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Abstract

The hallmark of type 2 diabetes mellitus (T2DM) is abnormal glucose homeostasis due to hyperglycaemia or insulin resistance.

Metabolic abnormalities in T2DM lead to cellular dysfunction and the development of diabetic cardiomyopathy and heart fail-

ure. New antihyperglycemic agents, such as glucagon-like peptide-1 receptor agonists and the sodium-glucose cotransporter-2

inhibitors (SGLT2i) have shown to attenuate endothelial dysfunction at the cellular level. In addition, they showed cardiovascu-

lar safety and cardioprotective effects. How these drugs exert their cardioprotective effects is unknown, although recent studies

show that cardiovascular homeostasis occurs through the interplay of the sodium hydrogen exchangers (NHE), specifically NHE1

and NHE3 with SGLT2i. Another theoretical explanation for the SGLT2i cardioprotective effects is through natriuresis by the

kidney. This theory highlights the possible involvement of renal NHE transporters in the management of heart failure. This

review outlines possible mechanisms predisposing to diabetic cardiomyopathy and discusses the interaction between NHE and

SGLT2i in cardiovascular disease.
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Abstract 23 

The hallmark of type 2 diabetes mellitus (T2DM) is abnormal glucose homeostasis due to 24 

hyperglycaemia or insulin resistance. Metabolic abnormalities in T2DM lead to cellular 25 

dysfunction and the development of diabetic cardiomyopathy and heart failure. New 26 

antihyperglycemic agents, such as glucagon-like peptide-1 receptor agonists and the sodium-27 

glucose cotransporter-2 inhibitors (SGLT2i) have shown to attenuate endothelial dysfunction 28 

at the cellular level. In addition, they showed cardiovascular safety and cardioprotective 29 

effects. How these drugs exert their cardioprotective effects is unknown, although recent 30 

studies show that cardiovascular homeostasis occurs through the interplay of the sodium 31 

hydrogen exchangers (NHE), specifically NHE1 and NHE3 with SGLT2i. Another 32 

theoretical explanation for the SGLT2i cardioprotective effects is through natriuresis by the 33 

kidney. This theory highlights the possible involvement of renal NHE transporters in the 34 

management of heart failure. This review outlines possible mechanisms predisposing to 35 

diabetic cardiomyopathy and discusses the interaction between NHE and SGLT2i in 36 

cardiovascular disease. 37 



 

1 

1. Introduction 38 

Diabetes Mellitus (DM) is a metabolic disorder where the body either does not produce 39 

sufficient amount of insulin, has impaired insulin action or a combination of the two. Type 1 40 

(T1DM) which constitutes ~5-10% of diabetes cases has high incidence in children and 41 

adolescents and is caused by immune destruction of the β-islets in the pancreas. The majority 42 

of cases are Type 2 (T2DM), which results from a combination of beta cell dysfunction and 43 

insulin resistance. Insulin resistance and the accompanied hyperinsulinemia are the early 44 

detected metabolic abnormality in subjects destined to develop T2DM and precedes the 45 

deterioration in glucose homeostasis (American Diabetes, 2017; Kahanovitz et al., 2017). 46 

T2DM affects approximately 463 million people worldwide and future estimates suggest that 47 

102 of 1000 people will be diagnosed with diabetes by 2030 (Saeedi et al., 2019). Chronic 48 

diabetes without appropriate treatment causes microvascular and macrovascular 49 

complications like nephropathy, retinopathy, neuropathy, and atherosclerotic cardiovascular 50 

diseases (CVDs).  51 

CVDs are considered the most common cause of morbidity and mortality in diabetic 52 

patients. In the US, CVD death rates are 1.7 times higher among adults with DM than those 53 

without, which is attributable to the increased risk of stroke, myocardial infarction (MI), and 54 

heart failure (HF) (Leon & Maddox, 2015). Patients with T2DM have a two-to-five-folds 55 

increased risk of HF, independent of other risk factors like hypertension, coronary artery 56 

disease, and dyslipidaemia (Martín-Timón et al., 2014) (Nichols et al., 2004). A rise in 57 

glycated haemoglobin by 1% has been associated with an 8% increase in CVD risk (Stratton 58 

et al., 2000). Furthermore, the presence of T2DM worsens the prognosis of heart failure. In 59 

addition, T1DM patients have a 30% risk of HF with every 1% increase in glycated 60 

haemoglobin (Zhao et al., 2014).  61 

Hyperglycaemia and insulin resistance are the major etiological factors promoting 62 

cardiomyopathy and HF in diabetic patients (Jia et al., 2016). Ultimately, the progression of 63 

HF in DM is linked to pathological changes to the heart muscle and coronary vasculature, 64 

which eventually lead to diabetic cardiomyopathy (DCM) (Jia et al., 2018).  65 

Recently discovered antihyperglycemic agents, such as glucagon-like peptide-1 receptor 66 

agonists, and the sodium-glucose cotransporter-2 (SGLT2) inhibitors (SGLT2i) have shown 67 

cardioprotective effects. SGLT2i were shown to decrease the rates of HF and hospitalization 68 

from HF in several clinical trials (Ali et al., 2019). How these new antihyperglycemic drugs 69 
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exert cardioprotection is unknown, although some studies show involvement of the sodium 70 

hydrogen exchanger (NHE) and sodium-glucose transporter (SGLT) families. This review 71 

discusses some of the mechanisms predisposing to diabetic cardiomyopathy and highlights 72 

the role of NHE and SGLT transporters in cardiovascular disease. 73 

2. Pathophysiology of Diabetic Cardiomyopathy  74 

DCM is recognized by defects in the structure and performance of the myocardium in 75 

individuals with diabetes, independent of other cardiac risk factors. The structural 76 

abnormalities in DCM progress through three stages, an early stage characterized by diastolic 77 

dysfunction, which gradually develops to systolic dysfunction in the advanced stage, and 78 

eventually to HF in the late stage. (Jia et al., 2016).  79 

Early-stage DCM, mainly caused by hyperglycaemia and insulin resistance, presents with 80 

impairment in the left ventricle (LV) diastolic filling, compensated by increased LV and atrial 81 

filling pressure and left atrial enlargement (Seferović & Paulus, 2015). Hyperglycaemia leads 82 

to downregulation of GLUT4, impaired glycolysis, and increased free FA levels (from 83 

impaired FA metabolism). Insulin resistance results in increased lipolysis and elevated 84 

plasma FFA concentration as well leading to increased influx to myocytes and development 85 

of cardiac steatosis. The events result in high levels of ROS, impaired Ca2+ homeostasis, 86 

mitochondrial dysfunction, endoplasmic reticulum stress, oxidative stress, and activation of 87 

the sympathetic nervous system, all of which promote cardiac hypertrophy, fibrosis, and 88 

cardiomyocyte apoptosis (Jia et al., 2016). The advanced stage comprises continued cardiac 89 

injury and further stimulates the Renin-Angiotensin-Aldosterone System (RAAS) and 90 

maladaptive immune responses that culminate in impaired autophagy of cells (Jia et al., 91 

2016). Advanced stage features include LV hypertrophy and cardiac remodelling, with 92 

impaired cardiac diastolic function. Consequently, the individual may develop HF with a 93 

normal ejection fraction. In late-stage DCM, neurohumoral activation, impaired metabolism, 94 

and myocardial fibrosis weaken coronary microcirculation and the diastolic and systolic 95 

functions of the heart (Aronow & Ahn, 1999; Jia et al., 2018). Additionally, impaired insulin 96 

signalling and oxidative stress both decrease levels of the vasodilator nitric oxide (NO) (Jia et 97 

al., 2016). 98 



   

4 
 

2.1 The Role of Endothelial Dysfunction in the Development of DCM  99 

Studies on DCM development using animal models have implicated multiple 100 

pathophysiologic mechanisms, such as mitochondrial dysfunction, RAAS activation, Ca2+ 101 

homeostasis impairment, lipotoxicity, myocardial steatosis, glucose toxicity, and most 102 

recently, endothelial dysfunction. Hyperglycaemia is one of the main factors triggering 103 

endothelial dysfunction by exerting several biochemical changes that damage cardiac and 104 

vascular endothelial cells. Some of these changes trigger ROS production and induce 105 

oxidative stress levels that overwhelm cells, enhance non-enzymatic glycation, activate 106 

protein kinase-C (PKC), and ameliorate the cells' redox potential (Avogaro et al., 2011). 107 

Oxidative stress promotes the formation and deposition of AGE products creating elevated 108 

interstitial collagen deposition and increased myocardial wall stiffness. If untreated, all of 109 

these DCM-related structural changes would result in HF (Jia et al., 2016). 110 

The endothelium is a single-layer cellular lining of the whole vascular system. Endothelial 111 

cells have unique functions vital for cardiovascular homeostasis. For example, the 112 

endothelium functions as a semi-permeable barrier between blood and body tissues. The 113 

endothelium also controls vascular tone by secreting the vasodilators nitric oxide, 114 

prostacyclin, and endothelium-derived hyperpolarizing factors, as well as producing 115 

vasoconstrictors like endothelin-1 and thromboxane-A2. Endothelial dysfunction, 116 

characterized by low nitric oxide bioavailability, occurs when endothelial cells lose their 117 

barrier property and fail to balance vascular dilatory and constrictive tone, coagulation, and 118 

anticoagulation. T1DM and T2DM patients show decreased vasorelaxation by NO (Avogaro 119 

et al., 2011; Endemann & Schiffrin, 2004). Reduced NO production is observed in diabetic 120 

experimental models (Hink et al., 2001; Shi & Vanhoutte, 2009), and in-vitro studies with 121 

endothelial cells have shown that high glucose levels lead to less NO production (De Vriese 122 

et al., 2000). Endothelial dysfunction is considered the first step in developing atherosclerotic 123 

complications in metabolic conditions such as diabetes, pre-diabetes, and obesity (Avogaro et 124 

al., 2006).  125 

Several mechanisms contribute to lower NO bioavailability during endothelial 126 

dysfunction. Production of ROS through NADPH oxidase, an electron transport chain 127 

protein, leads to oxidative stress. ROS reacts with NO to produce a cytotoxic oxidant 128 

compound called peroxynitrite. Peroxynitrite increases oxidative stress even further, which in 129 

turn lowers NO production through uncoupling of NO synthases (NOS) and mediates low-130 

density lipoprotein oxidation. Peroxynitrite also leads to protein dysfunction via nitration of 131 
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proteins. In insulin resistance, the PI3K/Akt pathway involved in NOS activation is inhibited, 132 

while endothelin-1 and adhesion molecule production pathways remain intact. Also, the 133 

presence of AGE products contributes to oxidative stress and leads to endothelial 134 

dysfunction. Endoplasmic reticulum stress, a pro-apoptotic pathway, is another mechanism 135 

where the pro-survival unfolded protein response becomes chronically activated (Aviello & 136 

Knaus, 2018; Avogaro et al., 2011; Endemann & Schiffrin, 2004; Maamoun et al., 2019; 137 

Muniyappa & Sowers, 2013).   138 

Antihyperglycemic medications that target and attenuate endothelial dysfunction such 139 

as liraglutide, metformin, pioglitazone, and SGLT2i (empagliflozin; EMPA, canagliflozin, 140 

CANA; dapagliflozin, DAPA) are becoming of great interest. (Batzias et al., 2018; Eriksson 141 

& Nyström, 2015). In porcine coronary artery cultured endothelial cells, high glucose 142 

increased endothelial dysfunction markers, oxidative stress, and VCAM-1, and reduced NOS 143 

expression. Treatment with SGLTi exerted a protective effect and prevented endothelial 144 

dysfunction (Khemais-Benkhiat et al., 2020). Additionally, in the obese ZSF1 rat model, 145 

systolic blood pressure (BP) was higher than the lean control group, NOS was 146 

downregulated, and expression of the adhesion molecule VCAM-1 was increased. Chronic 147 

treatment of T2DM ZDF rats with empagliflozin (EMPA) prevented oxidative stress, 148 

signalling and inflammation, AGE products formation, and attenuated endothelial 149 

dysfunction (Steven et al., 2017). In Apo-E-/- streptozotocin (STZ)-induced diabetic mice, 150 

treatment with EMPA also attenuated endothelial dysfunction and reduced atherogenesis 151 

(Ganbaatar et al., 2019). The EMBLEM trial included 117 patients with T2DM and 152 

concurrent CVDs, randomized into a 1:1 ratio to receive either placebo or EMPA over 24 153 

weeks (Tanaka et al., 2019). The primary endpoint was the change in reactive hyperaemia 154 

index, an endothelial dysfunction marker, from baseline. Per-protocol analysis did not show 155 

an improvement in endothelial dysfunction. However, the study was limited by the small 156 

number of patients and unrepresentable population. The mean population systolic BP was 157 

130 mmHg and the BMI 26.4 kg m-2, which are lower than expected values for diabetic 158 

patients with concurrent cardiovascular disease. In T2DM mice, treatment with dapagliflozin 159 

(DAPA) attenuated endothelial dysfunction, vascular smooth muscle dysfunction, and arterial 160 

stiffness (Lee et al., 2018). Gaspari et al. (2018) showed that DAPA attenuated TNFα- and 161 

hyperglycaemia-induced endothelial dysfunction in vitro with a human endothelial cell line. 162 

While in-vivo, both adult and aged ApoE-/- mice chronically administered with DAPA 163 

showed attenuated endothelial dysfunction and less vascular adhesion molecules. 164 
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2.2 The Role of Metabolic Disturbances in the Development of DCM 165 

Myocardial cells are characterized by their metabolic flexibility, which is the ability to 166 

utilize several substrates such as glucose, lactate, and fatty acids (FAs) to generate ATP 167 

molecules. In a healthy heart, there is a constant supply of ATP by oxidative phosphorylation 168 

of FAs in the mitochondria (60 – 90%), while maintaining a balance in using other substrates 169 

like glucose and lactate (Stanley & Chandler, 2002). 170 

In diseases such as HF and DM, the metabolic balance is impaired. The failing heart 171 

increases the utilization of glucose over FAs to increase energy production. However, in 172 

diabetic heart, there may be a metabolic shift toward FA oxidation rather than glucose 173 

oxidation. This shift is thought to be due to the chronic hyperglycaemia, insulin deficiency, 174 

and insulin resistance. The enhanced FA oxidation observed in a diabetic heart might exceed 175 

cardiac utilization capacity and predispose the heart to triacylglycerols (TAGs) and ceramides 176 

disposition, which in turn contributes to cardiac hypertrophy and stenosis. Along with the 177 

burden created by advanced glycated end products (AGEs), the cardiac metabolic changes 178 

promote collagen deposition and induce myocardial fibrosis leading to the damage of the 179 

cardiomyocytes present in DCM (Fuentes-Antrás et al., 2015).   180 

Furthermore, in cardiac diseases, ischemia and hypoxia promote a shift to anaerobic 181 

respiration. The activity of adenosine monophosphate kinase (AMPK), an energy balancing 182 

enzyme that promotes anaerobic ATP production, is allosterically regulated by the ratio of 183 

AMP to ATP. When ATP is abundant, it binds to AMPK and inactivates it. Therefore, during 184 

pathological low energy states when AMP is abundant, AMPK is activated to provide the 185 

heart with ATP. In addition to energy production, AMPK activation protects cells against 186 

myocardial injury during ischemia, reduces reactive oxygen species (ROS), and attenuates 187 

endoplasmic reticulum stress Additionally, sodium (Na+) overload, a characteristic of HF, 188 

increases calcium (Ca2+) efflux which interferes with the Krebs cycle, that is adding up to the 189 

metabolic disturbances (Qi & Young, 2015).   190 

3. Characteristics of NHE & SGLT membrane transporters  191 

3.1 NHE Overview  192 

The sodium hydrogen exchangers (NHE) family of integral membrane protein antiporters 193 

consists of 10 isoforms that function by exchanging sodium cations with protons through cell 194 

membranes (Packer, 2017). NHE1 and NHE3 are two well-studied isoforms involved in renal 195 
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and cardiovascular homeostasis. NHE1, ubiquitous in mammalian cells, is the dominant 196 

isoform in the heart where it regulates intracellular pH, cell volume, and proliferation and 197 

shows the highest expression in the kidney (Das et al., 1987; Packer, 2017; Parker et al., 198 

2015). NHE3 contributes to regulating extracellular volume and BP by reabsorption of Na+ in 199 

the kidney (Dominguez Rieg et al., 2016; Packer, 2017). 200 

3.1.1 Activity and Regulation of NHE1 and NHE3 201 

NHE1 influxes Na+ in response to intracellular acidification, where the protein exhibits 202 

an allosteric binding site for protons. Regulation of NHE1 can also occur in response to 203 

different membrane receptors that can exert conformational changes or C-terminal 204 

phosphorylation. Extracellular and hormonal pathways, such as angiotensin II (ANG-II), 205 

endothelin-I, and thrombin, control the activity of NHE1 regulators. Receptor regulators of 206 

NHE1 include protein kinases, G-coupled receptors, and integrin receptors (Vallés et al., 207 

2015).  Tyrosine kinase activation increases NHE1 activity through the Ras-mediated ERK 208 

cascade, including Ras downstream effectors such as MEK1/2, Raf-1, and ERK. However, 209 

the serine/threonine kinase ERK downstream effector called p90 ribosomal S6 kinase 210 

(p90RSK) directly phosphorylates NHE1 instead of ERK (Putney et al., 2002). The RSK 211 

family of transporters includes four isoforms (RSK1-4). RSK1, also designated as p90RSK, 212 

sustains regular cardiac function, making this enzyme essential (Lara et al., 2013). p90RSK 213 

hyperactivity induces cardiac hypertrophy and HF. In neonates, p90RSK activation increases c-214 

Fos and Egr-1 expression in ventricular myocytes to promote myocytes' development 215 

(Takahashi et al., 1999). Furthermore, p90RSK activation reduces glycogen synthase kinase-3ꞵ 216 

(GSK-3β) activity in mice with defective ryanodine receptor ion channels leading to cardiac 217 

hypertrophy progression (Q. He et al., 2010). A study by Takeishi et al. (1999) found aberrant 218 

activation of p90RSK in guinea pig pressure-overload-induced hypertrophic myocardium. 219 

Moreover, patients with dilated cardiomyopathy had higher levels of activated p90RSK than 220 

their healthy peers (Horie et al., 1992; Javadov et al., 2009; Muthusamy et al., 2013; Takeishi 221 

et al., 2002; Yamaguchi et al., 2011). These findings highlight the role of p90RSK in inducing 222 

cardiac dysfunction, remodelling, and its role in NHE1 activation.  223 

Akt is another kinase known to regulate NHE1 activity. The duration of Akt activation is the 224 

determinant of its effect (Takeishi et al., 2002). Short-term Akt activation promotes 225 

physiological hypertrophy during postnatal cardiac development characterized by normal or 226 

enhanced contractile function (Walsh, 2006), while contractile dysfunction characterizes 227 
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long-term Akt activation (Shiojima et al., 2002). A study done on mouse embryo fibroblasts 228 

showed that Akt inhibition reduced NHE1 activity by blocking the translocation of NHE1 to 229 

the cell membrane. Furthermore, upstreaming of Akt enhances p90RSK activation and thus 230 

plays a role in cardiomyopathy (Clement et al., 2013; Kemi et al., 2008). 231 

The role of cardiac AMPK, one of the NHE channel regulatory kinases, in cardiac 232 

metabolism is not known. However, studies suggest that activating AMPK by 233 

phosphorylation triggers the trafficking of glucose transporters (GLUT1 and GLUT4) to the 234 

sarcolemma and increases glucose uptake (Qi & Young, 2015; Rotte et al., 2010). 235 

The G protein-coupled receptor subunits Gaq and Ga13 also activate NHE1. Ga13 activates 236 

NHE1 through the GTPase RhoA pathway, while Gaq activates NHE1 through the PKC-237 

dependent mechanism. The suppression of PKC in several Gaq protein-coupled receptors, 238 

namely α1-adrenergic, vasopressin, and endothelin-1, impairs NHE1 activation. However, in 239 

some Ca2+ mobilizing Gaq coupled receptors, NHE1 activation can occur independently of 240 

PKC. Moreover, integrin receptors can activate NHE1, which may be due to the shared 241 

signalling pathway with Ga13 that activates NHE1 (Avkiran & Haworth, 2003; Kitamura et 242 

al., 1995).  243 

Other than receptor-mediated regulation, NHE1 regulation occurs through the direct 244 

binding of regulatory proteins to the C-terminal. Accessory proteins, which take part in the 245 

regulation of cardiac NHE1 activity were also investigated, such as carbonic anhydrase-II 246 

(CAII), Ca2+-binding proteins (calmodulin and calcineurin B homologous proteins [CHPs]), 247 

and phospholipids.  Cellular Na+ concentration, regulated by NHE1, is instrumental for 248 

function, playing roles in Ca2+ regulation, metabolism, contractility, and heart stability 249 

(Lambert et al., 2015). 250 

Several physiological and hormonal modulators regulate NHE3 activity. The majority of 251 

the NHE3 regulatory hormones are coupled to protein kinases associated with intracellular 252 

signalling cascades. Different mechanisms such as direct phosphorylation, protein trafficking, 253 

and interaction with accessory proteins modulate NHE3 activity (Dynia et al., 2010; Pedersen 254 

& Counillon, 2019). Moreover, in a normal state, the regulation of NHE3 is dependent on its 255 

C-terminal phosphorylation. Various kinases, including casein kinase 2 (CK2), serum 256 

glucocorticoid-regulated kinase-1 (SGK1), protein kinase A (PKA), Ca2+/Calmodulin-257 

dependent Protein Kinase-II (CaMKII), cGKII, GSK-3, AKT, ERK and p90RSK mediate 258 

NHE3 phosphorylation (Dynia et al., 2010). No et al. (2015) demonstrated that 259 

lysophosphatidic acid (LPA) stimulated NHE3 activity by LPA5 receptor and EGF receptor 260 

(EGFR) transactivity. This, in turn, activated proline-rich tyrosine kinase 2 (Pyk2) and ERK 261 
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specifically in the apical membrane. The authors hypothesized that RSK could be an 262 

associated effector of Pyk2 and ERK since RSK is a well-known effector of EGFR and ERK. 263 

In contrast, the regulation of RSK by Pyk2 is still not known. The study showed that RSK2, 264 

but not RSK1, regulated direct phosphorylation of NHE3 and concluded that RSK2 265 

phosphorylation of NHE3 mediates NHE3 regulation by LPA. 266 

3.2 SGLT Receptors Overview 267 

Sodium-glucose co-transporters (SGLTs) are active symporters that belong to the solute-268 

carrier family-5 (SLC5) of active glucose transportation, and facilitate glucose homeostasis 269 

(Wright et al., 2011). The human SLC5 transporter family contains 12 members, with up to 270 

six different SGLT receptors identified in human cells. Functional studies showed that all 271 

SLC5 family proteins weigh between 60- to 80-kDa (580–718 amino acids). The most-272 

studied isoforms of this family, SGLT1 and SGLT2, are involved in glucose absorption and 273 

glucosuria. 274 

3.2.1 Activity and Regulation of SGLT   275 

Several studies have focused on the activity and expression of SGLT under different 276 

physiological/pathophysiological settings. SGLT1 expression was in the small intestine, 277 

kidneys, liver, lungs, cardiac myocytes, and highly expressed in the human heart. SGLT2 278 

expression was primarily found in the kidney and pancreatic alpha cells. (Kashiwagi et al., 279 

2015). SGLT1 levels are elevated further in cardiac ischemia or hypertrophy disease states. 280 

This increase in SGLT1 expression can be linked to the increased phosphorylation of 281 

secondary messengers such as ERK 1/2 and the mammalian target of rapamycin (mTOR), 282 

involved in the signaling pathways of cardiac ischemia/hypertrophy. However, further studies 283 

are required to confirm the proposed mechanism (Di Franco et al., 2017).  284 

The kidney plays a vital role in glucose homeostasis by promoting the reabsorption of 285 

filtered glucose. The two isoforms carry out reabsorption across the apical cell membranes 286 

(Poulsen et al., 2015). SGLT2 is located on the luminal membrane of the proximal 287 

convoluted tubule in S1 and S2 segments, whereas SGLT1 is expressed in the S3 segment 288 

(Figure 1) (Chao, 2014). A healthy kidney reabsorbs 90% of filtered glucose from the 289 

proximal tubule via SGLT2, whereas a diabetic kidney increases its reabsorption of glucose 290 

by 20% more than the normal rate through the overexpression of SGLT2. The active 291 

transport of glucose by both isoforms is linked with the transport of Na+ into the intracellular 292 
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fluid (Chao, 2014; Novikov & Vallon, 2016). Inhibition of this process promotes the 293 

reduction of intracellular Na+ levels and excretion of glucose in urine (glucosuria), leading to 294 

the correction of hyperglycaemia (Chao, 2014).  295 

4. Role of SGLT & NHE1 and 3 in Diabetes  296 

DM can stimulate the proliferation of vascular smooth muscle cells (VSMCs) to 297 

proliferate through insulin and insulin-like growth factor 1 (IGF-1), which is in turn mediated 298 

by NHE1. Insulin can stimulate the transcription of NHE1 directly and regulate the activity of 299 

NHE1 in nonvascular cells, while IGF-1 regulates NHE1 activity in vascular cells. Moreover, 300 

hyperglycaemia affects the activity of NHE1. For example, hyperglycaemia increases the 301 

production of diacylglycerol precursors, leading to the PKC activation, consequently 302 

activating NHE1. Also, NHE1 in VSMCs can be activated by the oxidized LDL which has 303 

been shown to be elevated in DM and hyperlipidaemia. Furthermore, AGEs react with the 304 

extracellular matrix, resulting in the thickening of vessel walls. Besides, VSMCs adhesion, 305 

which is mediated by cell surface integrins and extracellular matrix proteins, promotes PKC 306 

activation and stimulation of NHE1 activity. Interestingly, it was speculated that glycation of 307 

the extracellular matrix protein fibronectin inhibited NHE activity and suppressed the growth 308 

of VSMCs (Hannan & Little, 1998).   309 

On the other hand, the activity of NHE3 is stimulated as a result of increased levels of 310 

insulin, glucose, and specific adipokines in T2DM. The increased activity and upregulation of 311 

NHE3 may be instrumental to developing chronic complications in diabetic patients such as: 312 

diabetic nephropathy and uric acid nephrolithiasis (Packer, 2017). The early phase of diabetic 313 

kidney disease presents changes in eGFR, elevated reabsorption of salt and water, and 314 

expanded extracellular volume, all of which advance to hypertension, hyperfiltration, and 315 

eventually renal hypertrophy (Girardi & Sole, 2012). 316 

The number of main Na+ and water transporters are hypothesized to increase in diabetic 317 

kidneys as a compensatory mechanism due to extensive water and Na+ loss (Song et al., 318 

2003). The study demonstrated that STZ- induced T1DM rats had an increased protein 319 

content of Na+ and water transporters NHE3 (204% of the vehicle mean), thiazide-sensitive 320 

Na+/Cl- co-transporter, and α, β, and γ subunits of the epithelial sodium channel. According 321 

to another study conducted by Klisic et al. (2006) using a similar animal model, brush-border 322 

membrane NHE3 activity was significantly higher by 40% after seven days and 37% after 14 323 

days compared to control rats. However, the increased activity of NHE3 was not associated 324 
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with changes in NHE3 protein or mRNA. Unlike Song et al. (2003), they selectively used 325 

cortical brush-border membrane vesicle for analysis to reflect proximal tubule NHE3 and not 326 

the analysis of whole kidney homogenates. An STZ-induced diabetic rat study demonstrated 327 

that diabetic kidneys were 67% larger in size, had 22% longer proximal tubules, and 20% 328 

longer distal tubules compared to normal rat kidneys Rasch (1984). Since the reabsorption of 329 

Na+ occurs mainly in the proximal tubules, its elongation can easily result in increased 330 

activity of NHE3 (Girardi & Sole, 2012). Hyperglycaemia also enhances ANG-II production 331 

by stimulation of angiotensinogen and RAAS. This further activates NHE3 via the SGK1 332 

signalling cascade involving phosphatidylinositol 3-kinase (PI3-kinase) and 3-333 

phosphoinositide-dependent protein kinase-1 (PDK1) (Ackermann et al., 2009; Stevens et al., 334 

2008). Another signal cascade of ANG-II induced NHE3 stimulation includes the non-335 

receptor tyrosine kinase (c- Src), PI3-kinase  activation, PKC (du Cheyron et al., 2003; 336 

Tsuganezawa et al., 1998), and Ca2+ and CaMKII (P. He et al., 2010).In the proximal tubule, 337 

the uptake of albumin requires the involvement of the megalin/cubilin complex. In diabetic 338 

nephropathy, there is decreased endocytosis of albumin due to decreased megalin expression, 339 

characterized by microalbuminuria (Tojo et al., 2001). The decreased albumin uptake leads to 340 

elevated intratubular albumin concentration, stimulating NHE3 activity and further worsening 341 

kidney damage (Girardi & Sole, 2012). In the Opossum kidney cells, high glucose levels 342 

resulted in hypertrophy due to increased osmolality (Drumm et al., 2003). Consequently, 343 

albumin uptake increased because of NHE3 overactivity.  344 

5. Role of SGLT & NHE1 and 3 in Cardiovascular Diseases  345 

5.1 Ischemia-Reperfusion Injury, Cardiac Remodelling, and Hypertrophy 346 

HF is a syndrome often developed after several remodelling processes in the heart that 347 

includes LV hypertrophy, fibrosis, and diastolic dysfunction (Uthman et al., 2018). In 348 

diabetes, the heart is in a state of metabolic overload due to cardiac metabolism. Several vital 349 

mechanisms were linked to the induction of cardiac impairment and the early development of 350 

HF that overlap with other CVDs. NHE and SGLT's potential relevance to the direct effects 351 

in the myocardium will be discussed concerning the early stages of HF development.  352 

As NHE 1 is the main plasma membrane isoform in the heart, it takes an essential part in 353 

cardiac functioning in normal and disease states. Hormones such as endothelin-1, ANG-II, 354 

and α-adrenergic stimulators, contribute to NHE1 activity in cardiac remodelling (Odunewu-355 

Aderibigbe & Fliegel, 2014; Wakabayashi et al., 2013). Overactivity of NHE1 has been 356 
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proven to cause several pathological changes in the myocardium, including ischemia-357 

reperfusion injury (IRI), cardiac remodelling, hypertrophy, and apoptosis that eventually can 358 

progress to HF, The potential mechanisms underlying the role of NHE1 in the remodelling 359 

process can be summarized by the role of both Na+ accumulation and mitochondrial 360 

remodelling (Karmazyn et al., 2008). During the disease state, as an adaptive mechanism, 361 

NHE1 activity is increased to correct the reduced intracellular pH. Since the Na+/K+ ATPase 362 

becomes inactive during ischemia, NHE-mediated Na+ influx leads to the intracellular 363 

accumulation of Na+ (Cingolani Horacio & Ennis Irene, 2007; Imahashi et al., 2007; 364 

Karmazyn et al., 2008). This rise in intracellular Na+ consequently leads to the two-folds 365 

elevation in intracellular Ca2+ by direct reversal of Na+/Ca2+ exchanger (Figure 2)  366 

(Wakabayashi et al., 2013), leading to an intracellular Ca2+ overload which in turn triggers 367 

deleterious pathways that lead to myocardial injury, hypertrophy, and subsequent dysfunction 368 

(Figure 3). Additionally, impairment of mitochondrial function and structure due to swelling, 369 

ATP depletion/dysfunction, ROS production, and opening of the mitochondrial permeability 370 

transition pore (MPTP) often accompanies cardiac hypertrophy. On the other hand, NHE1 371 

inhibition and gene ablation attenuates the opening of MPTP and balances the amounts 372 

fission and fusion proteins on the mitochondria. Hence, NHE1 inhibition serves as a 373 

cardioprotective mechanism to prevent Na+ and Ca2+ accumulation and subsequent activation 374 

of intracellular pathways, which in turn may improve mitochondrial function and structure 375 

integrity, and the cumulative adverse effects on the myocardium (Odunewu-Aderibigbe & 376 

Fliegel, 2014). Various studies have shown that inhibition and genetic ablation of NHE1 of 377 

in-vivo models protected the myocardium from ischemia-reperfusion injury (Wang et al., 378 

2003). In another study, although transgenic mice models overexpressing NHE1 had no 379 

significant effect on cardiac function, intracellular pH, intracellular Na+, and ischemia-380 

reperfusion injury, NHE1 inhibition with cariporide prior to the development of ischemia 381 

prevented accumulation of Na+ and Ca2+ and decreased ischemia-reperfusion injury, showing 382 

that baseline NHE1 activity was not the rate-limiting step (Imahashi et al., 2007).   383 

The effect of SGLT on diabetic hearts has been well researched within the last few 384 

years. Although most of the literature reported on the impact of SGLT2i preventing CVD in 385 

T2DM, SGLT2 receptors were not detected in the heart. New data confirmed that SGLT1 386 

expression and activity are upregulated in ischemia, hypertrophic, failing, and diabetic hearts 387 

in humans with end-stage cardiomyopathy and animal models (García-Ropero et al., 2019; 388 

Uthman et al., 2018). Ramratnam et al. (2014) reported that overexpression of SGLT1 in 389 

transgenic mice was associated with pathologic cardiac hypertrophy and LV dysfunction. 390 
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During ischemia, glucose uptake and utilization increase along with a 2-to-3-fold 391 

upregulation of SGLT1. This upregulation was postulated to be an adaptive response to injury 392 

and as a response to AMPK and ERK1/2 activation (García-Ropero et al., 2019). How 393 

SGLT1 up-regulation makes an impact is not known, and discrepancies between studies leave 394 

it uncertain whether SGLT1 receptors exert a protective or deleterious role in cardiac 395 

physiology.  396 

During acute injuries, SGLT1 over-expression facilitates glucose uptake and 397 

generates ATP molecules for the heart through anaerobic glycolysis. Kashiwagi et al. (2015) 398 

provided evidence of the protective role of SGLT1 against IRI. Using the ex-vivo murine 399 

langendorff model, they studied the role of SGLT1 inhibition by phlorizin on cardiac 400 

function. During IRI, the use of phlorizin resulted in significant impairment in the recovery of 401 

LV contractions and increased infarct size (due to increased CPK activity). There was also a 402 

reduction in ATP content associated with a decrease in glucose uptake and glycolysis, 403 

showing that SGLT1 inhibition during ischemia-reperfusion impairs cardiac metabolism. 404 

On the other hand, several studies showed that SGLT1 inhibition leads to the improvement of 405 

cardiomyopathy. This is evidenced by several experimental studies in SGLT1 knockdown 406 

models. Ramratnam et al. (2014) reported that double-transgenic mice (SGLT1 knockdown 407 

with PRKAG2 mutation) have attenuated cardiac glycogen accumulation, cardiac 408 

hypertrophy, and LV dysfunction. Similarly, Z. Li et al. (2019) discovered that 409 

pharmacological and genetic inhibition of SGLT1 prevented injuries following ischemia-410 

reperfusion (in in-vivo, ex-vivo, and in-vitro models) and reduced ROS, myocardial necrosis, 411 

infarct size, along with improved hemodynamic functions. Furthermore, an in-vitro study 412 

(Balteau et al., 2011) on adult rat myocytes demonstrated that increased glucose transport 413 

through SGLT1 results in NADPH oxidase (NOX2) activation, leading to increased 414 

production of ROS and subsequent damage to cardiomyocytes (Figure 3). This effect was 415 

counteracted by phlorizin, an SGLT1 inhibitor.  416 

In contrast to SGLT1, SGLT2 receptors were not detected in the heart. The 417 

mechanism of SGLT2i cardioprotection is still undetermined, but studies have shown that 418 

SGLT2i affect cardiomyocytes by directly inhibiting NHE and improving mitochondrial 419 

function. Future studies should investigate if there is a link between SGLT2i and SGLT1 in 420 

failing hearts and whether dual inhibition may have other beneficial effects on the 421 

myocardium. However, Lee et al. (2021) induced MI through left anterior descending artery 422 

ligation in non-diabetic mice. Three-days after MI induction, there was a transient expression 423 

of SGLT2 in the site of occlusion in the heart showed by immunofluorescence and western 424 
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blot. However, the authors could not conclude if SGLT2 is expressed by cardiomyocytes or 425 

by the inflammatory cells migrating to the infarct site.  426 

Overall, there is an interplay between the two membrane transporters (SGLT1 and NHE1) 427 

in mediating cardiac effects in failing hearts. While the role of NHE1 inhibition is well 428 

defined, the cardioprotective mechanism of SGLT2 inhibition is unknown with the exemption 429 

of SGLT2i direct NHE1 inhibition. Interestingly, a preclinical in-vitro study in 430 

lipopolysaccharide (LPS) stimulated mouse cardio-fibroblasts tested the hypothesis that 431 

DAPA can cause NHE1 downregulation AMPK- dependent pathway. Ye et al. (2018) 432 

reported that DAPA resulted in elevated levels of the phosphorylated form of AMPK in LPS 433 

stimulated cardio-fibroblasts. The results showed that DAPA mitigated the rise in NHE1 434 

mRNA and confirmed the relation between NHE1 and Hap70 through the AMPK dependent 435 

pathway. Similarly, Uthman et al. (2018), proved that the three SGLT2i available in the 436 

market directly suppressed NHE1 activity in-vitro.  437 

5.2 Diabetic Cardiomyopathy 438 

A plethora of evidence suggests that NHE1 is noticeably involved in mediating cardiac 439 

hypertrophic responses in DCM, and therefore a potential therapeutic target (Karmazyn, 440 

2003). Mraiche et al. (2011) used two transgenic mouse models; one expressing wild type 441 

NHE1 and another expressing an activated form to investigate the effect of NHE1 activation 442 

on cardiac hypertrophy. NHE1 hyperactivation has been linked to elevated glucose levels in 443 

DCM induced by PKC-dependent mechanisms. Additionally, an increase in heart weight to 444 

body weight, apoptosis, fibrosis, and a decrease in cardiac functionality was recorded. 445 

Studies had shown an enhanced mitochondrial NHE1 activity in the hearts of diabetic rats. 446 

Allen and Xiao (2003) have illustrated that the main pathway for Na+ entry during 447 

reperfusion of an ischemic diabetic heart is NHE1. Na+ concentration changes are linked to 448 

altered Ca2+ influx, production of ROS, and cell damage. Additionally, expression of the 449 

activated form of NHE1 increased the sensitivity to neurohormonal stimulation (using 450 

phenylephrine). Indeed, patients with DM experience neurohormonal dysregulation. During 451 

HF, neurohormonal systems like norepinephrine, ANG-II, aldosterone, and neprilysin are 452 

activated, causing impaired insulin sensitivity and microvascular complications (Doliba et al., 453 

2018; Packer, 2017). Reduced insulin sensitivity and adipokine abnormalities are 454 

characteristic of DM and pathophysiological for HF.  455 
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Compared to NHE1, the NHE3 isoform distribution is mainly limited to the kidney and 456 

gastrointestinal epithelial cells. The main role of NHE3 in DCM is related to its regulation of 457 

Na+ reabsorption in the proximal tubules, which regulates sodium uptake following 458 

glomerular filtration. NHE3 activity is enhanced with neurohormonal stimulation by 459 

norepinephrine, ANG-II, and aldosterone in HF. Additionally, insulin, glucose, and some 460 

adipokines, which are elevated in T2DM, stimulate NHE3. In HF, NHE3 activity is elevated 461 

in the kidney mediating Na+ reabsorption, leading to fluid and Na+ retention, peripheral 462 

oedema, and diuretic resistance. NHE3 hyperactivity in DM also leads to kidney mesangial 463 

cell proliferation, hyperfiltration, and diabetic nephropathy, contributing to cardiac overload 464 

and further worsening of HF (Packer, 2017; Silva dos Santos et al., 2019). Considering all 465 

these pathophysiological changes, concluding that the NHE family could link HF and DM is 466 

reasonable.   467 

Regarding the SGLT family, evidence shows enhanced SGLT1 expression in end-468 

stage cardiomyopathy in obese mice with T2DM. Controversially, reduced expression of 469 

SGLT1 is recorded in T1DM. This suggests that the increase in its expression might be 470 

attributed to the hyperinsulinemia state found in T2DM, but not T1DM. SGLT1 expression 471 

was linked to cardiac fibrosis and collagen deposition in the heart (Zhou et al., 2015). 472 

Hypertrophic cardiomyopathy was induced through a transverse aortic constriction in a titin-473 

truncated mouse model that increases interstitial fibrosis in wild-type mice without affecting 474 

SGLT1 deficient mice. Additionally, SGLT1 contributes to the oxidative stress seen in DCM, 475 

as its destruction in mouse atrium cardiomyocytes protects the cells against hypoxia and 476 

reoxygenation injury (Kuznetsov et al., 2015). Furthermore, mice with cardiomyocyte-477 

specific SGLT1 knockdown were resistant to both in-vivo and ex-vivo myocardial 478 

ischemia/reperfusion injury (Yoshii et al., 2019).  479 

SGLT2 is an isoform mainly present in the kidneys, while there is a limited-to-no 480 

expression in the heart. However, the cardioprotective effects of SGLT2i suggest that SGLT2 481 

is involved in DCM by expression in the kidney; there is an increased expression of renal 482 

SGLT2 and enhanced glucose reabsorption (Vallon & Sharma, 2010). Studies using knockout 483 

mice as a negative control have shown an enhanced SGLT2 expression in T2DM and T1DM 484 

mice. However, the biological mechanism for SGLT2 upregulation in DM is not understood. 485 

A study with human embryonic cells (HEK-293T) showed that insulin phosphorylated the 486 

SGLT2 Ser624 residue, which increased ROS production, further damaging kidney cells 487 

(Novikov & Vallon, 2016). Interestingly, using hypoinsulinemic T1DM, there was also 488 

enhanced expression of SGLT2, which suggests the involvement of other regulatory proteins. 489 
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ANG-II can increase SGLT2 expression, and its role in inducing cardiac hypertrophy, heart 490 

failure, and DCM is proven. This shows a link between the expression of SGLT2 in the 491 

kidneys and DCM (Vallon & Sharma, 2010). 492 

5.3 Hypertension  493 

Hypertension occurs as an autoregulatory response to increased Na+ concentration due to 494 

increased reabsorption. Na+ reabsorption is mediated by activating the RAAS and the 495 

consequent triggering of the ANG-II Type 1 (AT1) receptor, stimulating NHE3-induced Na+ 496 

influx (Dominguez Rieg et al., 2016). Increased Na+ influx promotes the significant 497 

expansion of extracellular volume and cardiac output and mediates a rise in peripheral 498 

vascular resistance resulting in elevated BP (Girardi & Sole, 2012). Hypertension signals the 499 

body to promote re-establishment of the expanded volume via decreased eGFR followed by 500 

pressure natriuresis.  501 

Overexpression of NHE3 in proximal tubules was detected in the spontaneously 502 

hypertensive rat (SHR) model of human primary hypertension (X. C. Li et al., 2019). 503 

Interestingly, ANG-II leads to the overexpression of NHE3 in cultured cells of the proximal 504 

tubules as it stimulates the exocytosis of NHE3. In fact, it was found that along with NHE 505 

regulatory factor 1, IRBIT protein forms a complex with NHE3 during exocytosis after ANG-506 

II stimulation. (He et al., 2016). Other anti-natriuretic peptide hormones such as insulin and 507 

glucocorticoid caused the activation of NHE3 in proximal tubules (Fuster et al., 2007; X. C. 508 

Li et al., 2019; Pao et al., 2010; Wang et al., 2007). Li et al. (2015) studied the role of NHE3 509 

in hypertension using NHE3-/- mice with the transgenic rescue of NHE3 in the small intestine 510 

and affirmed their hypothesis that NHE3 is essential for ANG-II induced hypertension. In 511 

mice with ANG-II-induced hypertension, the selective genetic deletion of NHE3 of the 512 

proximal tubule attenuated the condition (X. C. Li et al., 2019). Studies showed that 50% of 513 

hypertensive individuals were insulin resistant. Moreover, hypertensive patients are at an 514 

high risk of developing CVDs (Lima et al., 2009). NHE3 participates in Na+ reabsorption in 515 

proximal tubules and plays a critical role in the absorption of dietary Na+ from the gut. Two 516 

studies had investigated the role of gut NHE3 using oral NHE3 inhibitor with low systemic 517 

absorption on obese SHR. The treatment had significantly reduced the absorption of Na+ 518 

from the gut and reduced BP (Linz et al., 2016; Linz et al., 2012).  519 

NHE1 contributes to pH, salt, and volume regulation, linking it to hypertension. Using 520 

NHE1-overexpressing transgenic mice, Kuro-o et al. (1995) showed that NHE1 521 
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overexpression caused salt-sensitive BP elevation in mice. Primary hypertensive animal 522 

models and peripheral cells of primary hypertensive donors also showed increased NHE1 523 

activation (Orlov et al., 1999). Conversely, NHE1 knockout in mice leads to a reduction in 524 

BP and artery tension (Boedtkjer et al., 2012). It is suggested that NHE1 overactivity in 525 

VSMCs increases intracellular Na+, reduces Na+/Ca2+ exchangers, and leads to elevated 526 

intracellular Ca2+ and increased contraction. With chronic NHE1 overactivation, abnormal 527 

cell proliferation can occur in VSMCs (Bobulescu et al., 2005).In proximal tubules, 528 

alterations in Na+ transporters impact the extracellular volume thus changing BP 529 

independently from transporters in other renal segments. In hypertension, there is an increase 530 

in Na+ reabsorption that mainly occurs in the proximal tubule and loop of Henle. SGLT2, 531 

which is localized in the proximal tubule, is responsible for 60-90% of renal uptake of Na+ 532 

and glucose (Cianciolo et al., 2020; Thomas & Cherney, 2018).  533 

The relationship between SGLT2 activity and hypertension is not known yet. When 534 

Bautista et al. (2004) compared SGLT2 activity in the proximal tubule of renovascular 535 

hypertensive rats with normotensive rats, they saw that Na+-dependent glucose uptake and 536 

SGLT2 expression were higher in the renovascular hypertensive group. In chronically infused 537 

ANG-II Wistar rats, the activity and expression of SGLT2 were increased. Using EMPA did 538 

not affect the BP; however, losartan, a RAAS inhibitor, reduced BP. In this study, Losartan 539 

prevented renal damage, while EMPA produced a minimal protective effect. Nonetheless, 540 

EMPA attenuated oxidative stress (Reyes-Pardo et al., 2019). Clinical trials have consistently 541 

shown that SGLT2i reduces BP (Sanidas et al., 2020). In the EMPA-REG OUTCOME trial, 542 

EMPA was correlated with minimal BP reduction (Zinman et al., 2015). Similarly, CANVAS 543 

and CANVAS-R studies showed a reduction in systolic BP by 3.9 mmHg in the canagliflozin 544 

(CANA) treated group compared to placebo (Neal et al., 2017). In the DECLARE-TIMI 58 545 

trial, patients treated with DAPA had lower BP by 2.7 mmHg versus placebo (Wiviott et al., 546 

2018). A meta-analysis comprised of 27 RCTs with 12,960 participants concluded that 547 

SGLT2i resulted in lower systolic and diastolic BP by 4 mmHg (95%CI, -4.4 to -3.5), and 1.6 548 

mmHg (95%Cl, -1.9 to -1.3), respectively from baseline (Baker et al., 2014). 549 

SGLT2 upregulation could be a partial contributor to hypertension pathogenesis, however 550 

several hypotheses explain the role of SGLT2 and its inhibition in BP regulation (Sanidas et 551 

al., 2020). Diuresis associated with SGLT2i may cause reduced BP. However, diuresis is a 552 

temporary SGLT2i effect, while BP reduction from baseline is a sustained effect (Filippatos 553 

et al., 2016; Sanidas et al., 2020). 554 
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A direct relationship between SGLT1 and BP has not been established. SGLT1 deficient 555 

(SGLT1-/-) mice show glucose-galactose malabsorption; however, the absence of SGLT1 did 556 

not affect BP compared to wild-type mice (Gorboulev et al., 2012). BP exhibits a diurnal 557 

rhythm and SGLT1 expression exhibits a similar rhythm with the highest expression in the 558 

morning (Tavakkolizadeh et al., 2001). Remarkably, a hypertensive animal model showed a 559 

downregulation in SGLT1 function and expression (Mate et al., 2006). More research is 560 

needed to  determine how SGLT1 is involved in hypertension pathophysiology (Poulsen et 561 

al., 2015). 562 

In summary, SGLT and NHE exhibit different roles in hypertension. Hypertension can 563 

worsen the prognosis of DCM where it contributes to the enlargement of the cardiac wall 564 

thickness and mass. Increased BP, along with other stimuli, causes vasoconstriction and fluid 565 

overload that aggravates cardiac hypertrophy and fibrosis of the myocardium. 566 

6. Available Inhibitors and Their Clinical Outcomes  567 

6.1 Clinical Evaluation of NHE-1 Inhibitors 568 

Substantial evidence supports the protective role of inhibiting NHE1 in reducing IRI 569 

development, cardiac hypertrophy, systolic dysfunction, and HF. Several NHE1 inhibitor 570 

studies (e.g., cariporide, eniporide, and zoniporide) showed significant protection against CV 571 

injuries (Packer, 2017). Despite that, clinical studies in human subjects showed varying 572 

results. Therefore, a cardioprotective role of NHE1 inhibition in humans is controversial.  573 

The ESCAMI randomized trial investigated eniporide effect on patients (n=1389) with ST-574 

elevation MI (Zeymer et al., 2001) for the primary outcome of the change in infarct size with 575 

eniporide as add-on therapy to reperfusion in IRI. However, eniporide did not reduce the 576 

infarct size nor improve patients’ clinical outcomes. However, the protective effect of 577 

cariporide in animal models may have been due to the administration of cariporide during 578 

ischemia and not during reperfusion (Klein et al., 2000). Rupprecht et al. (2000) tested the 579 

effect of cariporide (40 mg) on 100 patients with acute anterior MI getting direct coronary 580 

angioplasty. Compared to placebo, patients who received cariporide had higher ejection 581 

fraction (50% vs. 40%; P<0.05), lower end-systolic volume (69 vs. 97 mL; P<0.05), 582 

significant improvement in wall motion abnormalities, and reduced cumulative release of 583 

CK-MB (p= 0.047). Thus, NHE inhibition by cariporide may prevent reperfusion injury and 584 

aid in the recovery from ventricular dysfunction. This study contradicts the ESCAMI study's 585 

findings concerning the effects of NHE inhibition, as an adjunct to reperfusion therapy, on 586 
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the myocardium. The GUARDIAN study assessed the safety and efficacy of cariporide (20, 587 

80, or 120 mg) in a cohort of patients (n=11,590) at risk for myocardial necrosis (Chaitman, 588 

2003). The cardioprotective effect was only evident in patients who underwent coronary 589 

artery bypass graft surgery (CABG) and treated with 120 mg cariporide. The EXPEDITION 590 

study was the first phase-3 myocardial protection trial to examine cardioprotective effects of 591 

cariporide in high-risk patients (n=5,761) undergoing CABG (Mentzer et al., 2008). The drug 592 

resulted in increased mortality rates associated with increased cerebrovascular events (2.2% 593 

with cariporide vs. 1.5% with placebo; P=0.02). The incidence of death or MI was 594 

significantly reduced from 20.3% in the placebo group to 16.6% in the cariporide-group 595 

(P=0.0002). However, due to the increased mortality, the study was early terminated. The 596 

findings suggested that NHE1 inhibition could significantly reduce ischemia-reperfusion 597 

injuries and that cariporide is unlikely to be used clinically.  The mixed findings obtained 598 

from the clinical research of NHE inhibitors conflict with the highly favourable evidence 599 

from experimental studies and emphasize the challenges facing the translation of potential 600 

therapies from the laboratory to the clinic.  601 

6.2  Clinical Evaluation of SGLT Inhibitors 602 

As SGLT1 and SGLT2 are considered the primary transporters involved in glucose 603 

homeostasis, several drugs have been developed to inhibit their activity. Inhibiting SGLT1 604 

results in better post-meal blood glucose control by blocking glucose uptake in the intestine, 605 

which decreases the glycaemic burden. Furthermore, as most glucose reabsorption processes 606 

in the proximal convoluted tubule are mediated by SGLT2, inhibition of this transporter 607 

reduces the kidney glucose threshold and excretion of glucose lowers glucose plasma levels. 608 

This effect is insulin-independent, and therefore, if this class of inhibitor is used alone, the 609 

risk of hypoglycaemia is low. These drugs can also increase weight loss by promoting urinary 610 

glucose excretion (Raskin, 2013). 611 

The development of SGLT inhibitors started in 1835 with the discovery of phlorizin, 612 

which was speculated to treat malaria and infections until 1886 when it was reported to cause 613 

glucosuria and renal effects (Chasis et al., 1933; Dominguez Rieg & Rieg, 2019). 614 

Administration of subcutaneous phlorizin to diabetic rats with insulin resistance normalized 615 

insulin sensitivity and glucose levels (Rossetti, Shulman, et al., 1987; Rossetti, Smith, et al., 616 

1987). However, the clinical use of phlorizin was limited due to its poor bioavailability, low 617 
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solubility, and non-selectivity in SGLT inhibition with increased selectivity to SGLT2 618 

compared to SGLT1 (Crespy et al., 2001; Dominguez Rieg & Rieg, 2019). 619 

Due to the limitations of phlorizin, other compounds were developed, such as T-1095 and its 620 

active form T-1095A which are synthetic compounds derived from phlorizin. Oral T-1095 621 

exhibited dose-dependent elevation in urine glucose excretion by inhibiting SGLT2 in the 622 

proximal tubule, resulting in reduced blood glucose concentration (Oku et al., 1999). 623 

Additionally, T-1095 reduced postprandial blood glucose levels in STZ-induced diabetic rats 624 

via inhibition of SGLT1 in the intestine. However, the clinical use of T-1095 was limited due 625 

to its non-selectivity.  626 

Currently, several SGLT2 inhibitors are approved for clinical use in the US and 627 

worldwide, and others are under development. Sotagliflozin is an example of a dual SGLT1/2 628 

inhibitor with only ~30-folds higher selectivity for SGLT2 over SGLT1, seeking approval by 629 

the FDA (Dominguez Rieg & Rieg, 2019). Two randomized controlled trials, SOLOIST-630 

WHF and SCORED, randomized T2DM patients with CKD or recent HF hospitalizations, 631 

respectively, to receive either sotagliflozin or placebo and found a statistically significant 632 

reduction in death from cardiovascular causes, HF hospitalizations, urgent visits for HF, and 633 

all-cause mortality (Bhatt, Szarek, Pitt, et al., 2020; Bhatt, Szarek, Steg, et al., 2020).  634 

Other SGLT inhibitors are still under investigation, such as Mizagliflozin, a selective SGLT1 635 

inhibitor; and licogliflozin, a dual SGLT1/2 inhibitor (Dominguez Rieg & Rieg, 2019). 636 

Recently, several SGLT2i were developed and approved to be used in T2DM patients. In 637 

addition to their glucose-lowering effects, CANA DAPA and EMPA showed clinical 638 

evidence of improved clinical outcome of HF, chronic kidney disease, and CVD in patients 639 

with adequate eGFR.(García-Ropero et al., 2019). The CANVAS program joined the analysis 640 

of CANVAS and CANVAS-R, which included patients with T2DM and increased CV risk to 641 

assess CANA use compared to placebo (Neal et al., 2017). The CANVAS trial assessed CV 642 

risk and major adverse cardiac events, while the CANVAS-R trial assessed the progression of 643 

albuminuria in patients using CANA versus placebo. The combined analysis showed CANA 644 

lowers CV events and probably attenuates albuminuria progression. However, it increases the 645 

risk of metatarsal amputation compared to placebo. EMPA is another example of an SGLT2 646 

inhibitor with cardioprotective evidence. In the EMPA-REG OUTCOME trial (Zinman et al., 647 

2015), EMPA was reported to reduce CV death by 38%, HF hospitalization by 35%, and 648 

death from any cause by 32% in T2DM patients at high CV risk. Additionally, the 649 

DECLARE-TIMI trial evaluated the effect of DAPA in patients with T2DM and established 650 

CVD or CV risk factors (Wiviott et al., 2018). Although DAPA was associated with lower 651 



   

21 
 

rates of HF hospitalization or CV death than placebo, there was no difference in major 652 

adverse cardiac events between placebo and DAPA. Furthermore, the DAPA-HF and 653 

EMPEROR-REDUCED trials found a protective effect of DAPA and EMPA, respectively, 654 

against CV death plus HF hospitalizations in HF patients regardless of the presence of 655 

diabetes (McMurray et al., 2019; Packer et al., 2020).As per these findings, the American 656 

Diabetes Association recommends a combination therapy of metformin and SGLT2 inhibitor 657 

for established ASCVD, HF, or chronic kidney disease (ADA, 2021). Other clinical studies 658 

pointed to the natriuretic effects of SGLT2i, which impact CV benefits through a reduction in 659 

fluid retention and the risk of developing HF. Using immunofluorescence, Pessoa et al. 660 

(2014) reported that NHE3 co-localizes with SGLT2, not SGLT1, concluding that SGLT2i 661 

causes diuresis via NHE3 inhibition. A recent randomized placebo-controlled crossover study 662 

in 20 patients with T2DM and HF treated with EMPA monotherapy showed a significant 663 

increase in fractional excretion of Na+ (FENa) compared to placebo (P=0.001). A synergistic 664 

effect on the FENa was reported when combined with bumetanide (P=0.001). Moreover, after 665 

14 days of SGLT2 inhibition by EMPA and its persistent natriuretic effect, there was a 666 

reduction in blood volume (P=0.035) and plasma volume (P=0.04) without inducing 667 

neurohormonal activation, off-target electrolyte wasting, and renal dysfunction. Thus, the 668 

benefits of long-term use of EMPA in HF patients may be volume management attributed to 669 

the natriuretic effects (Griffin et al., 2020). 670 

7. Conclusion  671 

Diabetes mellitus is highly associated with cardiovascular disease, as hyperglycaemia 672 

triggers cardiac metabolic imbalances, endothelial dysfunction, ROS production, RAAS 673 

activation, and impaired Ca2+ homeostasis, leading to heart failure. There is an increasing 674 

evidence supporting the cardioprotective role of SGLT2i. Overall, there is an interplay 675 

between SGLT and NHE in mediating cardiac effects seen in the failing hearts. NHE1 and 676 

NHE3 are two well-studied isoforms involved in renal and cardiovascular homeostasis. In the 677 

heart, NHE1 regulates intracellular pH, cell volume, proliferation, and Na+ concentration, 678 

which in turn plays a role in Ca2+ regulation, metabolism, contractility, and stability of the 679 

heart.  On the other hand, renal NHE3 contributes to the regulation of extracellular volume 680 

and BP. While the role of NHE1 inhibition is well defined, the exact cardioprotective 681 

mechanism of SGLT2 inhibition has not been determined, with the exemption of SGLT2i 682 

directed NHE1 inhibition. Further studies are needed to investigate the interaction between 683 

NHE3 and SGLT2. 684 
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Figure Captions  685 

Figure 1. Glucose reabsorption through SGLT1 & SGLT2 in the normal kidney 686 

Figure 2.  Potential Pathways Underlying the Hypertrophic Effect of NHE1 687 

(A) During non-ischemic events (normal conditions) NHE is relatively quiescent. The Na+ 688 

K+ ATPase (Na+ pump) utilizes ATP to extrude Na+, and the bidirectional Na+/Ca2+ 689 

exchanger works predominantly in the forward (Ca2+ efflux) mode. (B) During ischemic 690 

events [Na+]i rises during ischemia concomitant with a fall in pH. NHE becomes activated in 691 

response to intracellular acidosis and other hypertrophic stimulatory factors. Since the Na+/K+ 692 

ATPase becomes inactive during ischemia, NHE-mediated Na+ influx leads to the 693 

intracellular accumulation of Na+. Increased Na+ elevates intracellular Ca2+ by altering the 694 

reversal potential of Na+/Ca2+ exchangers. Elevated Ca2+ activates various pro-hypertrophic 695 

factors, including CaN and CaMKII, and increases MPTP, contributing to mitochondrial 696 

remodelling. Mitochondrial remodelling results in increased ROS production, which in 697 

combination with other factors contributes to activating transcriptional factors resulting in 698 

cardiac hypertrophy. 699 

Figure 3. The Role of SGLT, NHE, and their inhibitors, in Diabetes and Cardiovascular 700 

Diseases. Increased SGLT activity in the proximal tubules leads to decreased natriuresis and 701 

increased reabsorption of glucose, worsening heart failure and diabetes, respectively. In the 702 

heart, hypertrophic signals such as endothelin-1, ANG-II, thrombin, and norepinephrine 703 

increase NHE1 activity, leading to Na+ accumulation and mitochondrial dysfunction which 704 

activates pro-hypertrophic transcription factor. Hyperglycaemia leads to increased glucose 705 

transport through SGLT1, leading to increased NOX2 activity, and subsequent damage to the 706 

cardiomyocytes through ROS. 707 

  708 
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