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Abstract

Generalisation of dynamical processes across natural systems is difficult because of their complexity and unobserved variables.

The hope is that generalisation may be achieved if we model adequately the complexity of systems, and observe them in sufficient

detail. Yet, there is still limited support for this claim. We investigate this by looking at the consistency of ecological interactions

across three replicates of a three-species prey-predator system, well-observed in an artificial environment, using neural ordinary

differential equations. We find that dominant interactions are consistent across the replicates, while weaker interactions are not,

leading to different dynamical patterns across replicated systems. Our study hence suggests that generalisation of dynamical

processes across systems may not be possible, even in simpler systems in ideal monitoring conditions. This is a problem because

if we are not able to make generalisations in a simple artificial system, how can we make generalisation in the real world?

1



Inconsistent species interactions across replicated systems
may hinder generalisation of dynamical processes
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Abstract

Generalisation of dynamical processes across natural systems is difficult because of their com-

plexity and unobserved variables. The hope is that generalisation may be achieved if we model

adequately the complexity of systems, and observe them in sufficient detail. Yet, there is still

limited support for this claim. We investigate this by looking at the consistency of ecological inter-

actions across three replicates of a three-species prey-predator system, well-observed in an artificial

environment, using neural ordinary differential equations. We find that dominant interactions are

consistent across the replicates, while weaker interactions are not, leading to different dynamical

patterns across replicated systems. Our study hence suggests that generalisation of dynamical pro-

cesses across systems may not be possible, even in simpler systems in ideal monitoring conditions.

This is a problem because if we are not able to make generalisations in a simple artificial system,

how can we make generalisation in the real world?
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1 Introduction1

Dynamical processes, such as ecological interactions, drive population dynamics and generate dy-2

namical patterns. Generalising dynamical processes across biological systems is hard. This is due3

to biological contingencies, stemming from the complexity of biological systems (esp. ecological4

interactions), differences in environmental contexts (i.e. unobserved variables), and observation5

error (De Meester et al. 2019). These contingencies alter dynamical processes by, for instance,6

modifying the strength of species interactions, which ultimately results in variation in dynamics7

across systems with the same species composition and population structure. This prevents the8

identification of global dynamical models, and therefore hinders generalisation, repeatability, and9

transfer of knowledge across systems and studies (Lawton 1999).10

This problem has been repeatedly identified in natural systems. For instance, different access to11

seed supplies can modify the strength of the interaction between a plant and its herbivore, leading to12

either stable or oscillatory dynamics (Bonsall, Van Der Meijden, and Crawley 2003). Differences13

in temperature can alter the ecological interaction structure of entire ecosystems (Shurin et al.14

2012; Bonnaffé et al. 2021). Vital rates are often found to be inconsistent in time (Gross, Ives, and15

Nordheim 2005; Adamson and Morozov 2013), and space (e.g. Gamelon et al. 2019). Attempts16

at identifying a single population dynamics model in two mesocosms have led to partial fits, as the17

model could not accomodate the dynamics of the two different systems (Demyanov, Wood, and18

Kedwards 2006). A growing body of evidence showing that generalisation of dynamical processes19

across similar systems often fails (Lawton 1999, e.g. Kendall et al. 2005; Ezard, Côté, and Pelletier20
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2009).21

A burning question is to what extent we would be able to generalise dynamics across systems if22

we were to properly account for contingencies, by appropriately modelling the complexity of the23

system, the structure of the environment, and reduce observation errors. This is difficult to assess24

in practice, especially in a natural setting (Brunner et al. 2019; De Meester et al. 2019). However,25

it may be possible in an artificial setting, where contingencies can be virtually eliminated. In spite26

of this there are few studies that have attempted to characterise the generalisability of dynamics27

across replicated systems in a laboratory setting. In such a setting, idiosyncrasies in population dy-28

namics can arise from (1) variations in ecological interactions and individual processes, as a result29

of evolution (e.g. Yoshida et al. 2003), or stochasticity (Dallas et al. 2021), (2) variations in initial30

conditions due to the experimental setting (Yoshida et al. 2003; De Meester et al. 2019), and (3) the31

complexity of the system which can lead to large changes in system dynamics with small changes32

in the system state and structure (Adamson and Morozov 2013). Two studies, one in aphids and33

the other in rotifers, found substantial variation in vital rates across replicated populations, by fit-34

ting a stage-structured population ODE model to population dynamics time series data (Bruijning,35

Jongejans, and Turcotte 2019; Rosenbaum et al. 2019). These studies hint that generalisability of36

population dynamical processes may not be possible because of intrinsic population structure and37

evolution, even in virtually identical populations hosted in artifical environments.38

We identified three gaps in the literature. First, this kind of evidence remains scarce, due in part39

to the fact that dynamical modelling approaches guided by empirical data are still not widespread40
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(Pontarp, Brännström, and Petchey 2019). Second, most of these studies relied on parametric41

frameworks, which impose arbitrary pre-determined forms for the dynamical processes at play, so42

that their model may not capture properly the complexity of the dynamics of these populations (Jost43

and Ellner 2000; Adamson and Morozov 2013; Bonnaffé, Sheldon, and Coulson 2021). Finally,44

most studies usually analyse dynamics in single-species systems, but not multi-species systems,45

such as those with intraguild predation, which are more biologically realistic scenarios (Hiltunen46

et al. 2013). Further studies are consequently required to investigate the consistency of dynamical47

processes in simple multi-species and well-observed systems, to conclude about the generalisability48

of population dynamics across systems.49

Our aim in this study is to provide an assessment of the consistency of dynamical processes in a50

simple multi-species system hosted in a controlled environment. We do this by quantifying the51

direction, strength, and consistency of interactions in time and across replicates of a simple bio-52

logical system in an experimental setting. We hypothesise that if the system is (1) simple enough,53

(2) well-observed, (3) in a controlled environment, then dynamical effects/interactions should be54

broadly consistent in time and across replicates, hence allowing for generalisation of dynamics55

across systems. We consider three replicates of a three-species system, consisting in a prey (al-56

gae), intermediate-predator (flagellate), and top-predator (rotifer). The algae is consumed by the57

flagellate and rotifer, and the flagellate is consumed by the rotifer. We use three replicated system58

runs from a study by Hiltunen and colleagues which feature sequential oscillations of the den-59

sity of the three species (Hiltunen et al. 2013). We analyse the time series with neural ordinary60
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differential equations (Bonnaffé, Sheldon, and Coulson 2021), which allows us to approximate61

non-parametrically population growth rates, and quantify the direction, strength, and consistency62

of inter- and intra-specific effects on the growth of each population. We find that the interaction63

between the rotifer and algae is consistent throughout time and across replicates, while the inter-64

action between the flagellate and the two other species is not. Our study suggests that dynamical65

processes may sometimes not be consistent and generalisable across systems, even when they are66

as close to identical as experimentation permits. We discuss these results and hint at the underlying67

impact of evolution driving differences in these systems.68

2 Material and Methods69

2.1 Method overview70

The aim of the study is to determine the extent to which the strength and direction of interactions71

between three species in a tri-trophic prey-predator system are consistent in time and across repli-72

cates, as a way to assess the generalisibility of dynamics across simple and well-observed systems.73

To do this we approximate the dynamics of each species by fitting neural ordinary differential equa-74

tions (NODEs, Bonnaffé, Sheldon, and Coulson 2021) to replicated time series data of changes in75

prey and predator densities. We then derive the interactions between species by looking at the sen-76

sitivity of the dynamics to a change in the density of each species, and assess their consistency in77

time and across replicates.78
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2.2 System79

We consider a three-species laboratory microcosm consisting of an algal prey (Chlorella autroph-80

ica), a flagellate intermediate predator (Oxyrrhis marina), and a rotifer top predator (Brachionus81

plicatilis). The algal prey is consumed by the intermediate and top predator, the top predator also82

consumes the intermediate predator. The dynamics of this system, here the daily change in the83

density of each species, were recorded in three replicated time series experiments performed by84

Hiltunen and colleagues (Hiltunen et al. 2013, Fig. 1). The aim of their experiment was to deter-85

mine which type of population dynamics would arise in a system with two predators competing86

for the same resource (the algae), where one predator (the rotifer) would also be able to consume87

its competitor (the flagellate). According to their expectations, they found prey-predator oscilla-88

tions, where the lag between the density peaks of each species reflected their position in the food89

web. Namely that the peak of algae preceded the flagellate peak, which itself preceded the rotifer90

peak.91

Their microcosms are close to true replicates in that environmental conditions, namely temperature,92

salinity, and nutrient influx, where maintained constant, and initial conditions, that is the initial93

density of each species were shared across all replicates. In spite of that, they still found evidence94

for algae evolution in some parts of the time series, which resulted in a shift of the dynamics from95

fast prey-predator cycles to slower oscillations, similar to those documented in previous studies on96

similar systems (Yoshida et al. 2003), even in lineages where genetic variation in predator defense97

traits was eliminated at the start of the experiment. Consequently, the time series that they reported98
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are the ones that did not present evidence of evolution, and therefore displayed purely ecological99

dynamics.100

We use their time series because they describe a simple yet biologically realistic ecosystem, and101

because the quality of the replication of their microcosm reduces as much as possible observational102

and experimental error, and rules out environmental variation (Hiltunen et al. 2013). We digitised103

these time series by extracting by hand the coordinates of every points in the referential of the axis104

of the graph of the original study, and analysed them.105

2.3 Model specifications106

The aim of the modelling approach is to infer the drivers of the dynamics of each species from107

the time series data. More specifically, we want to quantify the effect of a change in the density108

of one species on the dynamics of the other species. In this way we can understand which, and109

to what extent, species interactions drive population dynamics. To do this we use neural ordi-110

nary differential equation (NODEs), which is a novel methodology allowing us to infer dynamical111

processes non-parametrically from time series data (Bonnaffé, Sheldon, and Coulson 2021). We112

choose this methodology over traditional approaches because it offers two advantages. The first113

lies in the fact that NODEs approximate the dynamics of populations non-parametrically, and are114

therefore not subject to incorrect model specifications (Jost and Ellner 2000; Adamson and Moro-115

zov 2013). This is important as it offers an unbiased estimation of the inter-dependences between116

state variables, and hence a reliable assessment of whether a species is contributing to the dynamics117

6



of another. The second advantage is that it is a dynamical systems approach, which means that the118

effects are estimated in a dynamically consistent system of ODEs (Bonnaffé, Sheldon, and Coulson119

2021). This is useful because it accounts for the dynamical nature of the system, so that it includes120

lag effects, not just direct correlations between variables.121

We define a simple NODE system for the three-species system described previously122

dR
dt

= rR(R,G,B,βR)R

dG
dt

= rG(R,G,B,βG)G

dB
dt

= rB(R,G,B,βB)B

(1)

where dR/dt, dG/dt, and dB/dt denote the change in rotifer (R), algae (G), and flagellate (B)123

density in continuous time. The per-capita growth rates rR, rG, and rB are non-parametric functions124

of the density R, G, B of each species. The shapes of the non-parametric functions are controlled125

by the parameter vectors βR, βG, and βB. Fitting the NODE system (1) amounts to finding the126

parameter vectors, and thereby the per-capita growth rates, that best describe the changes in density127

observed in the time series data.128

Each non-parametric functions is an artificial neural network (ANN). ANNs are powerful math-129

ematical objects that can be trained to approximate the shape of dynamical processes (Funahashi130

and Nakamura 1993). For the sake of simplicity, we consider the simplest form of an ANN which131

contains a single hidden layer, namely a single layer peceptron (SLP)132
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rR =
N

∑
i=1

βi fσ (βi0 +βi1R+βi2G+βi3B) (2)

which takes as input the density of each species R, G, and B, and output the corresponding per-133

capita growth rate. The parameter vector βR, βG, βB, contain the weight of the connections in the134

ANNs. The SLP can be viewed as a weighted sum of basis functions fσ of the state variables of135

the system. In this study we consider sigmoid basis functions, as they are commonly used and136

their capacity to approximate any continuous function is well established theoretically (Funahashi137

and Nakamura 1993). The number of units in the hidden layer N is chosen to be 10, as this is138

a commonly used number for systems of that size (e.g. Wu, Fukuhara, and Takeda 2005). More139

details regarding these models can be found in our previous work (Bonnaffé, Sheldon, and Coulson140

2021).141

2.4 Model fitting142

This section describes how to recover the parameters β of the NODE system given the time series143

data at hand. In a previous study, we developed an approach to fit NODE systems to time series data144

(Bonnaffé, Sheldon, and Coulson 2021). The technique relied on simulating the NODE system over145

the times covered by the time series, and then computing the difference between the predictions146

of the NODE model, and the observations of the time series. The model is fitted to the time147

series by adjusting the parameter vectors until temporal dynamics of the state variables matched148
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the observations as closely as possible. There are two caveats with this approach that we solve149

in this study by opting for a different fitting approach. The first caveat is that the fitting process150

previously described is computationally expensive, because the NODE system has to be simulated151

over the entire range of the data at every step of the optimisation. Second, the simulation prevents152

the computation of gradients of the posterior distribution of the model, and thereby prevents the153

use of efficient gradient descent approaches. Overall, this makes it hard to avoid getting trapped in154

local maxima.155

Instead, we propose an alternative fitting approach which relies on data interpolation to approx-156

imate populations state and dynamics. In this way we avoid the simulation step as the NODE157

system can then be directly compared to the interpolated dynamics. We proceed in two steps, (1)158

we interpolate the time series data to estimate the states and dynamics of each variable, and (2) we159

fit the NODE system directly to these estimated dynamics.160

Interpolating the data161

We interpolate the time series and differentiate it with respect to time in order to approximate162

the dynamics of the system. The interpolation is found via a non-parametric regression of the163

interpolating function on the time series data164

Y (ti) = Ỹ (ti,Ω)+ εi (3)

where Y (ti) is the observed value of the variable at time ti and Ỹ (ti,Ω) is the value predicted by165
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the interpolating function, up to an error εi ∼ N (0,σ1). In the present case, the variables are166

either the rotifer density R, algae density G, or flagellate density B, depending on which time167

series is interpolated. The interpolating function is chosen to be an SLP with sinusoid activation168

functions169

Ỹ (t,Ω) =
N

∑
i=1

ωi0sin(π(ωi1 +ωi2t)) (4)

where Ỹ (t,Ω) is the interpolated state variable, either R, G, or B, and is determined to be a weighted170

sum of sinusoid functions of time. The interpolation parameter vector Ω contains the weights ωi0,171

ωi1, and ωi2 which control the amplitude, shift, and frequency of the oscillations in the time series,172

respectively. We found sinusoid activation functions to be most efficient for interpolating popula-173

tion dynamics compared to other functions (such as sigmoid, hyperbolic). Following this approach174

we obtain directly an approximation of the dynamics of the state variable by differentiating the SLP175

with respect to time176

∂

∂ t
Ỹ (t) =

N

∑
i=1

ωi0πωi2cos(π(ωi1 +ωi2t)) (5)

as well as an analytical expression of the interpolated per-capita growth rate of the populations, by177

combining equation (4) and (5)178
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r̃Y =
1
Ỹ

∂Ỹ
∂ t

(6)

Overall, interpolating the data amounts to finding the parameter vector Ω that minimises the error179

in equation (3).180

Fitting NODEs to the interpolated data181

The second step is to match the NODE system to the interpolated dynamics, given the interpo-182

lated state variables. Thanks to the interpolation of the data, this simply amounts to performing a183

regression of the non-parametric approximation of the per-capita growth rate (equation 2) on the184

interpolated per-capita growth rate (equation 6)185

r̃Y (ti) = rY (ti,β )+ηi (7)

up to an error term ηi ∼N (0,σ2). For instance, the per-capita growth rate of the rotifer writes as186

r̃R(ti) = rR
(
R̃(ti), G̃(ti), B̃(ti),βR

)
+ηi. Fitting the NODE per-capita growth rate hence amounts to187

finding the parameter vector β that minimises the error in equation 7, given the interpolation.188

Statistical modelling approach189

The following section describes how to recover the parameters for the interpolation and NODE190

system that best describe the time series, while controlling for overfitting. The fitting of the models191

is performed in a Bayesian framework, considering normal error structure for the residuals, and192
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normal prior density distributions on the parameters193

p(θ |D) ∝ p(D |θ)p(θ) (8)

where θ is the parameter vector of the model, and D the evidence, namely the data that the model194

is fitted to. In the case of the interpolation, the evidence is the population densities, either R(t),195

G(t), or B(t), and the parameters are the weights Ω in the sinusoid SLPs. In the case of fitting196

the NODE model to the interpolated data, the evidence is the interpolated per-capita growth rate197

of each population, either r̃R, r̃G, or r̃B, and the parameters are the weights βR, βG, and βB in the198

non-parametric per-capita growth rates rR, rG, and rB.199

Assuming a normal likelihood for the residuals given the evidence we get200

p(D |θ) =
I

∏
i=1

1√
2πσ2

exp
{
−ei(D ,θ)2

2σ2

}
(9)

where ei(D ,θ) are the residuals of the model given the parameters. In the case of the interpolation,201

the residuals are Y (ti)− Ỹ (ti), and in the case of the NODE model, r̃Y (ti)− rY (ti). The dispersion202

term σ in the likelihood is measured by the parameters σ1 in the case of the interpolation, and σ2203

in the case of the NODE fitting. I is the number of data points, either observations in the case of204

the interpolation, or interpolated points in the case of the NODE fitting.205

The prior probability density functions for the parameters are given by206
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p(θ) =
J

∏
j=1

1√
2πδ 2

exp
{
− θ 2

2δ 2

}
(10)

where J is the number of parameters in the models. The parameter δ controls the dispersion of the207

priors, and thereby the complexity/level of constraint of the model. Low values of δ will lead to208

underfitting, as it constrains the model to be simple, while high values of δ will lead to overfitting,209

by allowing for more complex shapes.210

There is no standard approach for choosing δ . To account for overfitting, we opt for a regularisation211

approach by optimising the models on the second-level of inference. This means that we are finding212

the optimal value of δ , in addition to optimising the model parameters. We do this by optimising the213

marginal posterior density of the parameters, obtained by averaging out δ following a modification214

of the approach developped by Cawley and Talbot (Cawley and Talbot 2007). This yields the215

following expression for the marginal log posterior density of the parameters216

logP(θ |D) ∝
I
2

log

(
1+

I

∑
i=1

ei(D ,θ)2

)
+

J
2

log

(
1+

J

∑
j=1

θ
2
j

)
(11)

which amounts to optimising the log of the sum of squared residuals rather than the sum of squared217

residuals. P(θ |D) designates the marginal posterior distribution. More details on how to derive this218

expression from equation (8) can be found in a supplementary file (See supplementary A).219

Finally, we estimate uncertainity in parameter values through anchor sampling, which produces220
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approximate Bayesian estimates of the posterior distribution of the parameters (Pearce et al. 2018).221

The technique is simple in that it requires sampling a parameter vector from the prior distribu-222

tions, and then optimising the posterior distribution from this starting point. By repeatedly taking223

samples, the sampled distribution approaches the posterior distribution and provides estimates and224

error around the quantities that can be derived from the models. The expectation of the quantities225

can then be approached by computing the mean of the approximated posterior distributions. The226

great strength of this approach is that it is unlikely to get stuck in local maxima and provides a227

more robust optimisation of the posterior.228

2.5 Model analysis229

We analyse the shape of the per-capita growth rates to recover the interaction between the three230

species in the system. In particular, we look at the effect and contribution of each species to the231

dynamics of the other. The effect is computed as the sensitivity (i.e. the gradient) of the per-capita232

growth rate of a given species with respect to the density of the other species. The contribution is233

computed following the Geber method (Hairston et al. 2005), which comes down to multiplying234

the dynamics of a variable by its effects of the other variables. We further compute the importance235

of a species in driving the dynamics of another by computing its relative contribution compared to236

other species at each time step. More details on how to recover these quantities can be found in our237

previous study (Bonnaffé, Sheldon, and Coulson 2021).238
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3 Results239

We analyse sequentially the dynamics of each species, focussing on the amount of variation in240

per-capita growth rates explained by the NODE model, the overall direction, consistency, and im-241

portance of ecological interactions, and differences across replicates.242

Drivers of top predator dynamics243

Figure 2 presents the drivers of the dynamics of rotifer. The NODE approximation of the per-capita244

growth rate fits quite well the interpolated per-capita growth rate across all replicates (Fig. 2, A2245

B2 and C2, r2 > 0.7, Table 1). The analysis of effects reveals overall a postive effect of algae on246

rotifer growth in all replicates (Fig. 2, A3, B3, C3, green line). The intermediate predator has a247

positive effect on rotifer growth in replicates A and C only (Fig. 2, A3, B3, C3, blue line). We find248

positive intra-specific density-dependence in the first replicate only (Fig. 2, A3, red line). Overall,249

all effects are consistent throughout the time series. The algae is the dominant driver of rotifer250

dynamics as it accounts for 55%, 93%, and 74% of the change in per-capita growth rates across the251

three replicates (Table 1, Fig. 2, A5, B5, C5, green line).252

Drivers of the prey dynamics253

The per-capita growth rate of the algae is well explained by the NODE approximation (Fig. 3,254

A2, B2, C2, r2 > 0.8, Table 1). Overall, rotifers have a negative impact on the growth of algae255

in all replicates (Fig. 3, A3, B3, C3, red line). We find evidence for negative density-dependence256

in replicate A and positive density-dependence in replicate B, but not in replicate C (Fig. 3, A3,257
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B3, C3, green line). The intermediate predator has an overall negative effect on Algae only in258

replicate B (Fig. 3, B3, blue line). The main driver of algae dynamics is the rotifer population,259

which accounts for 58%, 43%, and 90% of the change in algae per-capita growth rate across the260

three replicates. Density dependence however plays a role in replicate A and B, with 40% and 24%261

of total change in growth, respectively (Table 1). The intermediate predator contributes only to262

algae growth in replicate B, accounting for 32% change in growth (Table 1). Overall, effects are263

found to be consistent throughout the time series except in replicate B (Fig. 1, B3), where effects264

vary in complicated ways, leading to a period in the time series where the algae is mostly driven by265

the intermediate predator and positive density-dependence, and less impacted by the top predator266

(Fig. 3, B5, from time 3 to 7.5).267

Drivers of the intermediate predator dynamics268

The per-capita growth rate of the intermediate predator is quite well captured by the NODE approx-269

imation (Fig. 4, A2, B2, C2, r2 > 0.7, Table 1). The intermediate predator is mainly negatively270

affected by the rotifer population (Fig. 4, A3, B3, C3, red line). The algae has a negative effect271

on flagellate growth in replicate A, and a positive one in replicate B (Fig. 4, A3, B3, green line).272

The rotifer predator dynamics accounts for 78%, 62%, 91% of the change in the flagellate growth273

rate, and the algae 20% and 37% in replicate A and B, respectively (Table 1, Fig. 4, A5, B5, C5).274

Overall, effects are consistent throughout the time series.275

16



4 Discussion276

Our ability to generalise dynamical processes and patterns across populations and communities is277

limited by the complexity of the dynamics, differences in environments, and incomplete and/or278

erroneous observations. Yet it remains unclear to what extent generalisation would be possible if279

we overcame these limitations. We tackle this question by looking at the consistency of dynami-280

cal patterns across three replicated runs of a simple three-species community, hosted in identical281

environmental conditions in the lab, thus featuring limited observation error. We expected to find282

consistency in the drivers of population dynamics, both in time and across replicates, and thereby283

demonstrate that generalisation of dynamical processes may be possible if the system states were284

well-observed and environmental conditions were known. To verify this expectation we (1) char-285

acterised the amount of variation in per-capita growth rates that is explainable deterministically, (2)286

quantified the direction, strength, and importance of ecological interactions for the growth of each287

population, and (3) described how these varied in time and across replicates. Our results are sum-288

marised in Figure 5. We find that only the effect of algae on rotifer (G→ R), and that of rotifer on289

algae (R→ G) and flagellate (R→ B) are conserved across the replicates. We find strong variation290

in the direction and importance of intra-specific density-dependence in rotifer (R→ R) and algae291

(G→ G) growth across the three replicates. The role played by the intermediate predator in the292

system was also different in all replicates, in that it only contributed substantially to the dynamics293

of the algae in replicate B (B→ G), and was either negatively, positively, or not affected by the al-294

gae (G→ B). Overall, this shows that the dominant interactions are conserved across replicates, but295
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that minor interactions vary substantially in importance and effect. Futhermore, we find that these296

dynamical processes are more consistent in time within a system, than across replicates. Our results297

demonstrate that because of partially generalisable dynamical processes, dynamical patterns may298

not be generalisable across systems, even with limited observation error and when environmental299

conditions and community structure are conserved.300

What might be the drivers of differences in the dynamical processes across these three replicates?301

One of the main source of variation in dynamics may be differences in the intrinsic structure of302

populations, such as variation in traits influencing intra- and inter-specific interactions which may303

lead to different dynamics (Yoshida et al. 2003; Yoshida et al. 2007; De Meester et al. 2019;304

Bruijning, Jongejans, and Turcotte 2019). Differences in the phenotypic structure may be due to305

unaccounted variation in initial conditions, or variation that developed throughout time as a result306

of evolution (e.g. Yoshida et al. 2003; Yoshida et al. 2007). In particular, the algae in this system307

is prone to evolve a predator defence behaviour, by forming clumps, which reduce predation risk308

(Hiltunen et al. 2013). In their original paper the authors limited the initial genotypic diversity in309

the algae and focussed on replicates which did not display evidence of evolution, in an attempt310

to limit the impact of initial variation in phenotypic structure, and of evolution on the dynamics311

(Hiltunen et al. 2013). In spite of that evolution cannot be eliminated completely, thus variation in312

traits governing the interactions between the species in the system may still have developed during313

the experiment, and led to changes in the dynamical processes across replicates. Our study hence314

reinforces the idea that rapid evolution may prevent generalisation of dynamical processes (Ezard,315
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Côté, and Pelletier 2009; De Meester et al. 2019), and further suggests that this may also be the316

case in simple systems with limited environmental variation and opportunity for evolution.317

Alternatively, other driving factors could be demographic stochasticity as is it often regarded as a318

driver of differences across systems (Dallas et al. 2021). Yet, we find that the dynamics of the three319

species are well-explained by relatively simple deterministic effects between the state variables,320

which means that that though dynamical processes differ across replicates, they are consistent321

in time within each system. This suggests that stochasticity plays a minor role in driving the322

system. Finally, we cannot exclude the potential contribution of unobserved variables that were not323

monitored during the experiment, such as variation in nutrient levels in the chemostat, and which324

may also lead to differences in the predation and intra-specific interactions across systems (e.g.325

Bonsall, Van Der Meijden, and Crawley 2003; Fussmann and Blasius 2005; Posey, Alphin, and326

Cahoon 2006).327

Should we expect limited generalisability of dynamics across systems, even if the complexity of328

the process is properly captured, environmental conditions known, and the system well-observed?329

A similar study, that inferred dynamical processes consistency from replicated time series of a330

simple rotifer system, found substantial variation in vital rates across replicates (Rosenbaum et al.331

2019), also pointing at a low generalisability of dynamical processes. Yet the level of replication332

of the time series of their studies was not as stringent as that of the time series we considered,333

which leaves room for variability in dynamics to be caused by differences in experimental setup,334

population history, initial densities. Bruijning and colleagues also found substantial variation in335
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vital rates across clones in a replicated system of aphids, showing that slight phenotypic variations336

can change the population dynamics, all else being equal (Bruijning, Jongejans, and Turcotte 2019).337

This phenomenon is likely to be even more important in more complicated systems and in a natural338

setting where most variables are unobserved, which poses a problem for the generalisation of results339

across studies and systems (De Meester et al. 2019). How can we expect to generalise dynamics340

across real systems if we are not able to do so in artificial systems? Overall, our study reinforces341

the view that general inferences should not be drawn from a single system, and that more efforts342

are required to distinguish dynamical patterns that are conserved across systems from idiosyncratic343

ones.344

Can we trust our models then if they are doomed to provide partly idiosyncratic answers? Our345

study demonstrates that processes can vary substantially across replicates, so that there may hence346

not be a single suitable functional form and parametrisation to model them (Lawton 1999). Yet,347

most of the work to date has involved fitting parametric models to time series data (e.g. Bruijning,348

Jongejans, and Turcotte 2019; Pontarp, Brännström, and Petchey 2019; Rosenbaum et al. 2019),349

which provide a very narrow view of the range of possible functions to describe the biological350

processes at play (Jost and Ellner 2000; Adamson and Morozov 2013). These models are subjective351

by nature (Jost and Ellner 2000; Adamson and Morozov 2013), and hence not generalisable, so that352

they greatly reduce our chance at identifying dynamical processes that are idiosyncratic, and those353

that are transferable.354

What alternatives do we have then? We propose that NODEs are a suitable framework to study355
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dynamical processes, as they produce inferences that are free of model assumption and facilitate356

comparison across studies and systems (Bonnaffé, Sheldon, and Coulson 2021). For instance, this357

study already provides a more accurate and reliable depiction of dynamical processes than previous358

work with parametric models. Furthermore, in this paper we overcame the practical challenges359

of implementing NODEs by providing a computationally efficient fitting procedure, relying on360

time series interpolation, and developed a model selection criterion robust to overfitting. Similar361

approaches have been proposed in the past, for instance Ellner and colleagues developed a method362

called gradient matching where they interpolated the data with cubic splines to which they fitted363

the differential equations (Jost and Ellner 2000; Ellner, Seifu, and Smith 2002). Wu and colleagues364

also relied on data interpolation of the data with ANNs to fit non-parametric approximations of365

population vital rates (Wu, Fukuhara, and Takeda 2005). But the approaches were too challenging366

and cumbersome to be implemented routinely. Overall, our work demonstrates the usefulness of367

NODEs for inferring ecological interactions from count time series, which could readily be applied368

to a substantial pool of time series data.369

Conclusion370

Generalising dynamics across biological systems is hard because of the complexity of the dynam-371

ical processes (e.g. ecological interactions), differences in environmental context, and monitoring372

limitations. It remains unclear whether we could generalise dynamics if we properly modelled373

complexity, controlled for environmental effects, and observed systems precisely. We addressed374

this question by looking at the generalisability of dynamical processes across three replicated time375
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series of a three-species system, using the novel framework of NODEs. We found that only the376

dominant interactions were conserved across the three time series, namely that between the algae377

and the rotifer, while the role of the intermediate predator varied substantially. Our results hence378

suggest that generalisation may not seem possible, even in simple system with no environmental379

variation. Given previous work in this system, the main cause of differences across replicates may380

be evolution in prey defence traits. We conclude that more work is required, using NODEs, to381

identify dynamical patterns that are conserved and those that are idiosyncratic across a wider range382

of systems.383
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Figure 1: Time series of the prey algae (green), flagellate intermediate predator (blue), and
top predator (red). Each time series correspond to one out of three replicates. Black open dots
correspond to observed densities, scaled between 0 and 1. Time series were obtained from the
study by Hiltunen and colleagues (Hiltunen et al. 2013).



Figure 2: Drivers of rotifer dynamics. Row (1) presents the log density of rotifers in time, the
dots are the observed densities while the red line is the interpolated data. Row (2) presents the
change in log density at each time step, where the black line is the per-capita growth rate derived
from the interpolated data and the red line is the NODE approximation. Row (3) presents the effect
of each species on the dynamics/growth of rotifers, obtained by computing the sensitivity of the
NODE approximation of the rotifer per-capita growth rate with respect to each species density. Row
(4) presents the contribution of each species to the growth of the rotifer, obtained by multiplying
its effect by its net change (i.e. row 2 and 3). Row (5) is the same as fourth but expressed as % of
total change at each time step explained by each species. For all �gures, green, blue, and red refer
respectively to algae, �agellate, and rotifer.



Table 1: Summary analysis. r2 corresponds to the r squared of the NODE non-parametric ap-
proximation of the pre-capita growth rate compared to the interpolated per-capita growth rate for
each of the three species. Mean effects are obtained by averaging the effect of one species on the
growth rate of another throughout the time series. The % of total contributions is obtained by sum-
ming the square of contributions of one species density to the growth of the other at each time step
throughout the time series, then by computing the proportion of total change that it accounts for.

R G B

Replicate A r2 0.968 0.839 0.831

Mean effects on R 1.180 1.723 0.632
on G -1.888 -1.286 -0.208
on B -1.476 -0.371 0.131

% of total contributions to R 0.356 0.552 0.091
to G 0.583 0.399 0.016
to B 0.785 0.194 0.020

Replicate B r2 0.744 0.997 0.765

Mean effects on R 0.058 1.146 0.113
on G -1.505 0.707 -1.287
on B -1.000 0.505 -0.046

% of total contributions to R 0.035 0.934 0.029
to G 0.439 0.242 0.317
to B 0.624 0.373 0.001

Replicate C r2 0.923 0.962 0.726

Mean effects on R -0.106 0.7814 0.498
on G -1.234 -0.1840 0.146
on B -0.659 0.0912 0.014

% of total contributions to R 0.080 0.743 0.175
to G 0.900 0.068 0.030
to B 0.913 0.084 0.001



5 Supplementary469

A Bayesian regularisation470

In this section we describe how to derive the modified model selection critieria developed by Caw-471

ley and Talbot (Cawley and Talbot 2007). Bayesian regularisation simply amounts to constraining472

the values of the parameters in the model to be close to a desired value. Usually, parameters are473

constrained by choosing normal priors centered about 0. In this case, the standard deviation of the474

normal priors governs the range of values that the parameters can take, and hence constrains more475

or less strongly the behaviour of the model (Cawley and Talbot 2007). Performing inference on the476

second level means that we are trying to find the appropriate value of the dispersion of the priors,477

in other words, the appropriate level of constraint on the model. In practice, choosing the level of478

constraint is difficult, Cawley and Talbot hence developed a criterion to perform model selection479

on the second level of inference. They proposed to optimise the marginal posterior distribution by480

averaging out the dispersion of the priors. With an appropriate choice of prior, the dispersion can481

be integrated out, leaving us with a formula for the posterior that only depends on the parameters482

of the model,483

logP(θ |D) ∝
I
2

log

(
I

∑
i=1

ei(D ,θ)2

)
+

J
2

log

(
J

∑
j=1

θ
2
j

)
(12)

where P(θ |D) denotes the marginal posterior density, D denotes the evidence, I and J denote the484



number of data points and parameters, respectively, ei denote the residuals of the model, and θ485

denote the parameters of the model. The construction is elegant because it is not a sensitive to486

the choice of prior hyperparameters, and simple as it amounts to optimising the log of the sum of487

squares, rather than the sum of squares (in the case of normal ordinary least square).488

The issue with this formula is that the marginal posterior density is infinity when the parameters489

are 0, which leads to underfitting. In this paper we use a modified criterion, which corrects for that490

problem491

logP(θ |D) ∝
I
2

log

(
1+

I

∑
i=1

ei(D ,θ)2

)
+

J
2

log

(
1+

J

∑
j=1

θ
2
j

)
(13)

where the marginal posterior density depends only on the residuals of the model when the parame-492

ters are equal to 0, and otherwise depends on both the parameters and the residudals. This construc-493

tion can be obtained simply by assuming a gamma prior for the parameters p(ξ ) ∝
1
ξ

exp{−ξ},494

where ξ is the regularisation parameter, instead of the improper Jeffreys’ prior that Cawley and495

Talbot used in their original study, namely p(ξ ) ∝
1
ξ

. The details of the integration of the posterior496

distribution over ξ can be found in Cawley and Talbot’s orginal paper.497


