# Remote care and triage of obstetric patients with COVID-19 in the community: operational considerations.

Charles Bircher<sup>1</sup>, Matt Wilkes<sup>2</sup>, Nicole Zahradka<sup>2</sup>, Emily Wells<sup>1</sup>, and Edward Prosser-Snelling<sup>1</sup>

 $^1 \rm Norfolk$  and Norwich University Hospital NHS Trust  $^2 \rm Current$  Health Ltd.

March 07, 2024

# Abstract

We outline the operational model and outcomes of a successful Maternity Virtual Ward (MVW) established during the SARS-CoV-2 pandemic. Between October 2021 and February 2022, 429 patients were referred, of which 228 were admitted to the MVW. Total bed-days was 1,182, mean length of stay was 6 days (SD 2.3, range 1-14 days). Fifteen (6.6%) required hospital admission and one (0.4%) critical care. There were no deaths. Patients alluded to increased safety, comfort, and ease with the technology. Attention should be given to identifying clinical champions, triage criteria, technology selection, and flexible escalation pathways, adaptable to changing patterns of disease.

# Remote care and triage of obstetric patients with COVID-19 in the community: operational considerations.

#### Authors

Dr Charles Bircher <sup>(a)</sup>

Dr Matt Wilkes <sup>(b)</sup>

Dr Nicole Zahradka <sup>(b)</sup>

Ms. Emily Wells <sup>(a)</sup>

Dr Ed Prosser-Snelling <sup>(a)</sup>

# Institutional Addresses

Maternity Department, Norfolk and Norwich University Hospital, Colney Ln, Norwich NR4 7UY

Clinical Research, Current Health Ltd., Playfair House, 6 Broughton St Ln, Edinburgh EH1 3LY

### **Corresponding Author**

Dr Matt Wilkes

Current Health Ltd., Playfair House, 6 Broughton St Ln, Edinburgh EH1 3LY

+ 44 7976 962609

matt.wilkes @currenthealth.com

# **Running Title**

Remote care of obstetric patients with COVID-19

#### Abstract

We outline the operational model and outcomes of a successful Maternity Virtual Ward (MVW) established during the SARS-CoV-2 pandemic. Between October 2021 and February 2022, 429 patients were referred, of which 228 were admitted to the MVW. Total bed-days was 1,182, mean length of stay was 6 days (SD 2.3, range 1-14 days). Fifteen (6.6%) required hospital admission and one (0.4%) critical care. There were no deaths. Patients alluded to increased safety, comfort, and ease with the technology. Attention should be given to identifying clinical champions, triage criteria, technology selection, and flexible escalation pathways, adaptable to changing patterns of disease.

# Keywords

telemedicine, remote consultation, pregnancy, change management, delivery of healthcare

#### Tweetable Abstract (110 ch)

Maternity Virtual Wards need effective champions, triage & escalation pathways to be a safety net for patients.

#### Introduction

Pregnant women hospitalised with SARS-CoV-2 (COVID-19) have been more likely to be admitted to critical care, and to require caesarean section or neonatal unit admission for their baby.(1) A disproportionate number of those admitted to critical care have been from Black, Asian or Other Minority Ethnic (BAME) groups, overweight, obese, or had another relevant comorbidity.(1) Local Maternity Services have been asked to increase support for at-risk pregnant women, including BAME women.(2)

Virtual care and telehealth have been shown to improve outcomes in certain areas of maternal-foetal medicine and have been suggested as a means of breaking down barriers to access in prenatal care during COVID-19.(3–5) The National Clinical Director for Maternity and Women's Health and the Chief Midwifery Officer for the U.K. have recommended home oximetry for pregnant women positive for COVID-19.(6) However, there have been few published examples of how this is accomplished in practice. A key challenge is the identification of sentinel events which predict deteriorations in clinical conditions. The number needed to treat is high: in the UKOSS cohort, the estimated incidence of hospitalisation with symptomatic SARS-CoV-2 was 2.0 per 1000 maternities (95% CI 1.9-2.2).(1) Each new COVID-19 variant brings new patterns of transmission, virulence and vaccine evasion, which alter national guidance and population behaviours. In turn, these change the frequency of sentinel events and the challenge for monitoring programmes. Maternity services need to continuously improve their programmes of support to hit this moving target. With variants of relatively high transmissibility but low virulence (such as Omicron), numbers of positive patients rapidly increase, and triage of virtual ward admissions become essential to avoid overwhelming capacity.

Norfolk and Norwich University Hospitals Trust navigated these challenges, by deploying a flexible Virtual Ward service to care for vulnerable populations during the pandemic. At first the Maternity Virtual Ward (MVW) was offered to all pregnant women with confirmed COVID-19. As volumes increased, a system of triage was developed to cope with demand. This short communication outlines the Virtual Ward technology, intervention and staffing model, readmission rates, as well as the specific triage criteria and alarm settings used, as an example of an operational model for other institutions.

# The Maternity Virtual Ward

The MVW coordinated care through the Current Health platform (Current Health Ltd, Edinburgh, UK), and could monitor patients intermittently with finger pulse oximetry (AM801 pulse oximeter, Med Linket, Shenzhen, China) or continuously using the Current Health wearable. The Current Health platform included a wearable and tablet given to patients, and a web dashboard for the monitoring teams to view the patients' vital signs and their survey responses in real time. The wearable provided continuous, clinical-grade measures

of oxygen saturation, respiratory rate, pulse, motion, and skin temperature, and could integrate with a blood pressure cuff, axillary temperature patch and a spirometer. The kit connected to the cloud via a home internet connection, or a 3G network sim card for those without home internet. The web dashboard displayed the patients' observations in a format akin to the familiar hospital observation chart. Alarms were set **(Table 1)** to alert the team via push notification of any deterioration.

The MVW identified pregnant patients with confirmed-positive COVID-19 via three routes: discharge from hospital, direct contact from a patient in the community, and positive swabs in the community (Pillar 2 of the National Testing Strategy). Details of those with positive swabs were supplied via a dataset from NHS England, and cross referenced with the maternity database (E3, Wellbeing Software, Mansfield, U.K.). A midwife from the MVW Team then called the patient for an assessment. All patients continued in the MVW initially, but subsequently only patients meeting any of the triage criteria in **Table 2** were admitted, to cope with increasing case numbers and target those who would derive most benefit. Patients who did not require hospitalisation, or who did not meet any of the MVW criteria were given isolation advice and signposted to further help should they require it.

Once referred to the MVW, patients were called by a midwife every 12-48 hours depending on their level of risk. Their vital signs were monitored either intermittently with the oxygen saturation probe or continuously with the Current Health wearable, depending on the midwife's judgment of their baseline risk, symptoms, and clinical trajectory. Out of hours monitoring was shared between the obstetric and MVW teams, and at peak there were five midwives assigned to the service.

If alarms were triggered, or there were obstetric or other concerns, patients were contacted then brought into hospital for review if necessary. If patients were uncontactable, then the MVW team contacted their next of kin or escalated to a community midwife for a home visit. Patients were discharged after either 10 days in the virtual ward, 10 days from a positive test, or seven days from a positive test with negative lateral flow tests on days six and seven. Consideration was given to thromboprophylaxis at each stage. Growth scans were arranged 14 days post-Covid-19 detection for women who were severely or critically unwell.

# **Data Collection**

Data were collated from the Current Health platform and the hospital electronic medical record (E3, Wellbeing Software, Mansfield, U.K.) and imported into R (R Foundation for Statistical Computing, Vienna, Austria). Quantitative results were assessed for normality (visualisation, Shapiro-Wilk test), and presented as mean (SD). Patient feedback was captured by the NNUH administrative support service after the patient had been discharged from the MVW as service evaluation. Patients were asked to rate the service from 0 (least/worst) to 5 (most/best) in the aspects listed in **Table 3**. Any additional free text comments were iteratively coded and analysed thematically.(7)

#### Results

Between the 20 October 2021 and 7 Feb 2022, 429 patients were referred to the MVW. Following triage, 228 were admitted (Figure 1), with a mean age of 30.6 (SD 5.6, range 16-44), and all stages of gestation. Total bed-days on the MVW was 1,182 days, with mean length of stay of 6 days (SD 2.3, range 1-14 days). Fifteen (6.6%) required escalation to hospital care, and one (0.4%) to critical care. There were no deaths. The results of the feedback survey (n = 24) are presented in Table 3. Free text comments alluded to feelings of increased safety, comfort, and ease with the technology.

# Discussion

The MVW brought benefits for patients, healthcare professionals, and the hospital system. It offered monitoring and reassurance for pregnant women positive for COVID-19. However, as the pandemic disrupted the normal schedule of antenatal care in the UK, it was also a route to antenatal services for women who were self-isolating, vulnerable, or otherwise struggling to access care. It brought a degree of continuity known to improve satisfaction, and reduce intervention rates. (8) As a safety net, it allayed anxiety for patients and providers alike, and offered a 'third option' between primary care and admission, that helped ease pressure on hospital infrastructure and general practice. The technological aspects of the virtual ward performed well, and staff judged the triage criteria and alarm settings to have had the right balance of sensitivity and specificity.

The key challenge was digital transformation. The initial set up and coordination of the MVW required dedication, and a degree of "internal marketing" from enthusiastic individuals to bring the rest of team onboard. The key barrier to engagement was a lack of perceived importance of remote monitoring. Maternity services, especially during COVID-19, did not sit in isolation, so care pathways also had to be coordinated with respiratory, acute and general medicine. Healthcare professionals beyond the MVW team needed to understand that any temporary adjustments to their workflow would be rapidly offset by a reduction in demands on their time once the service had shouldered the load.

The MVW also relied on a core group of midwives skilled in telephone triage and emotional support. Even with clear admission criteria and escalation pathways, the midwives needed experience and confidence to make composite judgments that integrated the results of the monitoring, the patients' clinical trajectories and the services available. Midwives were not trained in this, and they had to balance expectations of 'usual care' with the capacity of the hospital during the exceptional circumstances of the pandemic.

Clinical leadership is essential for driving this kind of digital transformation. The pandemic created an overwhelming sense of urgency but building a coalition for change starts with strong and credible clinical leaders. Clinical leaders should then build out a team of trained individuals responsible for the execution of the programme. In the NNUH programme, a strong team ethos was essential to maintaining morale, even when working remotely. When working remotely, staff should also have access to the usual services of the hospital (for example, arranging ultrasound scans), so they are not limited in the care that they can offer.

Clinical pathways should include triage criteria, triggers for escalation, pre-agreed admitting locations, and allocation of responsibility for patients at each stage. Pathways must equally build in a degree of flexibility, and a process for rapid evaluation and change control, so they can adapt to a rapidly moving situation. The pathways, and the virtual ward service should be 'marketed' within the institution, so those peripherally involved are aware of its availability, capability, and potential benefits.

Technology should be chosen that can monitor the desired parameters using validated, CE-marked sensors. Facilities for video calling, simultaneous translation or cellular (as well as WiFi) connection may be essential, particularly in areas of social deprivation. A solution that is easily integrated with existing workflows and maternity systems, and that can maintain patient confidentiality while facilitating clinical handover is also desirable. Alarms should be set to balance sensitivity with specificity, as false alarms can be more laborious and disruptive to resolve when the patient is remote. In the MVW alarm settings, a time window of 60 minutes, and combination alarms from multiple vital sign parameters were used to add specificity to continuous monitoring alarms, to ensure that any alerts reflected the patient's true physiological state and not a temporary derangement from activities of daily living. Attention should be given to how patients will be contacted if they cease transmitting data, and involvement of the community midwifery service at an early stage is helpful.

#### Conclusions

The Virtual Maternity Ward offered (and continues to offer) a safety net to pregnant women who were positive for COVID-19, and those who were struggling to access care. It provided reassurance for staff, while relieving pressures on infrastructure. When setting up similar services in future, attention should be given to identifying clinical champions, triage criteria, and technology selection, and establishing flexible pathways.

#### Acknowledgements

The authors acknowledge and appreciate the hard work of the Maternity Virtual Ward team past and present, and the kind assistance of the Business Intelligence team at NNUH.

Disclosure of interests

MW and NZ are employees of Current Health Ltd.

#### Authors' contributions

EW and CB collected the data; MW analysed the data and drafted the manuscript; CB, NZ and EPC reviewed and revised the draft. All authors read and approved the final manuscript.

#### Ethics approval

This paper was deemed exempt from NHS Research Ethics Committee review according to the UKRI/NRES/MRC/HRA Decision Tool (14 Feb 2022).

Funding

N/A

#### References

1. Vousden N, Bunch K, Morris E, Simpson N, Gale C, O'Brien P, et al. The incidence, characteristics and outcomes of pregnant women hospitalized with symptomatic and asymptomatic SARS-CoV-2 infection in the UK from March to September 2020: A national cohort study using the UK Obstetric Surveillance System (UKOSS). Farrar D, editor. PLoS ONE. 2021 May 5;16(5):e0251123.

2. Dunkley-Bent J, Jolly M. Perinatal support for Black, Asian and minority ethnic Women during the COVID-19 Pandemic. 2020.

3. DeNicola N, Grossman D, Marko K, Sonalkar S, Butler Tobah YS, Ganju N, et al. Telehealth Interventions to Improve Obstetric and Gynecologic Health Outcomes: A Systematic Review. Obstetrics & Gynecology. 2020 Feb;135(2):371–82.

4. Fryer K, Delgado A, Foti T, Reid CN, Marshall J. Implementation of Obstetric Telehealth During COVID-19 and Beyond. Matern Child Health J. 2020 Sep;24(9):1104–10.

5. Aziz A, Zork N, Aubey JJ, Baptiste CD, D'Alton ME, Emeruwa UN, et al. Telehealth for High-Risk Pregnancies in the Setting of the COVID-19 Pandemic. Am J Perinatol. 2020 Jun;37(08):800–8.

6. Jolly M, Dunkley-Bent J. Information and links to key resources to support the care of pregnant women who test positive for COVID-19. 2021.

7. Braun V, Clarke V. Thematic Analysis: A Practical Guide. London: Sage; 2022.

8. Sandall J, Soltani H, Gates S, Shennan A, Devane D. Midwife-led continuity models versus other models of care for childbearing women. Cochrane Pregnancy and Childbirth Group, editor. Cochrane Database of Systematic Reviews [Internet]. 2016 Apr 28 [cited 2022 Jan 20];2016(4). Available from: http://doi.wiley.com/10.1002/14651858.CD004667.pub5

Table 1. Alarm settings for continuously monitored patients in the virtual ward

HR = heart rate, RR = respiratory rate, SpO2 = peripheral oxygen saturation

| Monitor                 | Alarm                    | Setting                                   |
|-------------------------|--------------------------|-------------------------------------------|
| AM801 Pulse Oximeter    | Hypoxia                  | $SpO2 \le 93$                             |
| Current Health Wearable | Hypoxia / Tachypnoea     | $SpO2 \le 90$ AND $RR \ge 25$ for 60 mins |
|                         | Hypoxia / Bradypnoea     | $SpO2 \le 90$ AND $RR \le 10$ for 60 mins |
|                         | Tachycardia / Tachypnoea | HR >= 90 and $RR >= 25$ for 60 mins       |
|                         | Bradycardia              | $HR \le 45$                               |

 Table 2. Criteria for Maternity Virtual Ward admission and ongoing risk assessment

Women from Black Asian Minority Ethnic Background Increased maternal age [?]35 years Raised BMI ([?]25) Pre-existing comorbidity (diabetes, hypertension, asthma, COPD or other respiratory) Unvaccinated (or vaccinated > 6 months previously, without booster) Living in areas or households of increased socioeconomic deprivation Lack of English, lack of social support, or limited understanding of how to access help

Table 3. Responses to the Maternity Virtual Ward Patient Survey

| Question                                                                                                  | n  | Respon |
|-----------------------------------------------------------------------------------------------------------|----|--------|
|                                                                                                           |    | Mean   |
| Do you feel you were given all the information you needed before being transferred onto the Virtual Ward? |    | 5.0    |
| How easy do you feel it was to use the technology?                                                        |    | 5.0    |
| Did being part of the Virtual Ward make you feel more confident in leaving hospital?                      |    | 5.0    |
| Would you use the service again? And would you recommend to family and friends?                           | 24 | 4.9    |
| Overall how do you feel about the service you received from the NNUH Virtual Ward Team?                   | 24 | 5.0    |
|                                                                                                           |    |        |

# Hosted file

NNUH Obstetrics\_MW\_BJOG\_Figure1.docx available at https://authorea.com/users/741144/articles/ 713583-remote-care-and-triage-of-obstetric-patients-with-covid-19-in-the-communityoperational-considerations