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Abstract

Can the current successes of global machine learning-based weather simulators be generalized beyond two-week forecasts to

stable and accurate multiyear runs? The recently developed AI2 Climate Emulator (ACE) suggests this is feasible, based upon

10-year simulations trained on a realistic global atmosphere model using a grid spacing of approximately 110˜km and forced by

a repeating annual cycle of sea-surface temperature. Here we show that ACE, without modification, can be trained to emulate

another major atmospheric model, EAMv2, run at a comparable grid spacing for at least ten years with similarly small climate

biases. ACE accurately reproduces EAMv2’s frequency distribution of daily-mean precipitation, its time-mean spatial pattern

of precipitation, and its space-time structure of tropical precipitation, including the Madden-Julian Oscillation. Moreover,

ACE’s climate biases with respect to EAMv2 are substantially smaller than EAMv2’s own biases compared to the observed

historical average surface precipitation rate and top-of-atmosphere radiative fluxes.
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Key Points:12

• The ACE weather-climate emulator yields an accurate climate when trained on13

EAMv2, E3SMv2’s global atmosphere model.14

• Time-mean biases vs. EAMv2 in diverse atmospheric fields are similar to those15

seen before for ACE applied to the FV3GFS atmospheric model.16

• ACE captures the space-time organization of EAMv2 precipitation well, with a17

much smaller time-mean bias than EAMv2’s observational bias.18
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Abstract19

Can the current successes of global machine learning-based weather simulators be gen-20

eralized beyond two-week forecasts to stable and accurate multiyear runs? The recently21

developed AI2 Climate Emulator (ACE) suggests this is feasible, based upon 10-year sim-22

ulations trained on a realistic global atmosphere model using a grid spacing of approx-23

imately 110 km and forced by a repeating annual cycle of sea-surface temperature. Here24

we show that ACE, without modification, can be trained to emulate another major at-25

mospheric model, EAMv2, run at a comparable grid spacing for at least ten years with26

similarly small climate biases. ACE accurately reproduces EAMv2’s frequency distribu-27

tion of daily-mean precipitation, its time-mean spatial pattern of precipitation, and its28

space-time structure of tropical precipitation, including the Madden-Julian Oscillation.29

Moreover, ACE’s climate biases with respect to EAMv2 are substantially smaller than30

EAMv2’s own biases compared to the observed historical average surface precipitation31

rate and top-of-atmosphere radiative fluxes.32

Plain Language Summary33

Traditional methods to predict the weather use mathematical models of the Earth’s at-34

mosphere that are costly to run. However, “data-driven” weather prediction methods,35

which learn to predict future weather directly from data on past weather, have come to36

match or even beat traditional methods and do so with much less running cost. In con-37

trast to weather prediction where the goal is to predict the weather in the near future,38

in climate modeling the goal is to study the Earth’s long-term weather trends under dif-39

ferent possible future scenarios for many years into the future. Until the introduction40

of the AI2 Climate Emulator (ACE), a recent data-driven method for climate modeling,41

no data-driven method could match traditional climate models. In this work we test ACE’s42

climate modeling skills and find that it is able to faithfully mimic a traditional model43

of the climate when looking at patterns of rainfall around the globe and in the tropics.44

With ACE, we can study the potential future of Earth’s climate under many more sce-45

narios and with much lower cost than ever before.46

1 Introduction47

In recent years, the field of numerical weather prediction has undergone a significant trans-48

formation, with researchers and institutions worldwide embracing machine learning (ML)49

based techniques to make weather forecasts (Pathak et al., 2022; Lam et al., 2023; Bi50

et al., 2023; Ben-Bouallegue et al., 2023). Notably, the European Centre for Medium-51

Range Weather Forecasts (ECMWF) unveiled an Artificial Intelligence based Forecast-52

ing System (AIFS) as a new companion to their physics-based numerical weather pre-53

diction model (IFS). The shift from solely physics-based numerical weather prediction54

to integrating ML-based systems has sparked considerable excitement within the scien-55

tific community. While most studies have focused on short to medium-range weather fore-56

casts (up to 14 days), the AI2 Climate Emulator (ACE) has demonstrated the ability57

to emulate an existing global atmosphere model, FV3GFS, at climate timescales (Watt-58

Meyer et al., 2023) by accurately simulating weather variability and deriving climate from59

the statistics of the simulated weather, as do conventional global climate models. For60

this reason we call ACE a weather-climate emulator, to distinguish it from much sim-61

pler surrogate models that bypass weather simulation. Such models can instead be based62

on global or large-scale budget equations, e.g. the Model for the Assessment of Greenhouse-63

Gas Induced Climate Change (MAGICC) (Meinshausen et al., 2011) used in IPCC as-64

sessment reports (e.g. Sec. 8.8.2 of IPCC (2013)), in which a few parameters are tuned65

to give the same climate sensitivity, ocean heat uptake, and other salient global prop-66

erties as a target global climate model. Alternatively, ML-based surrogate models such67

as ClimaX (Nguyen et al., 2023) directly predict monthly climate evolution.68
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ACE approximately conserves mass and moisture, and accurately predicts the climatol-69

ogy of key variables throughout the depth of the atmosphere. ACE can make a decade-70

long simulation in one hour of wall clock time of one A100 GPU, making it 100 times71

faster and more energy-efficient than FV3GFS run at a similar grid spacing.72

Inspired by the achievements of ACE, in this paper we investigate its generalizability to73

emulating a different global atmosphere model, the E3SM Atmosphere Model version 274

(EAMv2). EAMv2 is the atmospheric component of the U.S. Department of Energy’s75

Energy Exascale Earth System Model version 2 (E3SMv2) (Golaz et al., 2022). As con-76

figured for this study, EAMv2 fluid dynamics uses a grid spacing of approximately 11077

km, like the FV3GFS implementation used for ACE. While FV3GFS is based on a finite-78

volume dynamical core with 64 vertical layers, EAMv2 uses a spectral-element approach79

with 72 layers while other processes use a finite-volume grid that divides each element80

into 2×2 cells of equal size, giving a horizontal resolution of 165 km (Hannah et al., 2021).81

The physical parameterizations of EAMv2 are also substantially different than those of82

FV3GFS.83

We also analyze the emulation of precipitation in more detail than Watt-Meyer et al. (2023),84

including its time-mean geographic distribution, its frequency distribution of daily vari-85

ability, and its organization in the tropics. A final goal of this work is to bring aware-86

ness of ACE and ML-based climate emulation into the traditional climate modeling lit-87

erature.88

2 Data and Methods89

2.1 EAMv2 Dataset90

Our training data is derived from 6-hourly outputs of a 73-year simulation of EAMv2,91

a model described in detail in Section 2.1 of Golaz et al. (2022). The simulation is con-92

figured to run with the “F2010” component set1, forcing the model with perpetual 201093

greenhouse gas concentrations and emissions of aerosols and precursors, along with an94

annually repeating cycle of sea surface temperature and sea ice derived from the observed95

2005-2014 average. The initial 11 years are discarded as spinup because the EAMv2 strato-96

sphere is equilibrating; the following 42 years are used for training; the subsequent 1097

years are used for validation; and the final 10 years are reserved for evaluating EAMv2’s98

internal decadal variability. This simulation is performed on the E3SM Chrysalis clus-99

ter, achieving 24 simulated years per day using 30 nodes. See Text S2 for a comparison100

of the computational efficiencies of EAMv2 and ACE.101

We make several other design choices following ACE (Watt-Meyer et al., 2023). First,102

we perform a conservative regridding from the native EAMv2 output to a 1◦ Gaussian103

grid to ensure compatibility with the underlying Spherical Fourier Neural Operator (SFNO)104

architecture (Bonev et al., 2023). Second, we filter the data with a spherical harmonic105

transform (SHT) round-trip to help eliminate artifacts in the high latitudes. Third, to106

reduce the emulator’s memory footprint, we coarsen the vertical model-level coordinate107

from the native 72 down to 8 layers. For more details see Table S2.108

2.2 ACE Training Overview109

As described by Watt-Meyer et al. (2023), ACE is a modified version of NVIDIA’s open-
source FourCastNet global atmospheric emulator (Pathak et al., 2022) that employs the
SFNO architecture for efficient spatial information exchange (Bonev et al., 2023). Much
as traditional physics-based numerical models of atmospheric dynamics recursively step
forward the atmospheric state Xt at time t, ACE is trained to autoregressively gener-

1 https://acme-climate.atlassian.net/wiki/spaces/DOC/pages/961250902/F2010C5-CMIP6-LR
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ate predictions of the atmospheric state at time t + δt: X̂t+δt. We use δt = 6 hours
and minimize the average “one-step” loss over a random batch B of initial condition times
t:

1

|B|
∑
t∈B

∥X̂t+δt −Xt+δt∥2
∥Xt+δt∥2

Whereas FourCastNet uses identical input and output variables and trains a separate110

model to predict diagnostic variables (Pathak et al., 2022), ACE uses a set of prognos-111

tic variables which are both inputs and outputs, a set of specified forcing input variables112

such as insolation and sea surface skin temperature which are exogenous to the dynam-113

ical system, and a set of diagnostic variables which are incorporated in the training loss114

but are output-only. This and a variety of other improvements enable ACE, unlike past115

weather emulators, to produce stable, skillful, more interpretable multiyear emulations116

of the target model. For more details see Table S3, Watt-Meyer et al. (2023), and Bonev117

et al. (2023).118

3 Results119

Watt-Meyer et al. (2023) provide a holistic evaluation of ACE’s physical consistency when120

trained on 100 years of FV3GFS simulation outputs in terms of physical budgets and121

time- and global-mean biases and pattern errors.122

Section 3.1 shows a similar analysis of ACE’s global- and time-mean absolute bias and123

root mean square error (RMSE) metrics on EAMv2. This analysis shows that ACE pro-124

duces a similarly high-quality emulation of the climatology of EAMv2 as for FV3GFS,125

demonstrating that ACE’s training methodology generalizes across reference models of126

comparable grid resolution with different dynamical cores and physical parameterizations.127

In the remainder of Section 3, we present some key metrics of how well ACE emulates128

EAMv2’s precipitation variability over the 10 year validation period, a topic not doc-129

umented in detail by Watt-Meyer et al. (2023).130

3.1 Global- and time-mean biases and RMSE131

In Figure 1, we compare ACE’s climatological skill to that of an unseen EAMv2 refer-132

ence dataset, years 64–73 of the EAMv2 simulation run. Both ACE and the reference133

are evaluated against the validation target years 54–63. The reference values give a ‘noise134

floor’ estimate, computed as the difference of time means from a single pair of ten-year135

segments of the reference simulation. Different pairs of ten-year periods would give dif-136

ferent estimates for each output, with a scatter of positive-definite RMSEs and zero-centered137

biases. For every output variable, we compute global-mean bias and spatial RMSE as138

in Watt-Meyer et al. (2023) equations (6) and (7), respectively. Figure 1 also includes139

the previously reported values for ACE trained and evaluated on FV3GFS simulation140

outputs.141

ACE’s time-mean RMSEs are comparable to the estimated noise floors for the reference142

set, falling within a factor of two for many important lower-tropospheric fields and within143

the same order of magnitude in all but a handful of cases. Global- and time-mean bi-144

ases are also quite small in real terms and fall within one to two orders of magnitude of145

the single-pair estimates of the EAMv2 reference dataset biases, with some noted excep-146

tions such as surface pressure (top row in Figure 1). Global-mean surface pressure is the147

sum of dry air mass (which should be conserved) and a much lesser water mass (which148

is exchanged with the underlying ocean and land surface). In EAMv2, the 10-year mean149

of this quantity is tightly constrained, varying little between different decadal samples150

(i.e. small absolute bias in Figure 1). The current version of ACE does not enforce ex-151

act global conservation equations for dry air and water and this causes larger temporal152

drifts in global mean surface pressure when emulating both EAMv2 and FV3GFS. Nev-153

–4–
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Figure 1. Global- and time-mean absolute bias (left panel) and RMSE (right panel) met-

rics for all output variables, averaged over the 10 year validation period. From top to bottom,

prognostic variables are listed first with diagnostic variables starting with RSW . Metrics com-

puted on ACE EAMv2 outputs (“ACE-EAMv2”) are compared against: equivalent metrics for

the “ACE-FV3GFS” model of (Watt-Meyer et al., 2023) with respect to the 10-year FV3GFS

validation set; the best-case scenario EAMv2 metrics (“Reference”), as in Figure 3. Metrics are

plotted with log scaling and units are given on the right margin for clarity.

ertheless, ACE produces a realistic time-mean map of surface pressure (not shown). With154

a 10 year global-time-mean of −11 Pa the magnitude of ACE’s surface pressure bias is155

only around 0.01% of the typical surface pressure on Earth.156

Overall, we find that with 42 years of training data, ACE is able to learn a representa-157

tion of EAMv2 in terms of these metrics that is of similarly high quality to the results158

obtained for FV3GFS using 100 years of training data. In what follows, we analyze the159

frequency distribution of daily precipitation and time-mean spatial bias patterns of pre-160

cipitation together with highly correlated top-of-atmosphere radiative fluxes. Then we161

examine the spectrum and temporal evolution of tropical precipitation variability be-162

tween 15◦S and 15◦N.163
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Figure 2. Frequency distribution of daily mean precipitation across all grid points over 10

years.

3.2 Precipitation density and spatial bias patterns164

Establishing the precipitation extremes possible under various forcing scenarios is an im-165

portant task for any climate model. Changes in the spatial distribution of time-mean166

precipitation under a range of possible future climate scenarios also inform many aspects167

of water-resource planning. Below, we examine ACE’s ability to match EAMv2 in terms168

of (1) the frequency distribution of precipitation and (2) patterns of spatial bias in time-169

mean precipitation and strongly associated top-of-atmosphere fluxes.170

Figure 2 shows the frequency distribution of daily precipitation in EAMv2 (black, dashed171

line) and ACE, including all grid points, over the 10 year validation period. Note that172

both the target and generated precipitation fields have a small number of negative val-173

ues due to the spherical harmonic transform round-trip applied to the data, an impor-174

tant data preprocessing step that removes polar artifacts as explained in Watt-Meyer175

et al. (2023). Overall, we see that ACE captures EAMv2’s precipitation distribution well,176

including at the extreme upper quantiles. ACE’s ability to capture precipitation extremes177

is an encouraging sign of the usefulness of deep learning GCM emulation for downstream178

climate science tasks.179

Figure 3 shows 10 year time-mean spatial bias patterns of precipitation and two highly180

correlated fields: top-of-atmosphere upward short- and longwave radiative fluxes. The181

left column labeled “EAMv2 vs. observation” displays the bias patterns observed when182

comparing the EAMv2 simulation temporal mean over the validation years 54–63 to his-183

torical observations. The observed precipitation comes from the Global Precipitation Cli-184

matology Project (GPCP) (Huffman et al., 2023) version 3.2 and corresponds to the pe-185

riod 1983–2021. The observed fluxes are from Clouds and the Earth’s Radiant Energy186

System (CERES) Energy Balanced and Filled (EBAF) (Loeb et al., 2018) version 4.1,187

over the period 2001–2018. In the right column, the corresponding validation target em-188

ulation outputs from ACE, initialized from the first timepoint of year 54, are compared189

against EAMv2. This way we can get a sense of the magnitude of ACE’s emulation bi-190

ases relative to EAMv2’s observational biases.191

The time-mean precipitation biases of ACE vs. EAMv2 range from −2.5 to 3.7 mm/day192

depending on location. The global spatial RMSE of time-mean precipitation is a remark-193

–6–
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Figure 3. Temporal average of biases for surface precipitation rate (top row), outgoing top-

of-atmosphere shortwave (RSW, middle row) and longwave (OLR, bottom row) radiative fluxes.

The right column shows the mean spatial distribution of ACE biases vs. EAMv2, comparing the

generated 6-hourly outputs to the corresponding simulation targets for the same timestep. The

left column compares EAMv2 to the observed temporal mean (from GPCP for precipitation and

CERES-EBAF for radiation; see main text.)

ably small 0.37 mm/day, which is comparable to the value of 0.46 reported in Watt-Meyer194

et al. (2023). EAMv2 observational biases lie between −6.5 and 12.6 mm/day (Figure195

3) with a RMSE of 0.96 mm/day. Thus ACE emulates EAMv2 precipitation patterns196

much better than EAMv2 can simulate them.197

OLR biases follow an expected inverse relationship with precipitation biases, a good sign198

of ACE’s ability to emulate the radiative effects of precipitating cloud systems with cold199

cloud tops. Their spatial pattern RMSE is only 2.8 W/m2, with a global-mean bias of200

−0.59 W/m2. ACE’s shortwave biases are larger, with a spatial pattern RMSE of 4.2201

W/m2 and a global-mean bias of −0.95 W/m2. They are not just associated with deep202

precipitating cloud systems, but also ‘dim’ subtropical trade cumulus regimes, ‘bright’203

Southern Ocean clouds, and excessive reflected shortwave radiation over Antarctica. As204

with precipitation, these emulation biases are small in comparison to EAMv2’s obser-205

vational biases. See Table S1 for additional summary metrics.206

3.3 Tracking tropical precipitation and the MJO207

Most tropical precipitation falls from organized deep convective systems, including trop-208

ical cyclones, the Madden Julian Oscillation (MJO), and diverse convectively-coupled209

waves. Thus it is important that global atmospheric models accurately represent the space-210

–7–
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Figure 4. Normalized symmetric component of the wavenumber-frequency spectrum of daily-

mean precipitation over a 10 year period for (left) withheld EAMv2 simulation output and

(right) corresponding outputs from ACE. As with Figure 17 of Golaz et al. (2022), we label

prominent wave types in the left panel and plot shallow water dispersion curves for equivalent

depths 12, 25, and 50 m as solid black lines. ER = equatorial Rossby; EIG = eastward inertia-

gravity; WIG = westward inertia-gravity.

time organization of tropical precipitation, and that an emulator of such a model repli-211

cates the organization of its tropical precipitation.212

The wavenumber-frequency spectrum (Wheeler & Kiladis, 1999) of daily-mean precip-213

itation meridionally averaged over 15◦S-15◦N is a widely used diagnostic of the large-214

scale organization of tropical precipitation. In Figure 4, we plot the normalized symmet-215

ric component of this wavenumber-frequency spectrum over the 10 year validation pe-216

riod for the target EAMv2 simulation data and the corresponding outputs from ACE.217

EAMv2’s spectrum is the appropriate ground truth against which to evaluate ACE, and218

the emulator broadly captures EAMv2’s precipitation variability.219

Some minor discrepancies include slightly reduced power in the MJO and the equato-220

rial Rossby wave, the latter also peaking at a lower wavenumber in ACE compared to221

EAMv2. Figure S2 provides a closer look at these features. As noted by Golaz et al. (2022),222

compared to satellite retrievals of the historical period, EAMv2’s spectrum has weaker223

normalized spectral power in the wavenumber-frequency bands corresponding to the MJO224

and the equatorial Rossby wave and severely underestimates precipitation variability as-225

sociated with Kelvin and westward inertia-gravity waves. By construction, a perfect em-226

ulator should inherit these biases.227

The Madden-Julian Oscillation (MJO) is a convectively-coupled Earth-spanning atmo-228

spheric oscillation that is characterized by a large eastward-propagating band of anoma-229

lous precipitation in the tropics (Madden & Julian, 1971; Zhang, 2005). It is the most230

regular and predictable sub-seasonal oscillation of the Earth’s atmosphere and affects231

many aspects of tropical and extratropical weather (Waliser et al., 2009; Zhang et al.,232

2020). Thus, a good emulator of an atmospheric model should replicate the statistical233

characteristics of its MJO.234

–8–
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Figure 5. Hovmöller diagrams of daily mean tropical-mean precipitation over two typical

years, bandpassed to retain 20-100 day periods. Both EAMv2 and ACE show patterns of east-

ward propagating tropical precipitation anomalies that last around 30 to 90 days.

Figure 4 suggests that ACE captures key statistical characteristics of EAMv2’s simulated235

MJO. This skill is more directly verified by isolating the MJO frequency band with a 20-236

100 day bandpass filter to daily- and meridional-mean (15◦S-15◦N) tropical precipita-237

tion anomalies. Figure 5 shows longitude-time Hovmöller diagrams of a typical two year238

segment from ACE and EAMv2 simulations of the 10-year validation period. The band-239

pass filter drives the roughly 50-day period of the features. It is nevertheless impressive240

that ACE (right panel) accurately captures the amplitude and eastward propagation of241

the MJO spatiotemporal evolution simulated by EAMv2 (left panel).242

4 Conclusions243

With approximately the same training and testing protocol, ACE emulates EAMv2 with244

excellent skill similar to the FV3GFS model on which ACE was originally trained, as mea-245

sured using 10-year time-mean climatological biases of geographically varying fields such246

as precipitation, near-surface and upper-tropospheric temperature and precipitable wa-247

ter. This suggests that ACE could easily be trained to also emulate other global atmo-248

sphere models.249

–9–
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ACE emulates diverse characteristics of EAMv2-simulated precipitation encouragingly250

well. The emulator nearly matches the EAMv2 frequency distribution of daily precip-251

itation out to its extreme-precipitation tail. A Wheeler-Kiladis spectral analysis of trop-252

ical convectively coupled waves also shows good consistency between ACE and EAMv2,253

including in the simulated Madden-Julian Oscillation. That is, ACE captures the space-254

time organization of precipitation simulated by EAMv2.255

These results were obtained for the important special case of annually-repeating clima-256

tological sea-surface temperatures. It remains to be seen how ACE will fare when faced257

with more realistic time-varying forcing or observational data. Over the longer term, we258

envision integrating future versions of ACE with other conventional or machine-learned259

Earth system components, such as a dynamical ocean, as part of the E3SM ecosystem260

and other climate and earth system models. This would enable coupled climate simu-261

lations or simulation ensembles with greatly reduced computational cost. We also en-262

vision using ACE to emulate finer-grid global atmosphere models, such as DOE’s SCREAM263

(Caldwell et al., 2021), using ML to affordably translate the enhanced fidelity of such264

models into more reliable centennial climate simulations.265

Open Research266

Data Availability Statement267

ACE model weights (2.5 GB) and the EAMv2 10-year validation set (165 GB) are avail-268

able to download over HTTP from the E3SM project’s NERSC science gateway at https://269
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able in the following repository: https://github.com/ai2cm/ace (Watt-Meyer et al.,272
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Key Points:12

• The ACE weather-climate emulator yields an accurate climate when trained on13

EAMv2, E3SMv2’s global atmosphere model.14

• Time-mean biases vs. EAMv2 in diverse atmospheric fields are similar to those15

seen before for ACE applied to the FV3GFS atmospheric model.16

• ACE captures the space-time organization of EAMv2 precipitation well, with a17

much smaller time-mean bias than EAMv2’s observational bias.18
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Abstract19

Can the current successes of global machine learning-based weather simulators be gen-20

eralized beyond two-week forecasts to stable and accurate multiyear runs? The recently21

developed AI2 Climate Emulator (ACE) suggests this is feasible, based upon 10-year sim-22

ulations trained on a realistic global atmosphere model using a grid spacing of approx-23

imately 110 km and forced by a repeating annual cycle of sea-surface temperature. Here24

we show that ACE, without modification, can be trained to emulate another major at-25

mospheric model, EAMv2, run at a comparable grid spacing for at least ten years with26

similarly small climate biases. ACE accurately reproduces EAMv2’s frequency distribu-27

tion of daily-mean precipitation, its time-mean spatial pattern of precipitation, and its28

space-time structure of tropical precipitation, including the Madden-Julian Oscillation.29

Moreover, ACE’s climate biases with respect to EAMv2 are substantially smaller than30

EAMv2’s own biases compared to the observed historical average surface precipitation31

rate and top-of-atmosphere radiative fluxes.32

Plain Language Summary33

Traditional methods to predict the weather use mathematical models of the Earth’s at-34

mosphere that are costly to run. However, “data-driven” weather prediction methods,35

which learn to predict future weather directly from data on past weather, have come to36

match or even beat traditional methods and do so with much less running cost. In con-37

trast to weather prediction where the goal is to predict the weather in the near future,38

in climate modeling the goal is to study the Earth’s long-term weather trends under dif-39

ferent possible future scenarios for many years into the future. Until the introduction40

of the AI2 Climate Emulator (ACE), a recent data-driven method for climate modeling,41

no data-driven method could match traditional climate models. In this work we test ACE’s42

climate modeling skills and find that it is able to faithfully mimic a traditional model43

of the climate when looking at patterns of rainfall around the globe and in the tropics.44

With ACE, we can study the potential future of Earth’s climate under many more sce-45

narios and with much lower cost than ever before.46

1 Introduction47

In recent years, the field of numerical weather prediction has undergone a significant trans-48

formation, with researchers and institutions worldwide embracing machine learning (ML)49

based techniques to make weather forecasts (Pathak et al., 2022; Lam et al., 2023; Bi50

et al., 2023; Ben-Bouallegue et al., 2023). Notably, the European Centre for Medium-51

Range Weather Forecasts (ECMWF) unveiled an Artificial Intelligence based Forecast-52

ing System (AIFS) as a new companion to their physics-based numerical weather pre-53

diction model (IFS). The shift from solely physics-based numerical weather prediction54

to integrating ML-based systems has sparked considerable excitement within the scien-55

tific community. While most studies have focused on short to medium-range weather fore-56

casts (up to 14 days), the AI2 Climate Emulator (ACE) has demonstrated the ability57

to emulate an existing global atmosphere model, FV3GFS, at climate timescales (Watt-58

Meyer et al., 2023) by accurately simulating weather variability and deriving climate from59

the statistics of the simulated weather, as do conventional global climate models. For60

this reason we call ACE a weather-climate emulator, to distinguish it from much sim-61

pler surrogate models that bypass weather simulation. Such models can instead be based62

on global or large-scale budget equations, e.g. the Model for the Assessment of Greenhouse-63

Gas Induced Climate Change (MAGICC) (Meinshausen et al., 2011) used in IPCC as-64

sessment reports (e.g. Sec. 8.8.2 of IPCC (2013)), in which a few parameters are tuned65

to give the same climate sensitivity, ocean heat uptake, and other salient global prop-66

erties as a target global climate model. Alternatively, ML-based surrogate models such67

as ClimaX (Nguyen et al., 2023) directly predict monthly climate evolution.68

–2–



manuscript submitted to JGR: Machine Learning and Computation

ACE approximately conserves mass and moisture, and accurately predicts the climatol-69

ogy of key variables throughout the depth of the atmosphere. ACE can make a decade-70

long simulation in one hour of wall clock time of one A100 GPU, making it 100 times71

faster and more energy-efficient than FV3GFS run at a similar grid spacing.72

Inspired by the achievements of ACE, in this paper we investigate its generalizability to73

emulating a different global atmosphere model, the E3SM Atmosphere Model version 274

(EAMv2). EAMv2 is the atmospheric component of the U.S. Department of Energy’s75

Energy Exascale Earth System Model version 2 (E3SMv2) (Golaz et al., 2022). As con-76

figured for this study, EAMv2 fluid dynamics uses a grid spacing of approximately 11077

km, like the FV3GFS implementation used for ACE. While FV3GFS is based on a finite-78

volume dynamical core with 64 vertical layers, EAMv2 uses a spectral-element approach79

with 72 layers while other processes use a finite-volume grid that divides each element80

into 2×2 cells of equal size, giving a horizontal resolution of 165 km (Hannah et al., 2021).81

The physical parameterizations of EAMv2 are also substantially different than those of82

FV3GFS.83

We also analyze the emulation of precipitation in more detail than Watt-Meyer et al. (2023),84

including its time-mean geographic distribution, its frequency distribution of daily vari-85

ability, and its organization in the tropics. A final goal of this work is to bring aware-86

ness of ACE and ML-based climate emulation into the traditional climate modeling lit-87

erature.88

2 Data and Methods89

2.1 EAMv2 Dataset90

Our training data is derived from 6-hourly outputs of a 73-year simulation of EAMv2,91

a model described in detail in Section 2.1 of Golaz et al. (2022). The simulation is con-92

figured to run with the “F2010” component set1, forcing the model with perpetual 201093

greenhouse gas concentrations and emissions of aerosols and precursors, along with an94

annually repeating cycle of sea surface temperature and sea ice derived from the observed95

2005-2014 average. The initial 11 years are discarded as spinup because the EAMv2 strato-96

sphere is equilibrating; the following 42 years are used for training; the subsequent 1097

years are used for validation; and the final 10 years are reserved for evaluating EAMv2’s98

internal decadal variability. This simulation is performed on the E3SM Chrysalis clus-99

ter, achieving 24 simulated years per day using 30 nodes. See Text S2 for a comparison100

of the computational efficiencies of EAMv2 and ACE.101

We make several other design choices following ACE (Watt-Meyer et al., 2023). First,102

we perform a conservative regridding from the native EAMv2 output to a 1◦ Gaussian103

grid to ensure compatibility with the underlying Spherical Fourier Neural Operator (SFNO)104

architecture (Bonev et al., 2023). Second, we filter the data with a spherical harmonic105

transform (SHT) round-trip to help eliminate artifacts in the high latitudes. Third, to106

reduce the emulator’s memory footprint, we coarsen the vertical model-level coordinate107

from the native 72 down to 8 layers. For more details see Table S2.108

2.2 ACE Training Overview109

As described by Watt-Meyer et al. (2023), ACE is a modified version of NVIDIA’s open-
source FourCastNet global atmospheric emulator (Pathak et al., 2022) that employs the
SFNO architecture for efficient spatial information exchange (Bonev et al., 2023). Much
as traditional physics-based numerical models of atmospheric dynamics recursively step
forward the atmospheric state Xt at time t, ACE is trained to autoregressively gener-

1 https://acme-climate.atlassian.net/wiki/spaces/DOC/pages/961250902/F2010C5-CMIP6-LR

–3–



manuscript submitted to JGR: Machine Learning and Computation

ate predictions of the atmospheric state at time t + δt: X̂t+δt. We use δt = 6 hours
and minimize the average “one-step” loss over a random batch B of initial condition times
t:

1

|B|
∑
t∈B

∥X̂t+δt −Xt+δt∥2
∥Xt+δt∥2

Whereas FourCastNet uses identical input and output variables and trains a separate110

model to predict diagnostic variables (Pathak et al., 2022), ACE uses a set of prognos-111

tic variables which are both inputs and outputs, a set of specified forcing input variables112

such as insolation and sea surface skin temperature which are exogenous to the dynam-113

ical system, and a set of diagnostic variables which are incorporated in the training loss114

but are output-only. This and a variety of other improvements enable ACE, unlike past115

weather emulators, to produce stable, skillful, more interpretable multiyear emulations116

of the target model. For more details see Table S3, Watt-Meyer et al. (2023), and Bonev117

et al. (2023).118

3 Results119

Watt-Meyer et al. (2023) provide a holistic evaluation of ACE’s physical consistency when120

trained on 100 years of FV3GFS simulation outputs in terms of physical budgets and121

time- and global-mean biases and pattern errors.122

Section 3.1 shows a similar analysis of ACE’s global- and time-mean absolute bias and123

root mean square error (RMSE) metrics on EAMv2. This analysis shows that ACE pro-124

duces a similarly high-quality emulation of the climatology of EAMv2 as for FV3GFS,125

demonstrating that ACE’s training methodology generalizes across reference models of126

comparable grid resolution with different dynamical cores and physical parameterizations.127

In the remainder of Section 3, we present some key metrics of how well ACE emulates128

EAMv2’s precipitation variability over the 10 year validation period, a topic not doc-129

umented in detail by Watt-Meyer et al. (2023).130

3.1 Global- and time-mean biases and RMSE131

In Figure 1, we compare ACE’s climatological skill to that of an unseen EAMv2 refer-132

ence dataset, years 64–73 of the EAMv2 simulation run. Both ACE and the reference133

are evaluated against the validation target years 54–63. The reference values give a ‘noise134

floor’ estimate, computed as the difference of time means from a single pair of ten-year135

segments of the reference simulation. Different pairs of ten-year periods would give dif-136

ferent estimates for each output, with a scatter of positive-definite RMSEs and zero-centered137

biases. For every output variable, we compute global-mean bias and spatial RMSE as138

in Watt-Meyer et al. (2023) equations (6) and (7), respectively. Figure 1 also includes139

the previously reported values for ACE trained and evaluated on FV3GFS simulation140

outputs.141

ACE’s time-mean RMSEs are comparable to the estimated noise floors for the reference142

set, falling within a factor of two for many important lower-tropospheric fields and within143

the same order of magnitude in all but a handful of cases. Global- and time-mean bi-144

ases are also quite small in real terms and fall within one to two orders of magnitude of145

the single-pair estimates of the EAMv2 reference dataset biases, with some noted excep-146

tions such as surface pressure (top row in Figure 1). Global-mean surface pressure is the147

sum of dry air mass (which should be conserved) and a much lesser water mass (which148

is exchanged with the underlying ocean and land surface). In EAMv2, the 10-year mean149

of this quantity is tightly constrained, varying little between different decadal samples150

(i.e. small absolute bias in Figure 1). The current version of ACE does not enforce ex-151

act global conservation equations for dry air and water and this causes larger temporal152

drifts in global mean surface pressure when emulating both EAMv2 and FV3GFS. Nev-153
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Figure 1. Global- and time-mean absolute bias (left panel) and RMSE (right panel) met-

rics for all output variables, averaged over the 10 year validation period. From top to bottom,

prognostic variables are listed first with diagnostic variables starting with RSW . Metrics com-

puted on ACE EAMv2 outputs (“ACE-EAMv2”) are compared against: equivalent metrics for

the “ACE-FV3GFS” model of (Watt-Meyer et al., 2023) with respect to the 10-year FV3GFS

validation set; the best-case scenario EAMv2 metrics (“Reference”), as in Figure 3. Metrics are

plotted with log scaling and units are given on the right margin for clarity.

ertheless, ACE produces a realistic time-mean map of surface pressure (not shown). With154

a 10 year global-time-mean of −11 Pa the magnitude of ACE’s surface pressure bias is155

only around 0.01% of the typical surface pressure on Earth.156

Overall, we find that with 42 years of training data, ACE is able to learn a representa-157

tion of EAMv2 in terms of these metrics that is of similarly high quality to the results158

obtained for FV3GFS using 100 years of training data. In what follows, we analyze the159

frequency distribution of daily precipitation and time-mean spatial bias patterns of pre-160

cipitation together with highly correlated top-of-atmosphere radiative fluxes. Then we161

examine the spectrum and temporal evolution of tropical precipitation variability be-162

tween 15◦S and 15◦N.163
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Figure 2. Frequency distribution of daily mean precipitation across all grid points over 10

years.

3.2 Precipitation density and spatial bias patterns164

Establishing the precipitation extremes possible under various forcing scenarios is an im-165

portant task for any climate model. Changes in the spatial distribution of time-mean166

precipitation under a range of possible future climate scenarios also inform many aspects167

of water-resource planning. Below, we examine ACE’s ability to match EAMv2 in terms168

of (1) the frequency distribution of precipitation and (2) patterns of spatial bias in time-169

mean precipitation and strongly associated top-of-atmosphere fluxes.170

Figure 2 shows the frequency distribution of daily precipitation in EAMv2 (black, dashed171

line) and ACE, including all grid points, over the 10 year validation period. Note that172

both the target and generated precipitation fields have a small number of negative val-173

ues due to the spherical harmonic transform round-trip applied to the data, an impor-174

tant data preprocessing step that removes polar artifacts as explained in Watt-Meyer175

et al. (2023). Overall, we see that ACE captures EAMv2’s precipitation distribution well,176

including at the extreme upper quantiles. ACE’s ability to capture precipitation extremes177

is an encouraging sign of the usefulness of deep learning GCM emulation for downstream178

climate science tasks.179

Figure 3 shows 10 year time-mean spatial bias patterns of precipitation and two highly180

correlated fields: top-of-atmosphere upward short- and longwave radiative fluxes. The181

left column labeled “EAMv2 vs. observation” displays the bias patterns observed when182

comparing the EAMv2 simulation temporal mean over the validation years 54–63 to his-183

torical observations. The observed precipitation comes from the Global Precipitation Cli-184

matology Project (GPCP) (Huffman et al., 2023) version 3.2 and corresponds to the pe-185

riod 1983–2021. The observed fluxes are from Clouds and the Earth’s Radiant Energy186

System (CERES) Energy Balanced and Filled (EBAF) (Loeb et al., 2018) version 4.1,187

over the period 2001–2018. In the right column, the corresponding validation target em-188

ulation outputs from ACE, initialized from the first timepoint of year 54, are compared189

against EAMv2. This way we can get a sense of the magnitude of ACE’s emulation bi-190

ases relative to EAMv2’s observational biases.191

The time-mean precipitation biases of ACE vs. EAMv2 range from −2.5 to 3.7 mm/day192

depending on location. The global spatial RMSE of time-mean precipitation is a remark-193
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Figure 3. Temporal average of biases for surface precipitation rate (top row), outgoing top-

of-atmosphere shortwave (RSW, middle row) and longwave (OLR, bottom row) radiative fluxes.

The right column shows the mean spatial distribution of ACE biases vs. EAMv2, comparing the

generated 6-hourly outputs to the corresponding simulation targets for the same timestep. The

left column compares EAMv2 to the observed temporal mean (from GPCP for precipitation and

CERES-EBAF for radiation; see main text.)

ably small 0.37 mm/day, which is comparable to the value of 0.46 reported in Watt-Meyer194

et al. (2023). EAMv2 observational biases lie between −6.5 and 12.6 mm/day (Figure195

3) with a RMSE of 0.96 mm/day. Thus ACE emulates EAMv2 precipitation patterns196

much better than EAMv2 can simulate them.197

OLR biases follow an expected inverse relationship with precipitation biases, a good sign198

of ACE’s ability to emulate the radiative effects of precipitating cloud systems with cold199

cloud tops. Their spatial pattern RMSE is only 2.8 W/m2, with a global-mean bias of200

−0.59 W/m2. ACE’s shortwave biases are larger, with a spatial pattern RMSE of 4.2201

W/m2 and a global-mean bias of −0.95 W/m2. They are not just associated with deep202

precipitating cloud systems, but also ‘dim’ subtropical trade cumulus regimes, ‘bright’203

Southern Ocean clouds, and excessive reflected shortwave radiation over Antarctica. As204

with precipitation, these emulation biases are small in comparison to EAMv2’s obser-205

vational biases. See Table S1 for additional summary metrics.206

3.3 Tracking tropical precipitation and the MJO207

Most tropical precipitation falls from organized deep convective systems, including trop-208

ical cyclones, the Madden Julian Oscillation (MJO), and diverse convectively-coupled209

waves. Thus it is important that global atmospheric models accurately represent the space-210

–7–
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Figure 4. Normalized symmetric component of the wavenumber-frequency spectrum of daily-

mean precipitation over a 10 year period for (left) withheld EAMv2 simulation output and

(right) corresponding outputs from ACE. As with Figure 17 of Golaz et al. (2022), we label

prominent wave types in the left panel and plot shallow water dispersion curves for equivalent

depths 12, 25, and 50 m as solid black lines. ER = equatorial Rossby; EIG = eastward inertia-

gravity; WIG = westward inertia-gravity.

time organization of tropical precipitation, and that an emulator of such a model repli-211

cates the organization of its tropical precipitation.212

The wavenumber-frequency spectrum (Wheeler & Kiladis, 1999) of daily-mean precip-213

itation meridionally averaged over 15◦S-15◦N is a widely used diagnostic of the large-214

scale organization of tropical precipitation. In Figure 4, we plot the normalized symmet-215

ric component of this wavenumber-frequency spectrum over the 10 year validation pe-216

riod for the target EAMv2 simulation data and the corresponding outputs from ACE.217

EAMv2’s spectrum is the appropriate ground truth against which to evaluate ACE, and218

the emulator broadly captures EAMv2’s precipitation variability.219

Some minor discrepancies include slightly reduced power in the MJO and the equato-220

rial Rossby wave, the latter also peaking at a lower wavenumber in ACE compared to221

EAMv2. Figure S2 provides a closer look at these features. As noted by Golaz et al. (2022),222

compared to satellite retrievals of the historical period, EAMv2’s spectrum has weaker223

normalized spectral power in the wavenumber-frequency bands corresponding to the MJO224

and the equatorial Rossby wave and severely underestimates precipitation variability as-225

sociated with Kelvin and westward inertia-gravity waves. By construction, a perfect em-226

ulator should inherit these biases.227

The Madden-Julian Oscillation (MJO) is a convectively-coupled Earth-spanning atmo-228

spheric oscillation that is characterized by a large eastward-propagating band of anoma-229

lous precipitation in the tropics (Madden & Julian, 1971; Zhang, 2005). It is the most230

regular and predictable sub-seasonal oscillation of the Earth’s atmosphere and affects231

many aspects of tropical and extratropical weather (Waliser et al., 2009; Zhang et al.,232

2020). Thus, a good emulator of an atmospheric model should replicate the statistical233

characteristics of its MJO.234

–8–
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Figure 5. Hovmöller diagrams of daily mean tropical-mean precipitation over two typical

years, bandpassed to retain 20-100 day periods. Both EAMv2 and ACE show patterns of east-

ward propagating tropical precipitation anomalies that last around 30 to 90 days.

Figure 4 suggests that ACE captures key statistical characteristics of EAMv2’s simulated235

MJO. This skill is more directly verified by isolating the MJO frequency band with a 20-236

100 day bandpass filter to daily- and meridional-mean (15◦S-15◦N) tropical precipita-237

tion anomalies. Figure 5 shows longitude-time Hovmöller diagrams of a typical two year238

segment from ACE and EAMv2 simulations of the 10-year validation period. The band-239

pass filter drives the roughly 50-day period of the features. It is nevertheless impressive240

that ACE (right panel) accurately captures the amplitude and eastward propagation of241

the MJO spatiotemporal evolution simulated by EAMv2 (left panel).242

4 Conclusions243

With approximately the same training and testing protocol, ACE emulates EAMv2 with244

excellent skill similar to the FV3GFS model on which ACE was originally trained, as mea-245

sured using 10-year time-mean climatological biases of geographically varying fields such246

as precipitation, near-surface and upper-tropospheric temperature and precipitable wa-247

ter. This suggests that ACE could easily be trained to also emulate other global atmo-248

sphere models.249

–9–
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ACE emulates diverse characteristics of EAMv2-simulated precipitation encouragingly250

well. The emulator nearly matches the EAMv2 frequency distribution of daily precip-251

itation out to its extreme-precipitation tail. A Wheeler-Kiladis spectral analysis of trop-252

ical convectively coupled waves also shows good consistency between ACE and EAMv2,253

including in the simulated Madden-Julian Oscillation. That is, ACE captures the space-254

time organization of precipitation simulated by EAMv2.255

These results were obtained for the important special case of annually-repeating clima-256

tological sea-surface temperatures. It remains to be seen how ACE will fare when faced257

with more realistic time-varying forcing or observational data. Over the longer term, we258

envision integrating future versions of ACE with other conventional or machine-learned259

Earth system components, such as a dynamical ocean, as part of the E3SM ecosystem260

and other climate and earth system models. This would enable coupled climate simu-261

lations or simulation ensembles with greatly reduced computational cost. We also en-262

vision using ACE to emulate finer-grid global atmosphere models, such as DOE’s SCREAM263

(Caldwell et al., 2021), using ML to affordably translate the enhanced fidelity of such264

models into more reliable centennial climate simulations.265

Open Research266

Data Availability Statement267

ACE model weights (2.5 GB) and the EAMv2 10-year validation set (165 GB) are avail-268

able to download over HTTP from the E3SM project’s NERSC science gateway at https://269

portal.nersc.gov/archive/home/projects/e3sm/www/e3smv2-fme-dataset. Doc-270

umentation, inference code, and an example configuration for running ACE are avail-271

able in the following repository: https://github.com/ai2cm/ace (Watt-Meyer et al.,272

2023).273
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Introduction

In this Supporting Information, we give additional metrics related to ACE’s climatolog-

ical skill and supplementary figures which provide additional perspectives on the figures

of the main text. We also provide further details on the computational efficiency of ACE,

the vertical coarsening of raw EAMv2 simulations outputs, and the optimization hyper-

parameters employed during ACE training.

Text S1. Another perspective on ACE’s emulation biases

Figure S1 compares ACE’s emulation biases to EAMv2’s internal variability. The left

column labeled “EAMv2 reference vs. EAMv2” displays the bias patterns observed when

comparing EAMv2 to itself, which serves as an ‘oracle’ emulator with the highest climate

skill possible in terms of faithfulness to the original simulation, given natural variability

due to weather fluctuations. These biases are computed by comparing the unseen reference

set, years 64–73 of the EAMv2 simulation run, against the validation target years 54–63.

The column labeled “ACE vs. EAMv2” visualizes the same data as the right column of

Figure 3 of the main text. Table S1 provides additional bias and RMSE metrics for these

variables when evaluating ACE and EAMv2 internally (i.e., against EAMv2 simulation

outputs) as in Figure S1 and against historical observations as in the left column of

Figure 3.

Text S2. Computational efficiency of ACE

We carried out the 73 year EAMv2 simulation on the Chrysalis supercomputer at Ar-

gonne National Laboratory, which is a dedicated E3SM machine1. Using 30 CPU nodes on

Chrysalis, each of which has 2× 32-core AMD EPYC 7532 CPUs, the simulation achieved

24 simulated years per day, or about 10 seconds per simulation day. After training, we ran

January 19, 2024, 11:03pm
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ACE inference using a single NVIDIA A100 40 GB GPU on Lawrence Berkeley National

Laboratory’s Perlmutter supercomputer with a wall clock time of 1 second per simulation

day, an approximate 10x speedup. The discrepancy with the 100x speedup found in Watt-

Meyer et al. (2023) is explained by the much larger number of cores used for the EAMv2

simulation compared to the FV3GFS simulation, which used a total of 96 cores across

two higher-efficiency AMD EPYC 7H12 CPUs. We estimate the energy consumption of

1 second on 1 A100 GPU at maximum power consumption of 400 W is 0.4 kJ, while 10

seconds on 60 total EPYC 7532 CPUs at 200 W is approximately 120 kJ. This amounts

to an approximate 300x energy savings when using ACE as a surrogate for EAMv2.
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Figure S1. Time average biases (predicted - target) for precipitation (top row) and top-of-

atmosphere outgoing shortwave (RSW , middle row) and longwave (OLR, bottom row) radiative

fluxes. The right column (“ACE vs. EAMv2”) shows the mean spatial distribution of ACE biases,

comparing the generated 6-hourly outputs to the corresponding targets for the same timestep.

The left column (“EAMv2 reference vs. EAMv2”) compares EAMv2 to itself by recalculating

biases using the final 10 years of the simulation set in the place of the predicted data, giving a

best-case scenario reference.
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Figure S2. Same as Figure 4 of the main text but zoomed in for a closer look

at the tropical spectra between wavenumbers -6 and 6 and frequencies smaller than 0.18.

In addition, the third panel displays relative errors within this region, calculated as:

100× predicted power−target power
target power %.

Table S1. ACE and E3SMv2 biases and RMSEs with respect to various references. ACEint:

ACE compared against EAMv2 outputs over the 10 year validation period. EAMv2int: EAMv2

outputs over the 10 year reference period compared against EAMv2 outputs over the 10 year

validation period. ACEobs: ACE compared against historical observations. EAMv2obs: EAMv2

outputs over the 10 year validation period compared against historical observations.

ACEint EAMv2int ACEobs EAMv2obs
Variable Bias RMSE Bias RMSE Bias RMSE Bias RMSE
P [mm/day] 5.7e-3 0.37 1.6e-3 0.21 0.20 0.93 0.20 0.96
RSW [W/m2] -0.95 4.17 6.7e-2 1.63 -0.38 8.87 0.57 9.19
OLR [W/m2] -0.59 2.83 8.5e-3 1.25 -0.77 5.64 -0.17 5.09
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Table S2. EAMv2 vertical interface coordinates that were used for vertical coarsening of the

raw 3D outputs, reducing the number of vertical levels from 72 to 8 for computational tractability.

As in Watt-Meyer et al. (2023), we chose the 9 vertical interfaces listed below that best align with

those of the SPEEDY model (Kucharski et al., 2013), in sigma coordinates, assuming a constant

reference surface pressure of pref8 = 1000 hPa. The coarsened interfaces are indexed starting from

the top of the atmosphere by k from 0 to 8, while the corresponding original EAMv2 interfaces

are indexed by Ik. In each grid column, the terrain-following interfacial pressures pk = ak + bkps

are computed from the hybrid coordinates ak and bk and the surface pressure ps. The original

model levels are vertically integrated by mass in order to preserve the total dry air and moisture

budget, using the true surface pressure at each point in space and time. For further details, see

Watt-Meyer et al. (2023).

k ak [Pa] bk [unitless] Ik prefk [hPa]
0 10.0 0.0 0 0.1
1 4943.694 0.0 19 49.4
2 13913.118 0.0 30 139
3 16254.503 0.10464 38 267
4 12435.282 0.31152 44 436
5 8945.939 0.50053 48 590
6 5115.018 0.70804 53 759
7 2027.536 0.87529 61 896
8 0.0 1.0 72 1000
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Table S3. Following Watt-Meyer et al. (2023), we employ the Adam optimizer (Kingma & Ba,

2017) with a cosine annealing learning rate schedule decaying to zero by the end of training and

use an exponential moving average of the model parameters across training steps. We conducted

a thorough hyperparameter search across 29 combinations of batch size, initial learning rate, and

number of epochs, arriving at the final choice of hyperparameters based upon a comparison of

10-year time-mean validation metrics, multiyear stability, and visual artifacts. See Watt-Meyer

et al. (2023) for additional details on training and SFNO architectural hyperparameters.

Name Value
Initial learning rate 3× 10−4

Number of epochs 50
Batch size 8
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