 50°S –

50°N mean 700hPa dTa/dT̄s across the historical ensemble. Hatching indicates where correlations

are not significant at the 95% confidence interval (i.e. p values are greater than 0.05). Here the p

value approximately indicates the probability of two random distributions producing a correlation

coefficient at least as great as those indicated in the colored contours.

two components cancel, resulting in the net cloud feedback correlation being relatively651

weak in those regions in Figure 13.652

To summarise, cloud feedbacks are the largest source of uncertainty in EffCS across653

models, however within the HadGEM3-GC3.1-LL historical ensemble, λSWcs contributes654

more to the spread in λnet. Spread in λcre can be explained through the cloud control-655

ling factors of Ts and LTS where dTs/dT̄s is positively correlated with λcre and d(LTS)/dT̄s656

is negatively correlated with λcre. Finally, it is shown that the local influence of dTs/dT̄s657

on λcre is much stronger than the remote effect of changes in large scale atmospheric sta-658

bility.659

4 Conclusion660

In this paper the feedbacks across a 47 member ensemble of historical and single661

forcing simulations have been analysed. Across the historical ensemble, EffCS ranges be-662

tween 3–6K, highlighting the large spread in estimated feedbacks caused by internal vari-663

ability. The aims of this work have been to understand the main causes of this spread664

in feedbacks across the ensemble, to understand if and why different forcing agents have665

different forcing efficacies, and finally to understand why the coupled historical simula-666

tions struggle to capture the feedbacks seen in AGCM simulations forced by observed667

SSTs. To address these aims, three components of λnet were investigated (λSWcs, λLWcs,668

and λcre).669

The analysis found that the ensemble spread in λSWcs is largely caused by vary-670

ing degrees of sea ice melt per degree of global warming. Ensemble members that showed671

a large reduction in sea ice per degree of global warming also exhibited a strong λSWcs,672

with a correlation of -0.84 (consistent with Dessler (2020)). It was shown that this re-673

lationship was due to varying SST patterns, with ensemble members simulating stronger674
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polar amplification also exhibiting more sea ice melt and a stronger λSWcs (with a cor-675

relation of 0.84 between polar SSTs and λSWcs). This relationship between λSWcs, sea676

ice melt, and polar amplification is also shown to be the reason for a much weaker λSWcs677

in the amip-piForcing experiment. Here, weaker polar amplification resulted in less sea678

ice melt per degree of global warming and a smaller λSWcs. Finally, the different λSWcs679

between the different single forcing experiments was investigated, since λSWcs was found680

to be the biggest source of differing forcing efficacies across the different forcing agents.681

It was shown that different patterns of surface warming were the main cause of differ-682

ent feedbacks across each experiment, with spatial correlations of 0.64 – 0.88 between683

patterns of Ts change per degree of global warming and λSWcs across all experiments684

and each hemisphere.685

Previously, Salvi et al. (2022) also investigated different forcing efficacies between686

different forcing agents, also finding the hist-aer experiment to exhibit more strongly am-687

plifying feedbacks compared to hist-ghg. There they focused on influence of stability changes688

on changes in cloud feedbacks, however here, we find that for HadGEM3-GC3.1-LL, changes689

in sea ice and polar Ts play a larger role in causing different forcing efficacies.690

The ensemble spread in λLWcs was also investigated. Here it was shown that both691

tropical tropospheric temperature changes per degree of global warming and tropical Ts692

changes per degree of global warming were a key factor in causing the spread in λLWcs.693

Here, increased tropical surface warming caused warming in the tropical troposphere which694

has previously been shown to cause a stronger lapse rate feedback (T. Andrews & Webb,695

2018). This relationship between λLWcs and tropical Ts also captures why the λLWcs696

is much stronger in the amip-piForcing experiment compared to the historical simula-697

tions, with the amip-piForcing experiment exhibiting a stronger tropical surface warm-698

ing per degree of global warming compared to most historical ensemble members. Given699

that the amip-piForcing experiment is prescribed with observed SSTs, this shows how700

AOGCM biases in tropical SST patterns can impact on the estimated λLWcs.701

The final feedback to be investigated was λcre. In contrast to the primary role of702

λcre in causing uncertainty in long term estimates of climate sensitivity, in the HadGEM3-703

GC3.1-LL historical ensemble, other feedbacks have a larger spread. Investigating λcre,704

it was shown that both Ts and LTS are key factors affecting changes in cloud feedbacks.705

It is also shown that although amip-piForcing and historical cloud feedbacks are not too706

dissimilar, both the LTS and Ts are useful metrics for understanding how amip-piForcing707

cloud feedbacks relate to those seen in the historical simulations. The analysis concludes708

by investigating the relative importance of local effect of varying Ts or the remote effect709

of large scale changes in atmospheric stability. Here it is shown that the local Ts is the710

most important, whilst the large scale stability plays a non-negligible role over the sub-711

tropical cloud deck regions.712

This work provides useful insight into the different feedbacks seen across different713

forcing experiments and also provides information as to why coupled historical simula-714

tions struggle to capture the feedbacks seen in the amip-piForcing experiment. To take715

this work further, this large ensemble could be used to better understand the temporal716

evolution of feedbacks. In recent years, the amip-piForcing experiment demonstrates a717

marked decrease in λnet (T. Andrews et al., 2022), and this ensemble could be used to718

investigate whether a similar behaviour is captured in any of the ensemble members. This719

work could then be used shed light on the causes and mechanisms involved in transient720

feedbacks.721
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5 Open Research722

Data used in this analysis consists of HadGEM3-GC3.1-LL model simulations per-723

formed as part of the Met Office’s contribution to CMIP6 (Eyring et al., 2016) and LESFMIP724

(D. Smith et al., 2022) and can be accessed from the ESGF CEDA data node https://esgf-725

index1.ceda.ac.uk/search/cmip6-ceda/.726
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Abstract14

Climate feedbacks over the historical period (1850–2014) have been investigated in large15

ensembles of historical, hist-ghg, hist-aer, and hist-nat experiments, with 47 members16

for each experiment. Across the historical ensemble with all forcings, a range in estimated17

Effective Climate Sensitivity (EffCS) between approximately 3–6 K is found, a consid-18

erable spread stemming solely from initial condition uncertainty. The spread in EffCS19

is associated with varying Sea Surface Temperature (SST) patterns seen across the en-20

semble due to their influence on different feedback processes. For example, the level of21

polar amplification is shown to strongly control the amount of sea ice melt per degree22

of global warming. This mechanism is responsible for the large spread in shortwave clear-23

sky feedbacks and is the main contributor to the different forcing efficacies seen across24

the different forcing agents, although in HadGEM3-GC3.1-LL these differences in forc-25

ing efficacy are shown to be small. The spread in other feedbacks is also investigated,26

with the level of tropical SST warming shown to strongly control the longwave clear-sky27

feedbacks, and the local surface-air-temperatures and large scale tropospheric temper-28

atures shown to influence cloud feedbacks. The metrics used to understand the spread29

in feedbacks can also help to explain the disparity between feedbacks seen in the histor-30

ical experiment simulations and a more accurate modeled estimate of the feedbacks seen31

in the real world derived from an atmosphere-only experiment prescribed with observed32

SSTs (termed amip-piForcing).33

Plain Language Summary34

Understanding how the Earth’s climate responds to an imposed forcing such as an35

increase in greenhouse gases or aerosols is an important issue relevant to climate mit-36

igation and adaptation policies on the global scale. One way we can understand this is37

by analysing the historical period (1850–2014), a period over which the climate has al-38

ready changed substantially due to human induced forcings, and also a period over which39

observations allow us to compare modeled changes in climate with the changes seen in40

the real world. Here, we use a large ensemble of climate model simulations of the his-41

torical period were we aim to understand a) how natural variability causes differences42

in the global temperature response to the same imposed forcing, b) what causes differ-43

ent forcing agents (e.g. greenhouse gases or aerosols) to be more or less effective at warm-44

ing or cooling the planet, and c) whether historical simulations - where the climate model45

simulates its own sea surface temperatures - capture the same response to historical forc-46

ings as an atmosphere-only simulation prescribed with observed sea surface temperatures.47

We find that the pattern of sea surface temperatures (particularly the levels of tropical48

and polar warming) is key to understanding each of these points.49

1 Introduction50

Climate sensitivity and feedbacks provide valuable information about how the Earth’s51

temperature changes in response to an imposed forcing such as an increase in greenhouse52

gases, aerosols, or volcanic emissions (Sherwood et al., 2020; Forster et al., 2021). Typ-53

ically, equilibrium climate sensitivity (ECS) is defined as the equilibrium global temper-54

ature increase in response to a doubling of CO2 and can be related to CO2 forcing and55

climate feedbacks using a simple energy balance model (Equation 1) (e.g. Sherwood et56

al. (2020)).57

ECS = −F2×CO2/λ (1)58

Here, F2×CO2
is the radiative forcing associated with a doubling of CO2 and the59

feedback parameter λ is the radiative response per degree of global temperature change.60

Currently, the assessed likely range of ECS extends from 2.5°C – 4.0°C (Forster et al.,61
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2021). Since constraining ECS is important for improving our understanding of how the62

Earth’s climate is likely to change in the future, informing climate related mitigation and63

adaptation policy on the global scale, improving our understanding of different climate64

feedbacks and why they vary is vital.65

The feedback parameter λ can be defined using Equation 2 (e.g. Gregory et al. (2004)).66

λ = d(N − F )/dTs (2)67

Here F is the radiative forcing, N is the top of atmosphere radiative flux, and Ts68

is the surface-air-temperature (in this case, all terms are global mean quantities).69

In Atmosphere-Ocean General Circulation Models (AOGCMs), λ and ECS are typ-70

ically estimated via a linear regression of global Ts and N over the first 150 years of an71

abrupt-4xCO2 simulation (T. Andrews et al., 2012; Dong et al., 2021; Gregory et al., 2004).72

The abrupt-4xCO2 simulation is an AOGCM experiment where the atmospheric con-73

centration of CO2 is abruptly quadrupled and then held constant. This regression method74

is used in favour of calculating ECS directly from two equilibrium states due to the long75

timescales needed to equilibrate the deep ocean and the substantial computational cost76

associated with this (T. Andrews et al., 2022; Rugenstein et al., 2019). ECS estimates77

produced from these non-equilibrium states are called the Effective Climate Sensitivity78

(EffCS) (Dong et al., 2021; Sherwood et al., 2020; T. Andrews et al., 2015; Rugenstein79

& Armour, 2021).80

λ and EffCS can also be estimated from simulations of the historical record (185081

to present day), estimating λ over the historical period and applying this to Equation82

1 where F2×CO2
has been diagnosed from an abrupt-4xCO2 run (Gregory et al., 2020).83

These estimates tend to produce an EffCS smaller than that predicted solely from an84

abrupt-4xCO2 experiment, largely due to the time variations in λ caused by evolving85

SST patterns and the different timescales involved in the response to an imposed forc-86

ing (T. Andrews et al., 2019; Gregory et al., 2020; Proistosescu & Huybers, 2017). This87

”pattern effect” describes how a different global radiative response can be generated by88

the same global temperature change due to different patterns of SSTs (Rugenstein & Ar-89

mour, 2021; Gregory & Andrews, 2016). In this context, the pattern effect is often quan-90

tified as the difference in λ between historical and abrupt-4xCO2 experiments (T. An-91

drews et al., 2018).92

Estimates of λ from historical and abrupt-4xCO2 simulations may also differ due93

to the different forcing agents involved (Marvel et al., 2015). Whilst the abrupt-4xCO294

experiment is only forced by increases in CO2 concentrations, the historical simulations95

are also influenced by changes in aerosols and natural forcings such as volcanic emissions96

(C. J. Smith & Forster, 2021; Salvi et al., 2023). These different forcing agents may vary97

in how effective they are at warming or cooling the planet; this is called forcing efficacy98

(Marvel et al., 2015; Richardson et al., 2019; Hansen et al., 2005). Again AOGCMs can99

be used to investigate this, with experiments simulating the historical period but only100

applying the forcing for individual forcing agents. Salvi et al. (2022) use this approach101

to demonstrate that, in the multi-model mean, greenhouse gases tended to have a more102

stabilising feedback (lower EffCS) compared to aerosols, although substantial variation103

across different models exists. It is suggested that across different forcing agents, vari-104

ations in SST pattern changes lead to differing feedbacks (Haugstad et al., 2017). Ceppi105

and Gregory (2019) suggest that the changes in atmospheric stability induced by these106

differing SST patterns is a key factor determining the efficacy of a particular forcing (Salvi107
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et al., 2023). Assuming temperature changes and the radiative responses to each forc-108

ing agent add linearly, understanding each component of the full historical forcing can109

help inform our interpretation of historical feedbacks and how they relate to future cli-110

mate change.111

Historical estimates of a model’s EffCS can also be deduced from an Atmosphere112

only General Circulation Model (AGCM) experiment with prescribed SSTs and sea ice113

from observations between 1870 and 2014 and atmospheric constituents set to pre-industrial114

levels, termed amip-piForcing (Gregory & Andrews, 2016; Gregory et al., 2020). Because115

this experiment is forced with observed SSTs it is able to more accurately simulate his-116

torical changes in climate compared to the coupled AOGCMs (Gregory & Andrews, 2016).117

It is found that the EffCS calculated using the amip-piForcing experiment tends to pro-118

duce an EffCS smaller than that derived from AOGCM historical experiments (i.e. amip-119

piForcing has a larger pattern effect relative to abrupt-4xCO2) (Gregory et al., 2020; T. An-120

drews et al., 2019). Again, this difference is often attributed to differences in SST pat-121

terns between the two experiments, with coupled historical simulations struggling to sim-122

ulate observed SST patterns (Gregory et al., 2020; Wills et al., 2022). Over recent years,123

observed SSTs demonstrate a marked cooling in the East Pacific and Southern Ocean124

and more warming over the West Pacific, leading to more negative feedbacks and a lower125

EffCS. The inability of AOGCM simulations to capture observed trends in SST patterns126

is a key issue currently facing the scientific community and raises questions regarding127

how this impacts our understanding of climate sensitivity and feedbacks. The “peculiar”128

trend in SST patterns as termed by Fueglistaler and Silvers (2021) may have occurred129

through unforced variability and it may then be by chance that the real world SSTs have130

evolved in a way that induces a more strongly stabilising feedback. Or, it is possible that131

the trend is forced, e.g. by aerosols or volcanic emissions (D. Smith et al., 2016; Gregory132

et al., 2020; Hwang et al., 2024), and our AOGCMs struggle to simulate the real world133

SSTs accurately due to limitations in our current modelling capabilities.134

To date, most of the work examining radiative feedbacks, pattern effects and ef-135

ficacies has been limited to idealised experimental designs or small ensembles of histor-136

ical AOGCM simulations with a single model, or via model intercomparisons such as the137

Coupled Model Intercomparison Project (CMIP) (Eyring et al., 2016), where still only138

relatively small ensemble sizes are available. Questions remain on the influence of nat-139

ural variability in historical climate change on diagnosed estimates of feedbacks, the quan-140

tification of the forced response to different forcings and whether radiative feedback sim-141

ulated in AOGCM historical simulations are consistent with observed estimates. Large142

initial condition ensembles with a single model are useful to address this. For example,143

previously, large ensembles have been shown to provide valuable insight into the sepa-144

ration of forced climate change and internal variability (Kay et al., 2015). From a sea145

ice sensitivity perspective, Kay et al. (2011) demonstrate that using an ensemble to quan-146

tify internal variability shows that recent trends in sea ice decline cannot be reproduced147

from modeled internal variability alone. Adams and Dessler (2019) employ a 100 mem-148

ber ensemble of historical simulations to show that internal variability could be a key149

contributor to the difference in Transient Climate Response (TCR) estimates between150

models and observations. Applying the analysis of this 100 member ensemble to the study151

of climate sensitivity and feedbacks over the historical period, Dessler et al. (2018) high-152

light a large range in EffCS estimates between 2.1 and 3.9K. They note that given that153

the real world 20th century is just one realisation of a range of possible realities, due to154

that large internal variability, we should not expect estimates of EffCS from observations155

to be a precise guide to the real world’s forced response. Alongside this, they note that156

that different forcing efficacies, imperfect observations, and uncertainty in 20th century157

forcing also pose challenges for interpreting EffCS from the historical period. Gregory158

et al. (2020) also noted the high levels of internal variability over the historical record159

showing how this variability contributed to uncertainty to estimates of EffCS.160
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In this paper we use a new set of four large ensembles of HadGEM3-GC3.1-LL his-161

torical and single forcing simulations performed for the Large Ensemble Single Forcing162

Model Intercomparison Project (LESFMIP) (D. Smith et al., 2022), aiming to address163

the following questions.164

1. how does natural variability cause differences and spread in climate feedbacks in165

response to the same imposed forcing?166

2. What causes different efficacies of different historical forcing agents?167

3. Can AOGCM historical simulations – where the model simulates it’s own SSTs168

- capture the radiative feedback and EffCS estimated from AGCM experiments169

prescribed with observed SSTs?170

Previously, T. Andrews et al. (2019) investigated EffCS and feedbacks in HadGEM3-171

GC3.1-LL in a 4 member ensemble of historical simulations, finding a net feedback (λ)172

of -0.86 ± 0.4 Wm-2K-1 (5-95%). This ensemble mean estimate is more negative than173

the abrupt-4×CO2 feedback in HadGEM3-GC3.1-LL of -0.63 Wm-2K-1, although the174

5-95% confidence range does extend up to -0.46 Wm-2K-1. The large spread in λ was found175

to be partly caused by considerable variations in Antarctic sea ice. This variability in176

sea ice inhibited accurate evaluation of the model’s historical forced EffCS. There, T. An-177

drews et al. (2019) were limited to an ensemble of only 4 simulations, so questions re-178

main about whether the full diversity of variability was sampled. Here we investigate this179

with a much larger ensemble of 47 members.180

In the following section we describe the model and experimental setup used. Sec-181

tion 3 presents the results and Section 4 provides a discussion and conclusions.182

2 Methods183

2.1 HadGEM3-GC3.1-LL184

The analysis in this paper uses simulations performed using HadGEM3-GC3.1-LL,185

an AOGCM with an atmospheric resolution of 135 km with 85 vertical levels and an ocean186

resolution of 1°and 75 vertical levels (M. B. Andrews et al., 2020). Further details can187

be found in Williams et al. (2017) where a description of the model’s configuration is given.188

2.2 Large Historical Ensemble189

In this analysis, ensembles of historical, hist-ghg, hist-aer, and hist-nat experiment190

are used, with 47 members of each experiment mostly consisting of simulations performed191

for LESFMIP. These experiments are AOGCM simulations analysed between 1850–2014192

with atmospheric constituents set to historical levels. Here, the historical experiment in-193

cludes all forcing agents, whilst the hist-ghg, hist-aer, and hist-nat contain only the forc-194

ing associated with well mixed greenhouse gases, anthropogenic aerosols, and natural forc-195

ings respectively (Gillett et al., 2016). Each ensemble member differs only in their ini-196

tial conditions branching from the piControl experiment at different times (1850, 1885,197

and every 10 years between 1860 and 2300). The piControl experiment is an AOGCM198

experiment with atmospheric constituents set to pre-industrial levels. The 47 ensemble199

members consist of 45 simulations performed as part of the LESFMIP ensemble (D. Smith200

et al., 2022), and two simulations previously analysed in T. Andrews et al. (2019). Only201

two of the four simulations used in T. Andrews et al. (2019) were analysed here since202

the other two members had identical branch times to members of the LESFMIP ensem-203

ble.204
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Figure 1. (a) Timeseries of global annual mean Ts in the piControl experiment (grey line),

500 year trend (dashed black line), and branch times for each of the historical and single forcing

experiment ensemble members (dots). Red dots indicate the ensemble members that have been

excluded due to the strong warming seen in the piControl experiment. (b) 190 year piControl

trend for each ensemble member branch date (red), and 500 year piControl trend (horizontal

black dashed line).

2.3 piControl and Detrending205

To compare ensemble members in the 47 member ensembles, the control drift must206

be removed from each simulation. For this analysis, this drift is removed by calculating207

the trend over the first 500 years of the piControl experiment via linear regression and208

subtracting the corresponding time period from each ensemble member. The piControl209

timeseries of global annual mean Ts and the 500 year trend is shown in Figure 1a where210

the dots depict the branch dates for each member of the historical ensemble. This method211

of control drift removal is chosen in favour of subtracting the piControl year by year to212

avoid unnecessarily introducing more noise into the historical simulations. The 500 year213

trend is also preferred above subtracting the 190 year trend across the corresponding pi-214

Control period due to issues introduced towards the end of the piControl simulation, where215

a marked global warming is seen at around 2350. This warming has been previously doc-216

umented by Ridley et al. (2022) where it is attributed to the onset of deep convection217

in the Weddell and Ross Sea gyres due to a destabilising of the Southern Ocean. When218

removing the control drift from the historical ensemble, any drift removed is assumed219

to be present in the historical ensemble member. For the trend seen over the first 500220

years of the control run this is a reasonable assumption, however in the case of the large221

warming seen around 2350, this assumption may not hold. The impact that this warm-222

ing has on the 190 year control trend for the respective historical ensemble branch dates223

is shown in Figure 1b. Here, unsurprisingly, a strong positive trend is seen for ensem-224

ble members that branch after the year 2150. We found no evidence that the warming225

seen in the piControl experiment is present in historical ensemble members initiated up226

to 2300, but to avoid this feature contaminating the comparison of ensemble members,227

the last 5 ensemble members have been removed from the analysis. This is why although228

the LESFMIP ensemble consists of 50 members, only 45 of them are used here.229

2.4 Diagnosing Historical Forcing230

Whilst λ can be calculated for the abrupt-4xCO2 and amip-piForcing experiments231

from only Ts and N (since the F is constant), the time varying F over the historical pe-232

riod means that in order to estimate λ, we must first diagnose F .233
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Table 1. Description of experimental setup used.

Experiments

Experiment
Name

Atmospheric Constituents SSTs Run Time Ensemble
Size

Coupled experiments

piControl pre-industrial free running 1850 – 3850 1
abrupt-4xCO2 pre-industrial CO2×4 free running 1850 – 2350 1
historical historical free running 1850–2014 47
hist-ghg historical well mixed green-

house gases
free running 1850–2014 47

hist-aer historical aerosols free running 1850–2014 47
hist-nat historical natural forcing free running 1850–2014 47

Atmosphere-only experiments

amip-
piForcing

pre-industrial historical
observed

1870 – 2014 1

piClim-control pre-industrial piControl 1850 – 1890 3
piClim-histall historical to 2014 then ssp-

245 to 2100
piControl 1850 – 2100 3

piClim-histghg historical well mixed green-
house gases only to 2014
then ssp-245 to 2100

piControl 1850 – 2100 3

piClim-histaer historical aerosols only to
2014 then ssp-245 to 2100

piControl 1850 – 2100 3

piClim-histnat historical natural forcing
only to 2014 then ssp-245 to
2100

piControl 1850 – 2100 3

Typically, the historical F is diagnosed using RFMIP experiments piClim-control234

and piClim-histall (Forster et al., 2016; Pincus et al., 2016). These are two AGCM ex-235

periments with prescribed SSTs from the piControl simulation. For piClim-control, at-236

mospheric constituents are set to pre-industrial levels and the experiment is run for 30237

years. Averaging over the 30 years provides the control state. For piClim-histall atmo-238

spheric constituents are set to historical levels between 1850 – 2014 and to ssp-245 lev-239

els between 2015 and 2100. Subtracting the 30 year mean piClim-control top of atmo-240

sphere radiative flux from the 1850 – 2100 piClim-histall top of atmosphere flux provides241

F , with years 1850–2014 relevant for the analysis of the historical period.242

In order to diagnose F for the individual forcing components that correspond to243

the hist-ghg, hist-aer, and hist-nat experiments, a similar experimental setup to the piClim-244

histall experiment is used but only the forcing from the relevant component is applied.245

These experiments are termed piClim-histghg, piClim-histaer, and piClim-histnat (Forster246

et al., 2016; Pincus et al., 2016).247

A summary of the setup for each experiment used in this paper is presented in Ta-248

ble 1.249
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3 Results250

3.1 Diagnosing Feedbacks in Historical and Single Forcing Ensembles251

As discussed in the introduction, the feedback parameter (λ) can be estimated via252

linear regression of global annual mean surface-air-temperatures (Ts) against top of at-253

mosphere radiative fluxes (N) minus the changes in flux associated with the radiative254

forcing (F ). Timeseries of these diagnostics are presented in Figure 2, where 2a and b255

show the anomalous global annual mean Ts and anomalous global annual mean N re-256

spectively in every ensemble member and in each experiment, and 2c shows the global257

annual mean F associated with each experiment. From Figure 2a it can be seen that the258

cooling effect of anthropogenic aerosols and natural forcings is approximately offset by259

the warming effect of increased greenhouse gases between 1850 and 1990. Here, the F260

associated with greenhouse gases and aerosols gradually increase, however, after approx-261

imately 1990 the aerosol F remains relatively constant (around -1.5 Wm−2) whilst the262

F associated with greenhouse gases continues to increase (Figure 2c) (T. Andrews et al.,263

2019). This leads to a net positive F after 1990 in the historical experiment which re-264

sults in an increase in global mean Ts, warming by approximately 0.8 K by 2014. A de-265

tailed analysis of HadGEM3-GC3.1-LL historical simulations is presented in M. B. An-266

drews et al. (2020). An example of how λ is calculated from these timeseries of Ts, N ,267

and F is presented in Figure 2d, where, for the first ensemble member in the historical268

experiment, a feedback parameter of -0.85 ± 0.15 Wm−2K−1 is estimated. There the un-269

certainty is estimated as ±1.645 standard deviations, calculated from the standard er-270

ror of the linear fit.271

One assumption made when estimating λ using timeseries of Ts, N , and F is that272

the changes in global mean Ts associated with the forcing is zero (i.e. the surface-air-273

temperature change between piClim-control and piClim-histall is zero). This is gener-274

ally a reasonable assumption to make, given that the prescribed SSTs do not warm and275

therefore any changes in land surface temperatures are constrained to be small (Lambert276

et al., 2011). However, despite this temperature change being small, taking this into ac-277

count can substantially affect the values of λ estimated. This caveat is noted in Hansen278

et al. (2005) and Vial et al. (2013) and becomes a particularly relevant issue when com-279

paring feedbacks in the historical experiment to feedbacks in the amip-piForcing exper-280

iment, since there is no forced temperature change in the amip-piForcing experiment where281

F = 0 by construction. To handle this issue, in this paper, λ has been calculated ac-282

counting for this forced temperature change (Equation 3).283

λ = d(N − F )/d(Ts − δTsforced
) (3)284

Where δTsforced
is calculated as the change in global surface-air-temperature be-285

tween piClim-control and the relevant piClim-hist experiment used to diagnose F . To286

simplify the notation, we refer to (Ts−δTsforced
) simply as Ts. Similarly, later when analysing287

atmospheric temperatures (Ta), we refer to (Ta − δTaforced
) simply as Ta.288

To summarise the feedbacks seen across the different experiments analysed, box-289

plots of feedbacks in the historical and single forcing experiments and markers showing290

the feedbacks in both amip-piForcing and abrupt-4xCO2 experiments are shown in Fig-291

ure 3b. Here the net feedback has been decomposed into shortwave clear-sky (SWcs),292

longwave clear-sky (LWcs), and cloud radiative effect (cre) components. Such a decom-293

position is useful since it can help isolate the different processes and feedback mecha-294

nisms involved. λSWcs, λLWcs, and λcre are calculated by decomposing N and F into295

the relevant fluxes when applying Equation 3. From Figure 3b, a large spread in feed-296

backs across the historical ensemble can be seen, ranging from approximately -0.7 to -297

1.3 Wm−2K−1. Using a 2×CO2 F of 4.05 Wm−2 for HadGEM3-GC3.1-LL (T. Andrews298
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Figure 2. (a) Timeseries of anomalous global annual mean Ts in the historical and single

forcing experiments. Thick lines indicate the ensemble mean and thinner lines represent each

individual ensemble member. (b) Timeseries of anomalous global annual mean N in the historical

and single forcing experiments. Again, thick lines indicate the ensemble mean and thinner lines

represent each individual ensemble member. (c) Timeseries of global annual mean F for historical

and single forcing scenarios averaged across the three ensemble members for each experiment. (d)

Example of method used to estimate λ, where λ is calculated by linearly regressing Ts against

(N − F ). Each dot represents a year in the historical experiment and the black line shows regres-

sion line where the slope (λ) is estimated to be -0.85 ± 0.15 Wm−2K−1. Here, the uncertainty is

estimated as ±1.645 standard deviations, calculated from the standard error of the linear fit.

et al., 2019), and applying Equation 1, such a range in feedbacks leads to an estimate299

of EffCS between approximately 3 and 6K (Figure 3a). This highlights the role of in-300

ternal variability in causing different feedback and EffCS estimates over the historical301

period. The spread in feedbacks seen in the historical and single forcing experiments is302

largest in the hist-nat experiment and smallest in the hist-ghg experiment, possibly due303

to the varying signal to noise ratios across the different experiments. The Ts changes in304

the hist-nat experiment are generally small (Figure 2a), and the natural F is also small305

with an occasional strong but short-lived signal caused by volcanic emissions (Figure 2c).306

This causes the regression of Ts against (N−F ) to be relatively noisy compared to the307

hist-ghg experiment where both Ts and (N −F ) have a much stronger signal. This is308

also consistent with the contrast in estimated uncertainty of the linear fit of Ts and (N−309

F ) where for each experiment, the standard error of the linear fit of every ensemble mem-310

ber has be estimated. The estimation of λnet in the hist-ghg experiment has an average311

5-95% interval of ± 0.066 Wm−2K−1, whereas for hist-nat, the mean 5-95% interval is312

±0.25 Wm−2K−1.313
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Figure 3. (a) Boxplot of EffCS across the historical ensemble (1850–2014). (b) Boxplots of

feedbacks in the historical and single forcing ensembles (1850–2014), amip-piForcing experiment

(1870–2014), and abrupt-4xCO2 experiment (first 150 years). For each boxplot, the vertical black

lines indicate each ensemble member, the whiskers indicate the maximum and minimum feed-

backs seen in the ensemble, the boxes indicate the interquartile range, and the vertical orange

line represents the median value. Error bars on amip-piForcing indicate the 5-95% confidence

interval, calculated from the standard error of the linear fit.

A further decomposition of λcre into shortwave and longwave components is shown314

in Figure S1. There, the largest contribution to the spread in λcre comes from the short-315

wave component, consistent with the strong influence of low cloud feedbacks, and the316

cancelling of the longwave and shortwave response to changes in high cloud.317

The feedbacks seen in each historical and single forcing experiment are largely con-318

sistent with each other (i.e. differing forcing efficacies do not appear to be strongly ev-319

ident in HadGEM3-GC3.1-LL), although a slightly more negative median feedback is seen320

in the hist-ghg experiment, consistent with the findings of Salvi et al. (2022). In Figure321

3, the more negative median feedback in the hist-ghg experiment is shown to be caused322

by a weaker λSWcs, although due to the large spread in historical, hist-aer, and hist-nat323

feedbacks, the lower tails of the feedbacks in these experiments extend to be more neg-324

ative than the lower tail of the hist-ghg experiment. The amip-piForcing and abrupt-325

4xCO2 feedbacks are also shown in Figure 3b. For each component of λnet, the amip-326

piForcing feedback lies towards the lower tail of the historical ensemble, a behaviour most327

strongly seen in the λSWcs, and λLWcs components.328

Maps of the ensemble mean feedbacks and amip-piForcing feedbacks are shown in329

Figure 4 to help identify where different feedbacks are located and to highlight regions330

where feedbacks differ across the range of experiments analysed. The spatial feedback331

map is calculated by regressing the local (N−F ) against the global mean Ts changes.332

Here the ensemble mean feedbacks are calculated by taking the regression of the mean333

rather than calculating the feedback for each ensemble member and averaging across the334

ensemble. This was done to help reduce the noise in the regression of (N−F ) and Ts335

when calculating the feedbacks.336
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From Figure 4, it can be seen that different feedbacks dominate in different regions.337

For example, in general λSWcs is strongly positive at higher latitudes and small at lower338

latitudes. This is because the sea ice feedback is a key feedback affecting the SWcs fluxes.339

The strong positive λSWcs seen over the northern hemisphere land masses is likely re-340

lated to snow and land ice feedbacks, and the strong negative λSWcs seen in the South-341

ern Ocean in the hist-aer experiment may be caused by ocean convective events that bring342

warmer water to the surface due to destabilization of the ocean, similar to those discussed343

in (Ridley et al., 2022).344

With the exception of the Southern Ocean feature seen in the hist-aer experiment,345

the λLWcs is generally negative everywhere across all experiments, although a few small346

regions in the amip-piForcing experiment also have positive λLWcs. The λLWcs is largely347

composed of the Planck, lapse rate, and water vapour feedbacks. This term is generally348

large and negative due to the strong Planck response. Over the Southern Ocean in the349

hist-aer experiment, since this region warms, which is of opposite sign to the cooling seen350

over the rest of the planet, the λLWcs is strongly positive in this region. In the tropics,351

the lapse rate and Planck feedbacks are typically negative, therefore the positive λLWcs352

regions in the amip-piForcing experiment over the tropics are likely caused by the wa-353

ter vapour feedback (Stephens et al., 2016).354

λcre exhibits relatively large spatial variations. In the historical and single forcing355

experiments (particularly hist-aer) a strongly positive λcre is seen over the North Pa-356

cific, highlighting the role of positive cloud feedbacks in the sub-tropical cloud decks in357

subsidence regions. Again, λcre has been decomposed into longwave and shortwave com-358

ponents (Figure S2). The strong λcre over the North Pacific is caused by shortwave cloud359

feedbacks, and over tropical high cloud regions, e.g. the Indo-Pacific warm pool region,360

strong shortwave and longwave cloud feedbacks cancel, causing the relatively weak λcre361

over much of the tropics.362

From these maps of feedbacks, it can be seen that although in the global mean, dif-363

ferent efficacies are not particularly large in HadGEM3-GC3.1-LL, spatially, large vari-364

ations do exist between the different experiments.365

As mentioned in the introduction, differences in feedbacks across experiments and366

ensemble members are generally thought to be fundamentally caused by differing SST367

patterns. Therefore, to help understand the differences in feedbacks seen in Figure 4, en-368

semble mean Ts patterns are shown in Figure 5. Similar to the maps of λ, these have been369

calculated by regressing the ensemble mean local changes in Ts against the ensemble mean370

global mean Ts, written as dTs/dT̄s, where the bar indicates a global mean. In Figure371

5, the strongest regions of dTs/dT̄s occur in the Arctic, with weaker more spatially uni-372

form dTs/dT̄s seen over the tropics. Over the Southern Ocean, large variations in dTs/dT̄s373

are seen across the different experiments. Here, hist-nat exhibits the strongest dTs/dT̄s374

whilst hist-aer exhibits a negative dTs/dT̄s (i.e. although global mean Ts is decreasing375

in the hist-aer experiment, the southern ocean warms). As previously mentioned, this376

may be caused by ocean convective events that bring warmer water to the surface due377

to destabilization of the ocean (Ridley et al., 2022). In the northern hemisphere high lat-378

itudes, hist-aer exhibits the strongest dTs/dT̄s, possibly due to the aerosol F being pre-379

dominantly based in the northern hemisphere. Over the tropics dTs/dT̄s is relatively con-380

sistent across each experiment.381

Since one of the key aims of this paper is to understand the ensemble spread in feed-382

backs, maps of the standard deviation in λ in the historical experiment help to highlight383

the regions that contribute most to this spread (Figure 6). From Figure 6 it can be seen384
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Figure 4. Maps of ensemble mean λnet, λSWcs, λLWcs, and λcre in amip-piForcing, historical,

hist-ghg, hist-aer, and hist-nat experiments. Here, λ has been calculated by regressing the ensem-

ble mean local annual mean (N − F ) against the ensemble mean global annual mean Ts between

1850 – 2014 for historical and single forcing experiments, and 1870 – 2014 for amip-piForcing.

that for λSWcs most of the spread comes from the higher latitudes. In contrast, for λcre,385

variations in cloud feedbacks across the tropics and subtropics contribute to the spread.386

λLWcs exhibits the smallest standard deviations suggesting that this component contributes387

less to the ensemble spread in feedbacks. This is likely due to the fact that the Planck,388

lapse rate and water vapour feedbacks are highly constrained by model physics.389

The three main scientific aims of this paper were to a) understand how natural vari-390

ability causes different feedbacks in response to the same imposed forcing (for example,391

what is it that causes one historical ensemble member to have an net feedback of -1.3392

Wm−2K−1 whilst another has a feedback of -0.7 Wm−2K−1?), b) understand what causes393

different efficacies across different forcing agents, and c) investigate whether the AOGCM394

historical simulations - where the model simulates its own SSTs - can capture the radia-395

tive feedback and EffCS estimated from AGCM experiments prescribed with observed396

SSTs (i.e. are the feedbacks seen in the historical experiment consistent with those seen397

in amip-piForcing?). To address these questions, the different components of λnet are398

investigated in isolation, with Section 3.2 investigating λSWcs, Section 3.3 investigating399

λLWcs, and Section 3.4 investigating λcre.400

3.2 Processes Affecting Shortwave Clear-sky Feedbacks (λSWcs)401

This section aims to understand λSWcs in the historical and single forcing exper-402

iments, addressing the cause of the ensemble spread, the disparity between historical and403

amip-piForcing, and the cause of different efficacies across the different forcing agents.404

Figure 3 shows that λSWcs is a key contributor to the ensemble spread in λnet, and the405

correlation between the two feedbacks is 0.82 across the historical experiment ensemble.406

Both the maps of λSWcs and standard deviation in λSWcs (Figure 4 and Figure 6b) in-407

dicate that most of the signal and spread in λSWcs comes from the higher latitudes, a408

region where the sea ice albedo feedback is a key process. We suggest that this feedback409
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Figure 5. (left) maps of dTs/dT̄s in KK−1 in each experiment; amip-piForcing, historical,

hist-ghg, hist-aer, and hist-nat. Here, dTs/dT̄s has been calculated by regressing the ensemble

mean local annual mean Ts against the ensemble mean global annual mean Ts between 1850 –

2014 for historical and single forcing experiments, and 1870 – 2014 for amip-piForcing. (right)

Zonal mean of maps to the left.

is a key contributor to the spread in λSWcs and a scatter plot of λSWcs against global410

sea ice fraction change per degree of warming (d(Sea Ice)/dT̄s) shown in Figure 7a con-411

firms this. There, a correlation of -0.84 is seen between the two variables in the histor-412

ical experiment over the full time period from 1850 – 2014. As previously mentioned,413

ultimately, the cause of differing feedbacks can be explained through variations in SST414

patterns. To understand the varying d(Sea Ice)/dT̄s and λSWcs across the ensemble, scat-415

ter plots of polar dTs/dT̄s against global d(Sea Ice)/dT̄s and λSWcs are shown in Fig-416

ure 7b and c respectively. Here polar dTs/dT̄s is characterised by averaging over latitudes417

greater than 60°N and lower than 60°S. From Figure 7b and c, a strong relationship be-418

tween polar dTs/dT̄s and both d(Sea Ice)/dT̄s and λSWcs can be seen. This suggests that419

the spread in λSWcs can be understood by the degree of polar amplification across the420

ensemble.421

Figure 7a also indicates that the sea ice albedo feedback is a key reason for the dif-422

ferences in λSWcs between the historical and amip-piForcing experiments. Here, the amip-423

piForcing experiment has been analysed only between 1980 and 2014 due to the unre-424

alistic evolution of sea ice in the amip-piForcing experiment prior to 1980 when sea ice425

observations were sparse (Titchner & Rayner, 2014; T. Andrews et al., 2018). It is there-426

fore important to note that much of the absolute difference in λSWcs and d(Sea Ice)/dT̄s427

between the amip-piForcing and historical experiments in Figure 7 may be due to the428

different time frames analysed. The historical experiment has also been analysed between429

1980 and 2014 (Figure 7 non-filled circles) and no substantial change in the relationship430

between each variable is seen. This does not rule out the possibility that the amip-piForcing431

evolution of sea ice, polar temperatures, and λSWcs may have been different for the longer432
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Figure 6. Maps of standard deviation in λnet, λSWcs, λLWcs, λcre, and dTs/dT̄s in the histor-

ical experiment. Here, λ has been calculated by regressing the local changes in (N − F ) against

the global mean Ts change, and dTs/dT̄s is the local Ts regressed against global mean Ts.

Figure 7. Scatter plots of (a) change in global sea ice per degree of warming against λSWcs,

(b) change in Ts at latitudes greater than 60°N or lower than -60°S per degree of global warming

against change in global sea ice per degree of global warming, and (c) change in Ts at latitudes

greater than 60°N or lower than 60°S per degree of global warming against λSWcs. Here, each

black dot represents a historical ensemble member where values are calculated between 1850–

2014 for the filled black dots, and 1980–2014 for the unfilled black dots. The magenta dots

represent the amip-piForcing experiment calculated between 1980–2014 (due to sparse sea ice

observations prior to 1980).

period, however, the fact that the amip-piForcing experiment is consistent with the re-433

lationship seen in the historical experiment (demonstrated in Figure 7a) would suggest434

that differences in λSWcs between historical and amip-piForcing experiments can be ex-435

plained through this mechanism, and the smaller λSWcs in amip-piForcing is related to436

the smaller d(Sea Ice)/dT̄s. The fact that in 7b the amip-piForcing experiment does not437

fit the historical ensemble relationship between polar dTs/dT̄s and d(Sea Ice)/dT̄s sug-438

gests that that the AOGCMs simulation of the relationship between SSTs and sea ice439

melt is not the same as the observed relationship in the real world (assuming the rela-440

tionship seen in amip-piForcing is a good analogue for the real world).441

Thus far the ensemble spread and the disparity between historical and amip-piForcing442

estimates of λSWcs has been investigated. It is shown that the sea ice albedo feedback443

is a key process responsible for both, with the level of arctic amplification providing the444

link between ensemble spread in λSWcs and Ts patterns. Previously, Dessler (2020) also445
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investigated changes in sea ice and its impact on feedbacks. Consistent with the results446

shown in Figure 7, Dessler (2020) also found sea ice variability to cause a large spread447

in λSWcs in their historical ensemble with a different model, where these feedback vari-448

ations were linked to changes in different modes of ocean variability. Since Figure 7 high-449

lights a strong relationship between polar SSTs and sea ice, understanding causes of po-450

lar SST change and how they are predicted to evolve in a future climate is important.451

Other processes could also contribute to the spread in λSWcs, such as snow melt.452

This could be responsible for the strong λSWcs seen over the Northern Hemisphere land453

masses in Figure 4 f, g, h, i, and j, and the spread in λSWcs seen in Figure 6b. However,454

this process is not investigated further here since the strongest spread in λSWcs is seen455

over the Arctic and Southern Oceans.456

With the understanding gained from Figure 7, the different efficacies of each forc-457

ing agent are investigated. Maps of ensemble mean λSWcs and dTs/dT̄s are shown in Fig-458

ure 8. Here, the hist-ghg experiment is shown and each of the other experiments are shown459

relative to the hist-ghg values. This enables clearer identification of the differences be-460

tween each forcing agent.461

From Figure 8 the spatial pattern of dTs/dT̄s and λSWcs are shown to be similar,462

suggesting that the regional change in dTs/dT̄s leads to regional changes in λSWcs due463

to the close relationship between Ts and sea ice. This is true for both the northern and464

southern hemisphere and also across each of the experiments. The spatial correlations465

between dTs/dT̄s and λSWcs across all experiments and each hemisphere are between466

0.64 – 0.88, further highlighting the strong coupling between local Ts patterns and lo-467

cal feedbacks. For the historical experiment, in the southern hemisphere, a stronger λSWcs468

is associated with a larger Southern Ocean dTs/dT̄s relative to hist-ghg. The northern469

hemisphere maps in 8b show contrasting feedbacks between the Arctic Ocean regions and470

the slightly lower latitude regions around the Labrador Sea. Over the Arctic Ocean hist-471

ghg has a stronger λSWcs compared to the historical simulations, whereas around the472

Labrador Sea, the historical experiment has the stronger λSWcs. This is reflected in the473

dTs/dT̄s patterns, where the historical experiment has a weaker dTs/dT̄s over the Arc-474

tic Ocean, but a stronger dTs/dT̄s over the Labrador Sea. This northern hemisphere pat-475

tern in λSWcs and dTs/dT̄s relative to hist-ghg is similar to that seen in the hist-aer and476

hist-nat experiment, where the hist-aer experiment demonstrates the largest positive λSWcs477

values and also extends these positive values furthest south.478

In the southern hemisphere, unlike the historical experiment, the hist-aer exper-479

iment shows strongly negative λSWcs and dTs/dT̄s relative to the hist-ghg experiment.480

As previously mentioned, this may be due to ocean convection in the Southern Ocean481

triggered by the ocean becoming unstable (Ridley et al., 2022). This convection could482

bring warmer water up from below, warming the surface, melting sea ice, and resulting483

in a negative λSWcs.484

Here, it has been shown that the sea ice albedo feedback and the level of arctic am-485

plification is a key process in producing the large spread in λSWcs across the ensemble486

and is also a key reason for the different feedback seen in the historical and amip-piForcing487

experiments. It has also been shown that the different efficacies seen across the differ-488

ent historical and single forcing experiments can be explained through differing SST pat-489

terns (in agreement with Haugstad et al. (2017)), with the experiments with a stronger490

λSWcs locally, also exhibiting a larger dTs/dT̄s.491
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Figure 8. Maps of (top rows) surface warming pattern (KK−1) and (bottom rows) λSWcs

over the (right columns) northern and (left columns) southern hemisphere poles in the (a) hist-

ghg experiment and (b) historical, (c) hist-aer and (d) hist-nat experiments relative to hist-ghg.

3.3 Processes Affecting Longwave Clear-sky Feedbacks (λLWcs)492

From Figure 3 it can be seen that whilst the λLWcs does not contribute much to493

the different efficacies seen in each of the historical and single forcing experiments, it does494

contribute to the spread in λnet and is also a large source of disparity between the his-495

torical and amip-piForcing experiments. Understanding the spread in λLWcs and the dis-496

parity between the historical and amip-piForcing experiments is the aim of this section.497

λLWcs is determined by a combination of the Planck feedback, the water vapour498

feedback and the lapse rate feedback (T. Andrews & Webb, 2018). The water vapour499

and lapse rate feedbacks have been shown to be strongest in the tropical troposphere (Soden500

et al., 2008; T. Andrews & Webb, 2018), since the tropical atmosphere closely follows501

a moist adiabatic lapse rate and therefore any warming at the surface is amplified ver-502

tically in the atmosphere (Po-Chedley et al., 2018). To investigate the λLWcs in the his-503

torical ensemble, first, plots of zonal mean atmospheric temperature regressed against504

global mean Ts (dTa/dT̄s) are analysed (Figure 9). Note that as previously discussed,505

here, the atmospheric temperature (Ta) has had any changes associated with the forc-506

ing subtracted from it (see discussion following Equation 3). This means that the CO2507
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Figure 9. Zonal mean changes in temperature per degree of global warming in the (a) histori-

cal and (b) amip-piForcing experiments.

driven stratospheric cooling in the historical experiment is removed, and a more accu-508

rate comparison between historical and amip-piForcing experiments can be made.509

From Figure 9 the pattern of dTa/dT̄s seen in both the historical and amip-piForcing510

experiments demonstrates a marked warming over the tropical troposphere. Compar-511

ing Figure 9b and c it can be seen that this tropospheric dTa/dT̄s is stronger in amip-512

piForcing compared to the historical experiment. The amip-piForcing experiment also513

exhibits a stronger dTa/dT̄s over the southern hemisphere troposphere, whilst the his-514

torical experiment has a larger dTa/dT̄s signal over the northern hemisphere high lat-515

itudes. This is potentially due to the different Ts patterns seen in the historical and amip-516

piForcing experiments, with the subtropical dTs/dT̄s being slightly greater in the North-517

ern Hemisphere in the historical ensemble and in the Southern Hemisphere in amip-piForcing518

(Figure 5f).519

Since the tropical troposphere is a key region in causing variations in λLWcs, a re-520

gion between 30°S – 30°N and between 100 – 500 hPa has been analysed further. A scat-521

ter plot of tropical tropospheric dTa/dT̄s against λLWcs is shown in Figure 10a. There522

it can be seen that a strong correlation between the two variables exists with a corre-523

lation coefficient of -0.8, consistent with physical expectations that a larger upper trop-524

ical tropospheric temperature results in a larger lapse rate feedback and a more nega-525

tive λLWcs (T. Andrews & Webb, 2018). The amip-piForcing tropical tropospheric dTa/dT̄s526

and λLWcs has also been indicated in Figure 10a, where it can be seen that the tropi-527

cal tropospheric dTa/dT̄s does well to capture why the feedbacks in historical and amip-528

piForcing experiments differ.529
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Figure 10. Scatter plots of (a) tropical tropospheric dTa/dT̄s against λLWcs, (b) tropical

Lower Tropospheric Stability (LTS) change per degree of global warming (d(LTS)/dT̄s) against

λLWcs, and (c) tropical dTs/dT̄s against λLWcs. Here the tropics have been characterised by

averaging between 30°S and 30°N, and the tropical troposphere has used the same latitudinal

bounds and averaged between 100–500 hPa (see red boxes in Figure 9). In each plot, black dots

represent the historical ensemble and amip-piForcing values are represented by a magenta dot.

Since the spread in feedbacks can ultimately be derived from differing SST patterns,530

and given the strong relationship between tropical tropospheric temperature and λLWcs,531

the relationship between tropical mean dTs/dT̄s and λLWcs has been investigated (Fig-532

ure 10c). Figure 10c follows a similar analysis to that performed by Soden and Held (2006).533

There, they demonstrated that across a range of models, due to the approximately adi-534

abatic lapse rate of the tropical atmosphere, the strong coupling between the surface and535

free troposphere in the tropics, and the relatively weak coupling present over higher lat-536

itudes, the ratio between tropical and global warming was a good metric for determin-537

ing the inter-model spread in lapse rate feedback. In Figure 10c it is shown that across538

the historical ensemble, the tropical dTs/dT̄s is well correlated with λLWcs with a cor-539

relation coefficient of -0.79. It is clear that ensemble members with a stronger warming540

over the tropics relative to the global mean also have a more strongly negative λLWcs.541

As well as explaining the ensemble spread in λLWcs, tropical dTs/dT̄s changes can542

also be used to explain the disparity between amip-piForcing and historical experiments.543

Figure 10c shows that the amip-piForcing experiment has a strong dTs/dT̄s in the trop-544

ics and also has a strong negative λLWcs.545

3.4 Processes Affecting Cloud Feedbacks (λcre)546

Although the historical ensemble used in this paper indicates that λcre is not the547

feedback with the largest spread (λSWcs has a standard deviation of 0.073 Wm−2K−1
548

whilst λcre has a standard deviation of 0.06 Wm−2K−1), for long term estimates of Ef-549

fCS across different models, cloud feedbacks are the largest source of uncertainty and550

are the least understood (Forster et al., 2021; Ceppi & Nowack, 2021; Zelinka et al., 2016;551

Ceppi et al., 2017). Because of this, over recent years, cloud feedbacks have been the fo-552

cus of many studies. Cloud controlling factor analyses such as Ceppi and Nowack (2021)553

and Blanco et al. (2023) aim to relate changes in clouds to other meteorological factors,554

such as free tropospheric humidity (van der Dussen et al., 2015), SSTs (Bretherton &555

Blossey, 2014), surface wind speed (Brueck et al., 2015) and inversion strength (Qu et556

al., 2015; Klein et al., 2017; Kawai et al., 2017). By better understanding what factors557
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cause clouds to change, it is possible to understand differences in cloud feedbacks across558

models/ensembles.559

In this section, λcre is investigated, primarily focusing on the spread across the his-560

torical experiment ensemble. Previously, Salvi et al. (2022) suggested that the different561

efficacies of well mixed greenhouse gases and aerosols were linked to changes in clouds562

due to differing changes in stability (although a large variability is seen across different563

models and a relatively small ensemble of 7 models was used). However here, the results564

shown in Figure 3 would suggest that for HadGEM3-GC3.1-LL, λcre does not contribute565

substantially to different forcing efficacies in the global mean. To understand the spa-566

tial distribution of λcre, Figure 4q is analysed. Here, strong positive cloud feedbacks are567

seen over the North Pacific and North Atlantic, and slightly weaker cloud feedbacks are568

seen over the Southern Indian Ocean and South Atlantic (each caused by positive short-569

wave cloud feedbacks - Figure S2). To understand the spread in λcre, maps of standard570

deviation in λcre, λSWcre, and λLWcre and standard deviation in dTs/dT̄s are shown in571

Figure 11. From Figure 11a it is possible to identify regions where the spread in λcre is572

largest and therefore which regions contribute most to the spread seen in Figure 3. The573

regions with the largest spread in λcre are the North Pacific and North Atlantic, due to574

a large spread in λSWcre. The Southern Ocean and low cloud deck regions off the east575

coast of South America, Australia and Southern Africa, also exhibit a moderately large576

standard deviation in λcre, again due to shortwave cloud feedbacks. The map of stan-577

dard deviation of λLWcre shows a large spread in feedbacks over the tropical ascent re-578

gions, however as previously discussed, in these regions, longwave and shortwave responses579

to changes in cloud cancel, and therefore the standard deviation in net cloud feedbacks580

in these regions is generally small.581

The spatial distribution of the standard deviation in dTs/dT̄s shown in Figure 11f582

is relatively similar to the pattern of standard deviation in λcre. Calculating the spatial583

correlation between Figures 11a and f, a correlation coefficient of 0.47 is found. Given584

surface temperatures are a key cloud controlling factor, as shown by Ceppi and Nowack585

(2021), we would expect the spread in λcre to be partly controlled by the spread in dTs/dT̄s.586

To better understand the cause of the spread in λcre shown in Figure 3b and 11a,587

two key cloud controlling factors are investigated; changes in Ts and changes in Lower588

Tropospheric Stability (LTS), both of which have strong statistical relationships with589

changes in clouds (Cutler et al., 2022; Klein & Hartmann, 1993; Ceppi & Nowack, 2021).590

Here LTS is defined as the 700hPa potential temperature minus the surface potential tem-591

perature (Cutler et al., 2022). Regarding the physical mechanisms of these relationships,592

LTS has been shown to influence cloud changes by controlling the amount of entrain-593

ment between the moist boundary layer and the drier free troposphere. The physical mech-594

anism whereby surface temperatures effect cloud changes is less well established. Webb595

et al. (2024) investigate a range of possible mechanism relating surface temperatures to596

changes in cloud, such as the impact of surface latent heat flux changes, vertical gradi-597

ents in humidity or moist static energy, or changes in downwelling longwave radiation598

caused by changing free tropospheric humidity. It was found that different mechanisms599

were plausible in some models and not in others. For HadGEM3-GC3.1-LL, only one sug-600

gested mechanism was not ruled out based on the models behaviour. This mechanism601

involved a reduction in low cloud due to a warming and a decrease in specific humidity602

due to an increase in upward longwave radiation from the surface (Ogura et al., 2023).603

To relate changes in LTS and surface temperatures to changes in λcre, first two re-604

gions are investigated, the North West (NW) Pacific and North East (NE) Pacific (see605

Figure 11 boxes). These two regions were selected as being regions with a strong λcre606
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Figure 11. Maps of standard deviation in (a) λcre, (b) λSWcre, (c) λLWcre, and (d) dTs/dT̄s

across the historical ensemble. Dashed black boxes indicate regions analysed in Figure 12 with

the NW Pacific region extending from 150–185°E and 26–41°N, and the NE Pacific region extend-

ing from 215–235°E and 15–30°N.

signal (Figure 4q) and spread (Figure 11a). The two regions also capture different cli-607

matological regimes, with the NE Pacific a region of climatological subsidence where the608

surface is decoupled from the free troposphere due to a strong inversion, whereas the NW609

Pacific region is a region of climatological ascent where the surface is not decoupled from610

the free troposphere. Scatter plots of d(LTS)/dT̄s and dTs/dT̄s against λcre over the NW611

Pacific and NE Pacific regions are shown in Figure 12a, b, c, and d. Here, it can be seen612

that in both the NE and NW Pacific there is a strong correlation between dTs/dT̄s and613

λcre, and d(LTS)/dT̄s and λcre. This is consistent with Ceppi and Nowack (2021). Al-614

though the amip-piForcing and historical estimates of λcre were not particularly differ-615

ent, for completeness, amip-piForcing values have also been indicated in Figure 12. Here616

it can be seen that the amip-piForcing values fit the historical relationship between λcre617

and both dTs/dT̄s and d(LTS)/dT̄s suggesting that any differences in λcre between his-618

torical and amip-piForcing experiments in these regions can be explained through these619

cloud controlling factors.620

Since the LTS is defined as the 700hPa potential temperature minus the surface621

potential temperature, it is possible that the strong correlations between d(LTS)/dT̄s622

and λcre exist primarily because of the strong relationship between λcre and dTs/dT̄s.623

To investigate this, scatter plots of 700hPa dTa/dT̄s against λcre are shown in Figure 12e624

and f. Here, differing relationships between the two variables exist over the two regions625

analysed. Over the NW Pacific, a strong correlation remains with a correlation coeffi-626

cient of 0.84. Over the NE Pacific however, this is not the case and a weak correlation627
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Figure 12. Scatter plots of (a and b) dTs/dT̄s, (c and d) d(LTS)/dT̄s, and (e and f) 700hPa

dTa/dT̄s against λcre over the (a, c, and e) NW Pacific region, and (b, d, and f) NE Pacific re-

gion. Black dots represent the historical ensemble and magenta markers indicate amip-piForcing

values.

of 0.36 is seen. This differing relationship may be due to the different convective regimes628

that exist over the two regions. Over the NE Pacific, the strong inversion and the de-629

coupling between the boundary layer and the free troposphere means that any surface630

warming in this region will be trapped under the strong inversion. Over the NW Pacific,631

this is not the case and surface warming can be transported efficiently into the free tro-632

posphere. Therefore, to some degree, over the NW Pacific the 700hPa temperature is still633

controlled by the temperatures at the surface.634

An alternative approach is taken in Figure 13. Here, the local effect of surface warm-635

ing and the remote effect of large scale stability changes on λcre is investigated using maps636

of the correlation across the historical ensemble between local λcre and either the local637

dTs/dT̄s or the 50°S – 50°N mean 700hPa dTa/dT̄s. These latitudinal bounds were pre-638

viously used by Ceppi and Gregory (2019) and Salvi et al. (2023) to capture large scale639

tropospheric stability.640

From Figure 13 it can be seen that generally, the local dTs/dT̄s is the most strongly641

correlated, with many regions exhibiting correlations greater than 0.7. The correlations642

between λcre and the 50°S – 50°N mean 700hPa dTa/dT̄s tend to be weaker, although643

the subtropical cloud deck regions over the East Pacific and the Indian Ocean do exhibit644

positive correlations (note these are not statistically significant at the 95% confidence645

range). A decomposition of Figure 13 into shortwave and longwave components is shown646

in Figure S3. Here the strong correlations seen in the low cloud deck regions in Figure647

13 are associated with the shortwave cloud feedbacks, and similar to Figure 11 and S2,648

the tropical ascent regions exhibit relatively strong correlations with both local dTs/dT̄s649

and 50°S – 50°N mean 700hPa dTa/dT̄s in the shortwave and longwave, however these650
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Figure 13. Maps of correlation between local λcre against (a) local dTs/dT̄s, and (b) 50°S –

50°N mean 700hPa dTa/dT̄s across the historical ensemble. Hatching indicates where correlations

are not significant at the 95% confidence interval (i.e. p values are greater than 0.05). Here the p

value approximately indicates the probability of two random distributions producing a correlation

coefficient at least as great as those indicated in the colored contours.

two components cancel, resulting in the net cloud feedback correlation being relatively651

weak in those regions in Figure 13.652

To summarise, cloud feedbacks are the largest source of uncertainty in EffCS across653

models, however within the HadGEM3-GC3.1-LL historical ensemble, λSWcs contributes654

more to the spread in λnet. Spread in λcre can be explained through the cloud control-655

ling factors of Ts and LTS where dTs/dT̄s is positively correlated with λcre and d(LTS)/dT̄s656

is negatively correlated with λcre. Finally, it is shown that the local influence of dTs/dT̄s657

on λcre is much stronger than the remote effect of changes in large scale atmospheric sta-658

bility.659

4 Conclusion660

In this paper the feedbacks across a 47 member ensemble of historical and single661

forcing simulations have been analysed. Across the historical ensemble, EffCS ranges be-662

tween 3–6K, highlighting the large spread in estimated feedbacks caused by internal vari-663

ability. The aims of this work have been to understand the main causes of this spread664

in feedbacks across the ensemble, to understand if and why different forcing agents have665

different forcing efficacies, and finally to understand why the coupled historical simula-666

tions struggle to capture the feedbacks seen in AGCM simulations forced by observed667

SSTs. To address these aims, three components of λnet were investigated (λSWcs, λLWcs,668

and λcre).669

The analysis found that the ensemble spread in λSWcs is largely caused by vary-670

ing degrees of sea ice melt per degree of global warming. Ensemble members that showed671

a large reduction in sea ice per degree of global warming also exhibited a strong λSWcs,672

with a correlation of -0.84 (consistent with Dessler (2020)). It was shown that this re-673

lationship was due to varying SST patterns, with ensemble members simulating stronger674
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polar amplification also exhibiting more sea ice melt and a stronger λSWcs (with a cor-675

relation of 0.84 between polar SSTs and λSWcs). This relationship between λSWcs, sea676

ice melt, and polar amplification is also shown to be the reason for a much weaker λSWcs677

in the amip-piForcing experiment. Here, weaker polar amplification resulted in less sea678

ice melt per degree of global warming and a smaller λSWcs. Finally, the different λSWcs679

between the different single forcing experiments was investigated, since λSWcs was found680

to be the biggest source of differing forcing efficacies across the different forcing agents.681

It was shown that different patterns of surface warming were the main cause of differ-682

ent feedbacks across each experiment, with spatial correlations of 0.64 – 0.88 between683

patterns of Ts change per degree of global warming and λSWcs across all experiments684

and each hemisphere.685

Previously, Salvi et al. (2022) also investigated different forcing efficacies between686

different forcing agents, also finding the hist-aer experiment to exhibit more strongly am-687

plifying feedbacks compared to hist-ghg. There they focused on influence of stability changes688

on changes in cloud feedbacks, however here, we find that for HadGEM3-GC3.1-LL, changes689

in sea ice and polar Ts play a larger role in causing different forcing efficacies.690

The ensemble spread in λLWcs was also investigated. Here it was shown that both691

tropical tropospheric temperature changes per degree of global warming and tropical Ts692

changes per degree of global warming were a key factor in causing the spread in λLWcs.693

Here, increased tropical surface warming caused warming in the tropical troposphere which694

has previously been shown to cause a stronger lapse rate feedback (T. Andrews & Webb,695

2018). This relationship between λLWcs and tropical Ts also captures why the λLWcs696

is much stronger in the amip-piForcing experiment compared to the historical simula-697

tions, with the amip-piForcing experiment exhibiting a stronger tropical surface warm-698

ing per degree of global warming compared to most historical ensemble members. Given699

that the amip-piForcing experiment is prescribed with observed SSTs, this shows how700

AOGCM biases in tropical SST patterns can impact on the estimated λLWcs.701

The final feedback to be investigated was λcre. In contrast to the primary role of702

λcre in causing uncertainty in long term estimates of climate sensitivity, in the HadGEM3-703

GC3.1-LL historical ensemble, other feedbacks have a larger spread. Investigating λcre,704

it was shown that both Ts and LTS are key factors affecting changes in cloud feedbacks.705

It is also shown that although amip-piForcing and historical cloud feedbacks are not too706

dissimilar, both the LTS and Ts are useful metrics for understanding how amip-piForcing707

cloud feedbacks relate to those seen in the historical simulations. The analysis concludes708

by investigating the relative importance of local effect of varying Ts or the remote effect709

of large scale changes in atmospheric stability. Here it is shown that the local Ts is the710

most important, whilst the large scale stability plays a non-negligible role over the sub-711

tropical cloud deck regions.712

This work provides useful insight into the different feedbacks seen across different713

forcing experiments and also provides information as to why coupled historical simula-714

tions struggle to capture the feedbacks seen in the amip-piForcing experiment. To take715

this work further, this large ensemble could be used to better understand the temporal716

evolution of feedbacks. In recent years, the amip-piForcing experiment demonstrates a717

marked decrease in λnet (T. Andrews et al., 2022), and this ensemble could be used to718

investigate whether a similar behaviour is captured in any of the ensemble members. This719

work could then be used shed light on the causes and mechanisms involved in transient720

feedbacks.721
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5 Open Research722

Data used in this analysis consists of HadGEM3-GC3.1-LL model simulations per-723

formed as part of the Met Office’s contribution to CMIP6 (Eyring et al., 2016) and LESFMIP724

(D. Smith et al., 2022) and can be accessed from the ESGF CEDA data node https://esgf-725

index1.ceda.ac.uk/search/cmip6-ceda/.726
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• Figures S1 to S39

Introduction10

The figures presented in this document show the decomposition of the cloud feedback11

analysis in Figures 3, 4, and 13 into longwave and shortwave components.12

Figure S1. Boxplots of feedbacks in the historical and single forcing ensembles (1850–2014),

amip-piForcing experiment (1870–2014), and abrupt-4xCO2 experiment (first 150 years). For

each boxplot, the vertical black lines indicate each ensemble member, the whiskers indicate the

maximum and minimum feedbacks seen in the ensemble, the boxes indicate the interquartile

range, and the vertical orange line represents the median value.
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Figure S2. Maps of ensemble mean λcre, λLWcre, and λSWcre in amip-piForcing, historical,

hist-ghg, hist-aer, and hist-nat experiments. Here, λ has been calculated by regressing the en-

semble mean local annual mean (N − F ) against the ensemble mean global annual mean Ts

timeseries between 1850 – 2014 for historical and single forcing experiments, and 1870 – 2014 for

amip-piForcing.

Figure S3. Maps of correlation between local λLWcre and λSWcre against local Ts changes per

degree of global warming, and 50°S – 50°N mean 700hPa temperature change per degree of global

warming across the historical ensemble.Hatching indicates where correlations are not significant

at the 95% confidence interval (i.e. p values are greater than 0.05). Here the p value approxi-

mately indicates the probability of two random distributions producing a correlation coefficient at

least as great as those indicated in the colored contours.
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