The impact of the Covid-19 pandemic on the management of head and neck cancer patients at a tertiary care institution in Poland: A case-control study

Mateusz Szewczyk¹, Jakub Pazdrowski¹, Paweł Golusiński², Paweł Pazdrowski¹, Barbara Więckowska¹, and Wojciech Golusiński¹

January 31, 2024

Abstract

Objective: To assess the impact of the Covid-19 pandemic on the diagnosis and treatment of patients at tertiary hospital in Poland. Design, setting, participants: This was a retrospective review of head and neck cancer patients presented to the multidisciplinary tumour board (MTB) during the 12-month period from March 2020 through February 2021 and compared to patients presented to the MTB during the prior, pre-pandemic 12-month period from February 2019 to March 2020. Main outcomes and measures: Patient demographic and clinical variables were compared: sex; age at diagnosis; distance from hospital; date of first visit, radiological diagnosis, pathology specimen, MTB meeting, and initiation of primary and adjuvant treatment Results: The number of patients presented to the MTB increased by 22% (278 to 340) from the pre-pandemic to the pandemic period. The mean time from MTB presentation to treatment initiation increased significantly from 17.1 to 21.7 days. The mean time from first visit to treatment start increased from 44.7 to 54.4 days. The proportion of patients with early-stage oropharyngeal cancer who underwent primary surgery rose from 47.3% to 86.6%. The percentage of patients who received palliative radiotherapy increased from 20.5% to 32.9%. The proportion of patients who received best supportive care rose from 1.8% to 6.2%. Conclusion: One of the most notable findings of this study was the increased time from first visit to treatment initiation, which could negatively impact patient outcomes. The differences in the treatment received in these two periods should be further evaluated to determine their influence on survival

Title: The impact of the Covid-19 pandemic on the management of head and neck cancer patients at a tertiary care institution in Poland: A case-control study

Abstract

Objective: To assess the impact of the Covid-19 pandemic on the diagnosis and treatment of patients at tertiary hospital in Poland.

Design, setting, participants: This was a retrospective review of head and neck cancer patients presented to the multidisciplinary tumour board (MTB) during the 12-month period from March 2020 through February 2021 and compared to patients presented to the MTB during the prior, pre-pandemic 12-month period from February 2019 to March 2020.

Main outcomes and measures: Patient demographic and clinical variables were compared: sex; age at diagnosis; distance from hospital; date of first visit, radiological diagnosis, pathology specimen, MTB meeting, and initiation of primary and adjuvant treatment

¹Poznan University of Medical Sciences

²University of Zielona Gora

Results: The number of patients presented to the MTB increased by 22% (278 to 340) from the prepandemic to the pandemic period. The mean time from MTB presentation to treatment initiation increased significantly from 17.1 to 21.7 days. The mean time from first visit to treatment start increased from 44.7 to 54.4 days. The proportion of patients with early-stage oropharyngeal cancer who underwent primary surgery rose from 47.3% to 86.6%. The percentage of patients who received palliative radiotherapy increased from 20.5% to 32.9%. The proportion of patients who received best supportive care rose from 1.8% to 6.2%. Conclusion: One of the most notable findings of this study was the increased time from first visit to treatment initiation, which could negatively impact patient outcomes. The differences in the treatment received in these two periods should be further evaluated to determine their influence on survival

Key words: covid-19; head neck; pandemic; oncology

Keypoints

- The effect of Covid-19 pandemic on the diagnosis and treatment of patients with head and neck cancer in unknown
- The results of this cross-sectional study show an increase in time from diagnosis to treatment and a trend towards more advanced disease.
- A significant rise in the number of patients with nasopharyngeal cancer should be further studied
- Covid-19 pandemic also affected the type of treatment for early stage or opharyngeal cancer patients
- Our findings suggest that the Covid-19 pandemic could affect treatment outcomes in patients with head and neck cancer by delaying diagnosis and treatment, potentially leading to more advanced disease.

Introduction

In December 2019, the first patient was diagnosed with severe acute respiratory syndrome coronavirus disease (SARS-Cov-2), eventually leading to a global pandemic. The clinical manifestations of coronavirus disease 2019 (Covid-19) can vary widely, ranging from mild respiratory symptoms to severe viral pneumonia, which may be followed by respiratory failure and death ¹. Shortly after the emergence of the virus, treating patients with Covid-19 became a key priority and severe restrictions were put in place, thus limiting health care resources, even in hospitals that do not treat these patients. Unsurprisingly, these restrictions also affected the care of cancer patients in terms of access to diagnosis and treatment².

In this context, the aim of the study was to assess the impact of Covid-19 on the diagnosis and treatment of patients at our hospital (the Greater Poland Cancer Center [GPCC]), a comprehensive cancer care centre. We compared the characteristics of patients diagnosed with head and neck cancer during the 12-month, pre-pandemic period prior to implementation of pandemic-related restrictions in Poland in March 2020 to patients diagnosed and treated during the pandemic period (March 2020 through February 2021). More specifically, we sought to determine whether there were any differences between the two periods in terms of demographic and clinical variables, and the impact of the pandemic on the diagnosis and treatment of these patients.

Material and methods

This was a retrospective review of all head and neck cancer patients presented to the multidisciplinary tumour board (MTB) during the 12-month period from March 1, 2020 through February 28, 2021. This patient group was compared to patients presented to the MTB during the prior, pre-pandemic 12-month period (February 1, 2019 to February 28, 2020).

Patients who had received any prior head and neck treatment at the GPCC were excluded from the analysis due to the risk of bias as these patients would have had greater access than newly-diagnosed patients to the outpatient department. Patients with thyroid cancer were also excluded from the study to avoid influencing the study results given that the preoperative assessment and post-operative treatment of these patients is performed outside GPCC.

Patient demographic and clinical variables evaluated included sex; age at diagnosis; distance from the GPCC;

and dates of the following: first visit, radiological diagnosis, pathology specimen, MTB meeting, and initiation of primary and adjuvant treatment; and centre where radiological and histopathologic diagnoses were performed (GPCC or other). Tumour characteristics, including primary site, TNM status and nodal status were recorded. Primary treatment was categorised as radical-intent (surgery, radiotherapy, and/or induction chemotherapy) or palliative treatment (radiotherapy and/or best supportive care).

Due to retrospective nature of the study, the approval of the Research Ethics Board was not considered necessary.

This study has been reported in line with the STROBE guidelines³

Statistical analysis

The comparative analysis of the quantitative data was performed with the Student's t-test for independent groups (unpaired t-test) or the Mann-Whitney test as appropriate. The Kołogorov-Smirnov test was used to evaluate the normality of the distribution. Dichotomous variables were compared with the chi-square test when Cochran's condition was met or Fisher's exact test when it was not met. To compare multiple proportions within one hypothesis, the Test for One proportion was used with the Benjamini-Hochberg multiple comparison correction.

Results

A total of 278 patients were discussed at MTB meetings in the pre-pandemic period versus 340 patients during the pandemic, an increase of 22%. No difference was found between the percentage of male patients, mean patient age, place of residence (Wielkopolska province or elsewhere) (Table 1.)

Similarly, no differences were observed in the percentage of patients receiving radiological diagnosis at the GPCC (49% vs. 50%). However, the proportion of patients whose histopathologic evaluation of the biopsied tumour was performed at the centre increased from 48.6% in the pre-Covid period to 57.4% (p=0.029) (Table 1).

The mean time from first visit to the MTB meeting differed non-significantly from the pre-pandemic to the pandemic period (27.9 vs 33.5 days, respectively). The mean time from presentation at the MTB to treatment initiation increased significantly from 17.1 to 21.7 days (p=0.006). Similarly, the mean time from first visit to treatment start also increased significantly (44.7 vs. 54.4 days; p=0.004) (Table 1).

The percentage of oral cancer patients decreased significantly from 45.3% to 32.1% (p=0.01; Benjamini-Hochberg correction: p=0.059) while the proportion of nasopharyngeal cancer patients rose from 0.4% to 3.2% (p=0.01; Benjamini-Hochberg correction p=0.059). There were no significant differences between the two periods in the percentage of locally (stage T3-T4), regionally (N+) advanced cases and in terms of disease stage (III-IV) (Table 2.)

No significant differences were detected in the percentage of patients undergoing surgery (71% vs. 75.4%) except for patients diagnosed with early-stage or opharyngeal cancer, the percentage of patients who underwent primary surgery increased significantly from 47.3% to 86.6% (p=0.001) (Table 3).

The percentage of patients who received palliative radiotherapy increased significantly, from 20.5% to 32.9% (p=0.001). In addition, the proportion of patients who received best supportive care also increased significantly, from 1.8% to 6.2% (p=0.007).

Discussion

Impact of general restrictions on medical care

The Covid-19 pandemic has influenced every area of medicine. One of the major impacts has been restricted access to medical care⁴. In Poland, similar to other countries, patients' access to general practitioners during the pandemic was limited and most consultations were done through telemedicine, which has a higher risk of an incorrect diagnosis⁵. Many hospitals around the world have been transformed into Covid-19 treating

institutions, which means that patients are less likely to be accurately diagnosed and treated in a timely manner when the disease is still in early stages⁶. Nevertheless, cancer centres in many countries have remained open, with adequate restrictions while other hospitals were responsible for treating only patients with Covid-19. In fact, this approach allowed cancer centres in those countries to treat more patients during the pandemic than in the prior year^{6,7}. We observed similar results, as evidenced by the 22% increase in the number of patients discussed at the MTB. In Poland, as in other countries, many hospitals were transformed into Covid-treating institutions, but this did not affect many cancer centres, including ours. Outpatient visits decreased by 50% from March to June 2020 and by 25% thereafter. Even so, most patients were able to schedule a consultation and receive a treatment proposal. By contrast, some high volume cancer centres experienced a substantial reduction in patients in the most acute phase of the pandemic, with one centre (MD Anderson) in the United States reporting a 25% decrease over a 6-week period ⁸.

In the context of limited access to medical care due to pandemic-related restrictions, the distance from the patient's home to the hospital could be an important factor. To evaluate the impact of distance, we divided our patients into two groups: those living in the same province (Wielkopolska) as the hospital and those residing outside of this province. That analysis showed that the percentage of patients from the relatively large Wielkopolska province (30 000 m²) remained essentially unchanged from the pre-pandemic period (81% vs. 84%, respectively). To our knowledge, the only other study to examine this issue was performed by Kiong et al. at the MD Anderson Cancer Center, who did not find any significant differences either⁸.

Demographic data and tumour location

Most of the studies that have compared patients treated in the pre-pandemic and pandemic periods have not found any significant demographic differences in sex or age, similar to our results^{7,9,10}. However, we did find a significantly higher proportion of patients diagnosed with oral cancer in the pre-Covid period (45.3% vs. 32.1%; Table 2), but the reason for this difference is difficult to determine. Kiong et al. found no significant differences in the main head and neck cancer locations at their centre between the two periods, nor did they find any other studies reporting such differences ⁸. In contrast, Thomson and colleagues found a substantial increase in the percentage of patients diagnosed with oral cancer (from 23% to 44.4%), but they did not explain the potential reasons for this difference ⁷. Interestingly, we observed a significant increase in the number of nasopharyngeal cancer patients (from 1 to 11), perhaps because most of the symptoms and side effects of Covid-19 affect the nasal cavity and paranasal sinuses, which could have led to early detection of nasopharyngeal cancer during the diagnostic process for Covid-19. Alternatively, virus-mediated stimulation of the immunological system may have initiated the disease process leading to nasopharyngeal cancer. However, this hypothesis is only speculative given the small sample size and considering that this finding has not been reported elsewhere. Nonetheless, this question could merit further research.

Diagnostic and treatment time frames

Early diagnosis is a crucial variable in the odds of treatment success in cancer patients, with numerous studies showing that diagnostic delays negatively impact survival outcomes. Rygalski et al. retrospectively evaluated 37730 patients with head and neck cancer included in the National Cancer Database (NCD), finding that the cut-off point for time to surgery that had the greatest impact on survival was 67 days¹¹. In another study, Murphy et al. evaluated data from 51655 patients included in the NCD who received curative-intent treatment for oral, oropharyngeal, or hypopharyngeal cancer, finding that time from diagnosis to treatment > 60 days was consistently associated with a higher risk of death¹². In our study, we found a small but non-significant increase in time from first visit to the MTB meeting (27.9 vs. 33.5 days), in line with the data reported by Kiong et al.⁸. We also observed a significant increase in time (from 17.1 to 21.7 days) from presentation to the MTB to treatment initiation, a finding that is consistent with the data described by Tevetoglu et al. ¹⁰. Similarly, the time from the first visit to treatment initiation also increased significantly in our study (44.7 vs. 54.4 days), a finding that contrasts with Teretoglu et al., who found no significant changes (Kiong et al. did not evaluate this variable).

Our data show that the percentage of radiological diagnoses performed at the GPCC was similar in both

periods. By contrast, a significantly greater percentage of patients underwent biopsy in the Covid period (57.4% vs. 48.6% in the pre-pandemic period). These data show that although restrictions in non-cancer centres at least partially affected outpatient diagnostic tests, it had no significant impact on the time interval to the MTB meeting. However, waiting times for inpatient treatment differed between the periods, and the restrictions in place at our centre and other centres could have affected the time from MTB to treatment ^{13,14}. Another factor that may have influenced the time to treatment initiation is patient-related concerns about entering the hospital during the pandemic ¹⁵.

Type of treatment

Several groups developed recommendations on the management of patients with head and neck cancer during the pandemic, including both general recommendations as well as specific surgical and non-surgical recommendations ^{16–20}. Treatment of head and neck cancer has been restricted around the world due to capacity limitations and to the increased risk of infection for both staff and patients. In our centre, the intensive care unit (ICU) had only limited restrictions, therefore decision-making process for surgical treatment was not influenced by any ICU-related restrictions. With regard to non-surgical treatment, we observed some delays during the 12-month Covid-19 study period related to inpatient coronavirus infections during the course of radiotherapy, which perhaps explains why there were no significant differences between the two periods in the proportion of patients eligible for radical surgery (71% vs. 75.4%). Kiong and colleagues did not observe any differences in surgical vs. non-surgical treatment, although fewer patients were considered eligible for primary surgery than in our study (47.3% vs. 73.2%).

We also assessed the type of treatment in two specific anatomic locations (larynx and oropharynx), which were selected because oncological outcomes for this two sites are similar regardless of the treatment type in patients with early-stage disease^{21–25}. We found no significant differences between the pre-Covid and Covid periods in terms of the proportion of laryngeal cancer patients treated surgically (80% vs. 74%, respectively), but we did find a significant difference in early-stage oropharyngeal cancer (47% vs. 86%), perhaps due to the use of minimally-invasive surgery (mainly robotic surgery) in these patients, where the risk of tracheostomy is low and the hospital stay is much shorter than in radical radiotherapy.

Our data shows that a significantly higher proportion of patients received palliative radiotherapy during the pandemic period (20.5% vs. 32.9%) and palliative care alone was indicated in a higher percentage of patients (1.8% vs. 6.2%). Both of these findings are likely directly related to the pandemic. Although disease severity (TNM staging) did not differ in the two periods, the limited access to basic medical care (with the consequent delays in diagnosis and treatment), resulted in an increase in the number of patients ineligible for radical treatment due to comorbidities and cancer-related malnutrition. Of the 21 patients in the Covid-19 period referred to best supportive care, six were offered palliative radiotherapy but declined due to pandemic-related fear. Given the importance of palliative care to ensure adequate pain management and nutritional and respiratory support, we believe that a symptom-based approach to these patients should be taken during the pandemic. In this regard, Singh and colleagues published recommendations on the management of palliative patients during the pandemic, emphasizing the need for better access to drugs, greater use of teleconsultation, and wider community support ²⁶.

Strengths and limitations of the study

The main study limitation is the retrospective design. Another limitation is that we did not examine symptom duration prior to the first visit, mainly due to missing data. Although there were some restrictions in outpatient visits and delays in the start of radiotherapy, none of the units had to be closed for more than 2-3 days and none of the doctors had to be transferred other hospitals to treat Covid-19 patients. A final limitation is that we did not assess or compare patient outcomes. By contrast, an important strength of this study is that it is, to our knowledge, the first to examine the effect of the pandemic on patients with head and neck cancer during an extended time period (12-months) comprising several waves of the pandemic.

Conclusions

The Covid-19 pandemic has had a major impact on the medical care of patients with head and neck cancer in terms of outpatient diagnosis and inpatient treatment. The results of this study suggest that, in the context of pandemic-related restrictions imposed in non-oncological hospitals, specialized cancer centres must be prepared to consult, diagnose, and treat greater numbers of patients. The increased time from first visit to treatment initiation observed in this study (and others) suggests that greater efforts need to be made to avoid diagnostic delays. Differences in the treatment recommendations between the two periods should be evaluated in future studies to determine how this affects survival curves. Finally, it would be valuable to determine whether the significant increase in the number of patients with nasopharyngeal cancer is virus-related.

- **Table 1.** Patient demographic characteristics and time frames for disease diagnosis and treatment
- **Table 2**. Tumour location and disease stage
- **Table 3.** Treatment type characteristics

References

- 1 Xu H., Zhong L., Deng J., et al. (2020) High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral Sci. 12, 8.
- 2 Shaw R., COVIDSurg Collaborative, Schache A.G., et al. (2021) UK Head and neck cancer surgical capacity during the second wave of the COVID—19 pandemic: Have we learned the lessons? COVIDSurg collaborative. Clin. Otolaryngol., coa.13749.
- 3 von Elm E., Altman D. & Egger M. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. *Plos Med.* **10**, 1623–1627.
- 4 De Felice F., Polimeni A. & Tombolini V. (2020) The impact of Coronavirus (COVID-19) on head and neck cancer patients' care. *Radiother. Oncol.* **147**, 84–85.
- 5 Omboni S. (2020) Telemedicine During the COVID-19 in Italy: A Missed Opportunity? *Telemed. E-Health* **26**, 973–975.
- 6 Salzano G., Maglitto F., Guida A., et al. (2021) Surgical oncology of the head and neck district during COVID-19 pandemic.

Eur. Arch. Otorhinolaryngol.

- 7 Thompson J.A., Lubek J.E., Amin N., et al. (2021) Impact of the Novel Coronavirus 2019 (COVID-19) Pandemic on Head and Neck Cancer Care. Otolaryngol. Neck Surg., 019459982110045.
- 8 Kiong K.L., Diaz E.M., Gross N.D., et al. (2021) The impact of COVID -19 on head and neck cancer diagnosis and disease extent. Head Neck 43, 1890–1897.
- 9 Laccourreye O., Mirghani H., Evrard D., et al. (2020) Impact of the first month of Covid-19 lockdown on oncologic surgical activity in the Ile de France region university hospital otorhinolaryngology departments. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 137, 273–276.
- 10 Tevetoğlu F., Kara S., Aliyeva C., et al. (2021) Delayed presentation of head and neck cancer patients during COVID-19 pandemic.

Eur. Arch. Otorhinolaryngol.

- 11 Rygalski C.J., Zhao S., Eskander A., et al. (2021) Time to Surgery and Survival in Head and Neck Cancer. Ann. Surg. Oncol.28 , 877–885.
- 12 Murphy C.T., Galloway T.J., Handorf E.A., et al. (2016) Survival Impact of Increasing Time to Treatment Initiation for Patients With Head and Neck Cancer in the United States. J. Clin. Oncol.34, 169–178.

- 13 Malicki J., Martenka P., Dyzmann-Sroka A., et al. (2020) Impact of COVID-19 on the performance of a radiation oncology department at a major comprehensive cancer centre in Poland during the first ten weeks of the epidemic. Rep. Pract. Oncol. Radiother. 25, 820–827.
- 14 Gupta A., Arora V., Nair D., et al. (2020) Status and strategies for the management of head and neck cancer during COVID -19 pandemic: Indian scenario. Head Neck42, 1460–1465.
- 15 Sutcuoglu O., Yazici O., Ozet A., et al. (2020) Harmful consequences of COVID-19 fear in patients with cancer. BMJ Support. Palliat. Care, bmjspcare-2020-002628.
- 16 Baird B.J. & Sung C.K. (2020) Coronavirus Disease-19. Otolaryngol. Clin. North Am. 53, 1159–1170.
- 17 Mehanna H., Hardman J.C., Shenson J.A., et al. (2020) Recommendations for head and neck surgical oncology practice in a setting of acute severe resource constraint during the COVID-19 pandemic: an international consensus. Lancet Oncol. 21, e350–e359.
- 18 Salari A., Jalaeefar A. & Shirkhoda M. (2020) What is the best treatment option for head and neck cancers in COVID-19 pandemic? A rapid review. Am. J. Otolaryngol. 41, 102738.
- 19 Mireștean C.C., Crișan A., Mitrea A., et al. (2021) New Challenges of Treatment for Locally Advanced Head and Neck Cancers in the Covid-19 Pandemic Era. J. Clin. Med. 10, 587.
- 20 Jeannon J.-P., Simo R., Oakley R., et al. (2021) Head and neck cancer surgery during the coronavirus pandemic: a single-institution experience. J. Laryngol. Otol. 135, 168–172.
- 21 Baird B.J., Sung C.K., Beadle B.M., et al. (2018) Treatment of early-stage laryngeal cancer: A comparison of treatment options. Oral Oncol. 87, 8–16.
- 22 Howard J., Masterson L., Dwivedi R.C., et al. (2016) Minimally invasive surgery versus radiotherapy/chemoradiotherapy for small-volume primary oropharyngeal carcinoma. Cochrane Database Syst. Rev.
- 23 Mourad M., Dezube A., Moshier E., et al. (2016) Geographic trends in management of early-stage laryngeal cancer: Trends in Laryngeal Cancer Management. The Laryngescope 126, 880–884.
- 24 Pedro C., Mira B., Silva P., et al. (2018) Surgery vs. primary radiotherapy in early-stage oropharyngeal cancer. Clin. Transl. Radiat. Oncol. 9, 18–22.
- 25 Stelmes J.-J., Gregoire V., Poorten V.V., et al. (2019) Organ Preservation and Late Functional Outcome in Oropharyngeal Carcinoma: Rationale of EORTC 1420, the "Best of" Trial. Front. Oncol.9, 999.
- 26 Singh A.G., Deodhar J. & Chaturvedi P. (2020) Navigating the impact of COVID -19 on palliative care for head and neck cancer. $Head\ Neck\ 42$, 1144-1146.

Hosted file

Table 1.docx available at https://authorea.com/users/734213/articles/711378-the-impact-of-the-covid-19-pandemic-on-the-management-of-head-and-neck-cancer-patients-at-a-tertiary-care-institution-in-poland-a-case-control-study

Hosted file

Table 2.docx available at https://authorea.com/users/734213/articles/711378-the-impact-of-the-covid-19-pandemic-on-the-management-of-head-and-neck-cancer-patients-at-a-tertiary-care-institution-in-poland-a-case-control-study

Hosted file

Table 3.docx available at https://authorea.com/users/734213/articles/711378-the-impact-of-the-covid-19-pandemic-on-the-management-of-head-and-neck-cancer-patients-at-a-tertiary-care-institution-in-poland-a-case-control-study