A physiologically-based pharmacokinetic model of clopidogrel in populations of European and Japanese ancestry: an evaluation of CYP2C19 activity

Janna Duong¹, Romina Nand¹, Aarti Patel¹, Oscar Della Pasqua¹, and Annette Gross¹

¹GlaxoSmithKline Research and Development

April 05, 2024

Abstract

Aims CYP2C19 activity is associated with treatment response to clopidogrel through the formation of the active H4 metabolite. The aims of this study were to develop a physiologically-based pharmacokinetic (PBPK) model of clopidogrel and its metabolites for populations of European ancestry, to predict pharmacokinetics in the Japanese population by CYP2C19 phenotype (extensive metaboliser, EM; intermediate metaboliser, IM; poor metaboliser, PM), and to investigate the effect of clinical and demographic factors. Methods A PBPK model (Simcyp® v18.2) was developed and verified (2-fold acceptance criteria) to describe the two metabolic pathways of clopidogrel (H4 metabolite, acyl glucuronide metabolite) for a population of European ancestry using plasma data from four published studies. Subsequently, model predictions in the Japanese population (2 studies) were evaluated. The effects of CYP2C19 activity, fluvoxamine coadministration (CYP2C19 inhibitor) and population-specific factors (age, sex, BMI, body weight, cancer, hepatic and renal dysfunction) on the pharmacokinetics of clopidogrel and its metabolites were investigated. Results The predicted/observed ratios for clopidogrel and metabolite exposure parameters were acceptable. For all CYP2C19 phenotypes, steady-state AUC_{0- τ} of the H4 metabolite was lower for the Japanese (e.g. EM, 7.69 [6.26 – 9.45] ng·h/mL; geometric mean [95% CI]) than European (EM, 24.8 [20.4 – 30.1] ng·h/mL, P <0.001) population. CYP2C19 PM phenotype, fluvoxamine co-administration, hepatic and renal dysfunction reduced H4 metabolite but not acyl glucuronide metabolite concentrations. Conclusion This is the first PBPK model developed to describe the two major metabolic pathways of clopidogrel which can be applied to populations of European and Japanese ancestry by CYP2C19 phenotype.

Hosted file

Clopidogrel_BCJP_220ct21_with_Tables3.docx available at https://authorea.com/users/737046/articles/712304-a-physiologically-based-pharmacokinetic-model-of-clopidogrelin-populations-of-european-and-japanese-ancestry-an-evaluation-of-cyp2c19-activity

Clopidogrel

Population						Mean (95% CI)
Sim-NEurCaucasian			┞╋┤			2.07 (1.85 - 2.31)
Age						
Sim-NEurCaucasian: 50 to 64 years			⊢∎-	1		2.31 (2.07 - 2.58)
Sim-Geriatric NEC: 65 to 92 years				├─ॖॖॖॖॖॖ─┤		3.07 (2.79 - 3.39)*
Sex						
Sim-NEurCaucasian: Male			┝╼┥			1.91 (1.71 - 2.14)
Sim-NEurCaucasian: Female			⊦∎⊦			2.21 (1.98 - 2.47)
BMI						
Sim-Obese: BMI 29 - 35 kg/m2			┝╼╾┤			1.75 (1.56 - 1.97)
Sim-Morbidly Obese: BMI >35 kg/m2		 ⊞				1.19 (1.06 - 1.34)*
Sim-Cancer			┝═╾┤			1.86 (1.64 - 2.12)
Hepatic dysfunction						
Sim-CirrhosisCP-A (Child Pugh A)			┝╌══╌┤			2.22 (1.95 - 2.52)
Sim-CirrhosisCP-B (Child Pugh B)			- ∎			2.22 (1.95 - 2.54)
Sim-CirrhosisCP-C (Child Pugh C)			┝╼╕┤			2.01 (1.76 - 2.29)
Renal dysfunction						
Sim-NEurCaucasian: Stage 2 (GFR 60 - 90 mL/min)			⊢∎⊣			2.07 (1.85 - 2.31)
Sim-RenalGFR_30-60: Stage 3 (GFR 30 - 60 mL/min)			-∎-			2.11 (1.87 - 2.39)
Sim-RenalGFR_less_30: Stage 4/5 (GFR <30 mL/min)			┟╋┤			1.85 (1.63 - 2.09)
	0	1	2	2		
	0	Clopidoare	∠ al AUC₀_ (n	a · h /mL)	4	
				J ((), (), (), (), (), (), (), (), (), ()		

Acyl Glucuronide Metabolite

Population		Mean (95% CI)
Sim-NEurCaucasian	∎	4078 (3671 - 4530)
Age		
Sim-NEurCaucasian: 50 to 64 years	┝─┼╋──┤	4235 (3814 - 4703)
Sim-Geriatric NEC: 65 to 92 years	∎	4782 (4327 - 5284)
Sex		
Sim-NEurCaucasian: Male	├──₽──┤	4106 (3698 - 4559)
Sim-NEurCaucasian: Female	┝──╋──┤	4059 (3655 - 4508)
ВМІ		
Sim-Obese: BMI 29 - 35 kg/m2	┝──┤╋───┤	4164 (3744 - 4630)
Sim-Morbidly Obese: BMI >35 kg/m2	┝──╇──┤	4076 (3660 - 4539)
Sim-Cancer	├ ─ ₽ ─-1	4073 (3680 - 4507)
Hepatic dysfunction		
Sim-CirrhosisCP-A (Child Pugh A)		4248 (3825 - 4719)
Sim-CirrhosisCP-B (Child Pugh B)	┟┼──╋───┤	4379 (3944 - 4862)
Sim-CirrhosisCP-C (Child Pugh C)	┝┼╌╋──┤	4382 (3948 - 4863)
Renal dysfunction		
Sim-NEurCaucasian: Stage 2 (GFR 60 - 90 mL/min)	├ ── ₽ ───┤	4078 (3671 - 4530)
Sim-RenalGFR_30-60: Stage 3 (GFR 30 - 60 mL/min)	┝─┼╼──┤	4261 (3844 - 4723)
Sim-RenalGFR_less_30: Stage 4/5 (GFR <30 mL/min)		4224 (3809 - 4684)
	3000 3500 4000 4500 5000 5	500
	Acyl Glucuronide Metabolite AUC _{0-t} (ng · h/m	iL)

H4 Metabolite

Population		Mean (95% CI)
Sim-NEurCaucasian	⊢ ∎−-1	22.4 (18.7 - 26.8)
Age		
Sim-NEurCaucasian: 50 to 64 years	┝──■──┤	21.6 (18.1 - 25.9)
Sim-Geriatric NEC: 65 to 92 years	┝╌■	21.8 (18.0 - 26.2)
Sex		
Sim-NEurCaucasian: Male	₽	22.6 (18.8 - 27)
Sim-NEurCaucasian: Female	├ ─ ₽ ──┤	22.3 (18.6 - 26.7)
ВМІ		
Sim-Obese: BMI 29 - 35 kg/m2	₽	22.8 (18.9 - 27.3)
Sim-Morbidly Obese: BMI >35 kg/m2		21.3 (17.5 - 25.9)
Sim-Cancer	⊢ ∎I	19.1 (15.7 - 23.4)
Hepatic dysfunction		
Sim-CirrhosisCP-A (Child Pugh A)	┝╌╋╌┤	15.3 (12.4 - 18.8)
Sim-CirrhosisCP-B (Child Pugh B)	┝╼╉╌┥	8.22 (6.45 - 10.5)*
Sim-CirrhosisCP-C (Child Pugh C)	├╋┤	5.09 (3.9 - 6.65)**
Renal dysfunction		
Sim-NEurCaucasian: Stage 2 (GFR 60 - 90 mL/min)		22.4 (18.7 - 26.8)
Sim-RenalGFR_30-60: Stage 3 (GFR 30 - 60 mL/min)	┝╋╌┤	11.9 (10 - 14.4)**
Sim-RenalGFR_less_30: Stage 4/5 (GFR <30 mL/min)		10.6 (8.77 - 12.8)**
	0 10 20 30	
	H4 Metabolite $AUC_{0-\tau}$ (ng \cdot h/mL)	