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The Nagumo equation describes a reaction-diffusion system in biology. Here, it is coupled to Burgers equation, via including

convection, which is, namely; Burgers-Nagumo equation BNE. The first objective of this work is to present a theorem to reduce

the different versions of the fractional time derivatives FTD to “non autonomous” ordinary ones, that is ordinary derivatives

with time dependent coefficients. The second objective is to find the exact solutions of the fractal and fractional time derivative

-BNE, that is to solve BNE with time dependent coefficient. On the other hand FTD can be transformed to BNE with constant

coefficients via similarity transformations. The unified and extended unified method are used. Self-similar solutions are also

obtained. It is found that significant fractal effects hold for smaller order derivatives. While significant fractional effects hold

for higher-order derivatives. The solutions obtained show solitary, wrinkle soliton waves, with double kinks, undulated, or with

spikes. Further It is shown that wrinkle soliton wave, with double kink configuration holds for smaller fractal order. While in

the case of fractional derivative, this holds for higher orders.
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Abstract

The Nagumo equation describes a reaction-diffusion system in biology. Here, it is coupled
to Burgers equation, via including convection, which is, namely; Burgers-Nagumo equation
BNE. The first objective of this work is to present a theorem to reduce the different versions
of the fractional time derivatives FTD to “non autonomous” ordinary ones, that is ordinary
derivatives with time dependent coefficients. The second objective is to find the exact solutions
of the fractal and fractional time derivative -BNE, that is to solve BNE with time dependent
coefficient. On the other hand FTD can be transformed to BNE with constant coefficients
via similarity transformations.The unified and extended unified method are used. Self-similar
solutions are also obtained. It is found that significant fractal effects hold for smaller order
derivatives. While significant fractional effects hold for higher-order derivatives. The solutions
obtained show solitary, wrinkle soliton waves, with double kinks, undulated, or with spikes.
Further It is shown that wrinkle soliton wave, with double kink configuration holds for smaller
fractal order.While in the case of fractional derivative, this holds for higher orders.

Keywords: Fractal and fractional, Burger-Nagumo equation, reaction diffusion, wrinkle soliton
waves.

1 Introduction

Reaction diffusion equations have many applications. In chemistry, they describe general reaction
systems and reversible reactions. In biology they describe the population dynamics, predator-prey
and competition.The Nagumo equation describes a reaction-diffusion system in biology. Here, it is
taken coupled in the Fitzhugh-Nagumo equation that describes the conduction of recovery current
to nerve fibers [1-6 ].

∗e–mail: mtantawymath@gmail.com
†e–mail: bekirahmet@gmail.com
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The BNE model describes the interaction between reaction mechanisms, convection effects and
diffusion transport of nerve pulse propagation in nerve fibers. Further, it deserves to a wall motion
in liquid crystals. The Eq. (1) is, in general, not integrable, that is for arbitrary parameters µ, a, σ
and b. We mention that it is invariant under translation in x and t. Thus, theoretically travel-
ing wave solutions exist. The traveling waves have contributed to the understanding of physical
phenomena complexity, and the characteristics of wave propagation. Here, first the conditions for
integrability of Eq. (1) are depicted, second a variety of exact solutions that describe traveling
and self-similar waves are obtained. In [7], by reducing the BNE via Cole–Hopf transformation.,
exact solutions were found. It was shown that they describe kink and periodic waves propagating
in the space. In addition, the symmetries of BNE were investigated in [8-10]. However, there
are still some unresolved problems as Eq. (1) is not completely integrable. These problems can
be solved by studying the behavior of traveling waves via numerical solutions which will provide
further investigations. These investigations are embedded in the bifurcation study. We mention
that heteroclinic orbits are trajectories that have two distinct equilibrium values, while homoclinic
orbits are trajectories that have the same equilibrium state. They correspond to soliton with
double kinks and soliton waves configurations respectively[11,12]. The bounded traveling waves
mentioned above are completed by the periodic ones. This relationship investigates the bifurcation
analysis of a dynamical system, and it is recognizes as an effective method to determine bifurca-
tions of traveling waves. The study of analytical and numerical solutions of the fractional Burgers
equation occupies a remarkable area in the literature [13-24].

The BNE reads

ut(x, t) + µuux(x, t) + σ uxx(x, t)− b u(x, t) (1− u(x, t)) (u(x, t)− a) = 0 , (1)

where µ, b are real parameters and 0 < a < 1. When σ = 1 and b = 0, then Eq. (1) is the Burgers
equation. When b 6= 0 , it is Burgers equation with cubic nonlinear source term. While when
σ = −1, and µ 6= 0 it is the Nagumo equation with convection.

2 Fractal derivative

The fractional derivative was introduced in [25].

d

dtα
f(t) = Limitt1→t

f(t1)− f(t)

tα1 − tα
, t > 0. (2)

When f(t) is c continuously differential of first order; fεC1(R+), (where R+ = [0,∞), the RHS of
Eq. (1) reduces to

d

dtα
f(t) = α−1t1−αf ′(t). (3)

From Eq. (2) we find that the fractal derive is nothing else but the conformable fractional derivative
up to multiplication by α−1. On the other hand, it is identical to the LHS of Eq. (2) by writing
dtα = αtα−1dt. That is dtα is reducible. This fact suggests defining the fractal derive by

d

dtα
f(t) = Limitε→0

f(t+ εα−1t1−α)− f(t)

ε
, t > 0. (4)
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Very recently, some works to study chaotic nonlinear dynamical systems, based on fractal fractional
derivatives are carried in [14,15].

3 Fractional derivatives

The Caputo fractional derivative is defined by

DαC
t f(t) =

1

Γ(m− α)

∫ t

0

(t− t1)−α+(m−1)f (m)(t1)dt1, m− 1 < α < m t > 0 , (5)

provided that f is Holder continuous , fεHm,α−(m−1)(R+) and the integral exists.

The Caputo-Fabrizio fractional derivative CFFD [26,27] is

DαCF
t f(t) =

M(α)

(1− α)

∫ t

0

e
−α
1−α (t−t1)f ′(t1)dt1, 0 < α < 1 t > 0 , (6)

provided that fεH1,α(R+). where M(α) in Eq. (6) is a normalization function such that M(0) =
M(1) =1.

The Atangana-Baleanu fractional derivative ABFD, in the Caputo sense, is [28-30]

DαAB
t f(t) =

B(α)

1− α

∫ t

0

Eα(
−α

1− α
(t− t1)α)f ′(t1)dt1, 0 < α < 1 t > 0 , (7)

where B(α) > 0 is the normalization constant that satisfies B(0) = B(1) = 1 and Eα(t) is the
Mittag–Leffler function and fεH1,α(R+). It is worth noticing that this function is not invariant
under the CFD. The function which is invariant is eα(t) [26] where

Eα(t) =

∞∑
n=0

tn

Γ(αn+ 1)
, eα(t) = eα,1(t) =

∞∑
n=0

tαn

Γ(αn+ 1)
, (8)

and the last function generalizes to

eα,β(λ, t) =

∞∑
n=0

λntαn

Γ(αn+ β)
. (9)

We define a new fractional derivative, Gawad’s fractional derivative of order β, 0 < β < 1

DβG
t f(t) =

β

(1− β)1/β

∫ t

0

e−
(t−t1)β

1−β )f ′(t1)dt1, 0 < β < 1 t > 0 (10)

provided that fεH1,β(R+). We mention that Eq. (10) reduces to the ordinary derivative when
β → 1−, as the Kernel tends to be the Dirak δ− function.
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3.1 Reduction of the fractional derivatives

Here we shall reduce the FD’s to ordinary derivatives [ 31,32].

We consider Eq. (1) when 0 < α < 1

DαC
t1 f(t1) =

1

Γ(1− α)

∫ t1

0

(t1 − t2)−αf ′(t2)dt2. (11)

Theorem:1 We assume that the integrand in the RHS of Eq. (11) is uni-formally continuous,then
the Caputo FD is reduced to

DαC
t f(t) =

1

Γ(2− α)
(T − t)1−αf ′(t), 0 ≤ t ≤ T0. (12)

Proof: In Eq. (11), by operating by the integral, on t1 on [0, t], it holds

∫ t

0

DαC
t1 f(t1) dt1 =

∫ t

0

(
1

Γ(1− α)

∫ t1

0

(t1 − t2)−αf ′(t2)dt2)dt1 . (13)

By using the assumption, we permute the inner with the outer integral in the RHS of Eq. (13), it
becomes

∫ t

0

(
1

Γ(1− α)
(

∫ t

t2

(t1 − t2)−αdt1)f ′(t2)dt2, (14)

by evaluating the new inner integral, we get

∫ t

0

DαC
t1 f(t1)dt1 =

∫ t

0

(
1

Γ(1− α)

(t− t2)1−α

1− α
)f ′(t2) dt2. (15)

From Eq. (11), it holds that

C
0 D

α
t2f(t2) =

1

Γ(2− α)
(t− t2)1−αf ′(t2) 0 ≤ t2 ≤ t. (16)

By letting t→ Tand t2 → t, Eq. (16) leads to Eq. (12)..�

By the same way, that is by permuting the inner with the outer integral and evaluating the new
inner integral, the other different versions of the fractional derivatives are transformed to

DαCF
t f(t) = 2

(2−α) (1− e−
α

1−α (T0−t))f ′(t)

0 ≤ t ≤ T0,
, (17)

DαAB
t f(t) =

B(α)

(1− α)
(T − t)αeα,2(− α

1− α
, (T − t))f ′0(t), (18)

where eα,β(σ, x)is the generalized Mittag-leffler function.(see [33])
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eα,β(σ, x) =

∞∑
n=0

σnxαn

Γ(αn+ β)
. (19)

To discuss the convergence of the series in Eq. (19), we use the identity

Γ(α(n+ 1) + β) =
Γ(αn+ β)Γ (α)

B(αn+ β, α)
, (20)

where B(a, b) is the Beta function. By inserting Eq. (20) into Eq. (19),it can be easily shown that
the series converges for x > 0.

Also, the Gawad’s FD reduces to

DβG
t f(t) = γ( 1

β ,
1

1−β (T − t)β)f ′(t) ,

0 ≤ t ≤ T, 0 < β < 1,
(21)

where γ(m, t) is the incomplete lower Gamma function. We mention that

γ(a, x) + Γ (a, x) = Γ(a), a > 0, x > 0, Γ (a, x) =

∫ ∞
x

e−yya−1dy. (22)

By using Eq. (11), we can prove the following theorem.

Theorem 2: The GFD satisfies the following:

(i) DβG
t (f(t)+g(t)) = DβG

t f(t) +DβG
t g(t).

(ii) DβG
t (f(t)g(t)) = f(t)DβG

t g(t) + g(t)DβG
t f(t).

(iii) DβG
t ( f(t)

g(t) )) =
g(t)DβGt f(t)−f(t)DβGt g(t)

g(t)2 .

By using (20) the function f(t) which is invariant under the FD DβG
t , that is DβG

t eβ,G(t) = eβ,G(t),
is found directly:

eβ,G(t) = e

∫ t
0

1

γ ( 1
β
, λ
1−β T0−t1)β)

dt1
. (23)

4 Solutions of the fractal and fractional time-derivative BNE

By using the results of section 3, the fractal and fractional time-derivative BNE Eq. (1)) is
transformed to

p(t)ut(x, t) + µu(x, t)ux(x, t)) + σuxx(x, t)− bu(x, t)(1− u(x, t))(u(x, t)− a) = 0 ., (24)

where p(t) takes one of the following forms:

(a) CFD : p(t) = 1
Γ(2−α) (T0 − t)1−α.

(b) CFFD: p(t) = 2
(2−α) (1− e−

α
1−α (T0−t)).
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(c) GFD: p(t) = 2
λ+2γ( 1

β , λ(T0 − t)β).

(d) ABFD: B(α)
(1−α) (T − t)αeα,2(− α

1−α , (T − t)).

It is wort noticing that Eq. (24) is non autonomous PDE. It suggests to introduce the similarity

transformations u(x, t) = ũ(x, τ) and τ =
∫ t

0
1
p(s)ds, thus (24) reduces to

ũτ (x, τ) + µũ(x, τ)ũx(x, τ)) + σũxx(x, τ)− bũ(x, τ)(1− ũ(x, τ))(ũ(x, τ)− a) = 0 . (25)

To find the exact solutions of Eq.(25), we can use Eq. (1) and simply let t→ τ . Thus our attention
is focusing on finding the solutions of Eq. (1).

The unified, extended and generalized unified methods have been proposed in [34-36]. The unified
method asserts that, the solutions of a nonlinear evolution equation can be written in the forms of
polynomial or rational functions in auxiliary functions, that satisfy appropriate auxiliary equations.

Here, we are concerned with finding rational solutions of Eq. (1). First we find the traveling waves
solutions. To this end we use the transformations u(x, t) = U(z) and z = x− ct. Single, multi and
coupled waves solutions of Eq. (1) are obtained as follows:

(i) Single traveling wave solutions:

Here, we write the solution in the form

U(z) =
a1g(z) + a0

b1g(z) + b0
, g′(z) = c1g(z) + c0, (26)

where the second equation in Eq.(26) is the auxiliary equation.

By inserting Eq. (26) into Eq. (1), and by setting the coefficients of g(z)j , j = 0, 1, 2, ..equal to
zero, we get

a1 = ab1, a0 = 1
c1

(b0c1 + (−1 + a)b1c0) ,

c1 = c (−1+a)
((1+a)α2σ) , b = c (−2c+(1+a)αµ)

(1+a)2α2σ

(27)

and

U(z) = P1

Q1
,

P1 = (−1 + a)b0c+ (−1 + a)aA0b1c e
(−1+a)cz

(1+a)α2σ − (1 + a)b1c0α
2σ ,

Q1 = (−1 + a)b0c+ (−1 + a)A0b1c e
(−1+a)cz

(1+a)α2σ − (1 + a)b1c0α
2σ,

(28)

This solution is solitary wave solutions.

(ii) Multi waves solutions:

These solutions are found by using multi auxiliary functions and equations.

For two waves interactions the solution of Eq. (1) is

6



U(z) = a1g1(z)+a2g2(z)+a3g1(z)g2(z)+a0
b1g1(z)+b2g2(z)+b3g1(z0g2(z)+b0

,

g′1(z) = c1g1(z) + c0, g
′
2(z) = d1g2(z) + d0.

(29)

By inserting Eq. (29) into Eq. (1), and by the same way, we have

c = 1
4(1+a)αµ , d1 = (1+a)µ

4ασ , d0 = (1+a)(−a0+ab0)µ
4(−1+a)b2ασ

,

b = µ2

8σ , c1 = aµ
2ασ , c0 = (a0−b0)c1

(−1+a)b1 ) ,

and

U(z) = P1

Q1
,

P1 = a((1− a)A1b1e
aµµz
2ασ + b0(−1 + (−1 + a)A2b2e

(1+a)zµ
4ασ

Q1 = A1b1(1− a)e
aµµz
2ασ + (a2 − a)A2b2b0e

(1+a)zµ
4ασ )− ab0.

(30)

For three waves interactions the solution is

U(z) = a0+a1g1(z)+a2g2(z)+a3g3(z)
b0+b1g1(z)+b2g2(z)+b3g3(z) , g

′
1(z) = c1g1(z),

g′2(z) = d1g2(z), g′3(z) = r1g3(z).
(31)

By substituting from Eqs. (30) into Eq. (1), we have the following

c = α(aµ− (d1 + 2r1)ασ), b = −r1(c+α(−aµ+r1ασ))
(−1+a)a ,

a3 = ab3, c1 = d1 + r1, a0 = ab0, a2 = ab2. (32)

and the solution is

U(z) = P
Q ,

P = A1e
(d1+r1)z(a1 +A3a3e

r1z + a(b0 +A2b2e
d1z) +A3b3e

r1z)) ,

Q = (b0 +A2b2e
d1z) +A3b3e

r1z +A1e
(d1+r1)z)(b1 +A3b3e

r1z)).

(33)

(iii) Exact solutions: Here we consider the solution

U(z) = a1g1(z)+a2g2(z)+a0
b1g1(z)+b2g2(z)+b0

,

g′1(z) = α1g1(z) + α2g2(z), g′2(z) = β1g1(z) + β2g2(z).

(34)
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By inserting Eqs. (34) into Eq. (1), we get

a0 = a b0, c = 1
b2
α(a2µ+ α(−2b1α2 + b2(α1 − β2))σ) ,

b = − 1
a2a21

α(−b2β1 + a1β2)(a a1µ+ 2α(−b2β1 + a1β2)σ) ,

a2 = b2, α1 =
ab1b2β1+a21β2+a1((−2+a)b2β1−ab1β2)

(a1(a1−ab1) ,

α2 = − b2β2

a1
, b1 =

(aα2−(−1+a)b22β1)
aa1α2

.

(35)

Thus the solution which is given into the first equation in (34) is

U(z) = P
Q , P = aβ2(ab0 + a1g1(z) + b2g2(z)) ,

Q = ((−1 + a)b2β1 + a1β2)g1(z) + aβ2(b0 + b2g2(z)).

(36)

By solving the auxiliary equations in Eq. (34) and by using Eq. (35), the exact solution is given
by

U(z) = P
Q , P = (aβ2(a2

1β2A1 − b2β1(ab0 + b2A2) + a1(−A1b2β1+

ab0β2 + b2β2A2)),

Q = (−A1b2e
− b2zβ1a1 )β1((−1 + a)b2e

zβ2β1 + a1(ae
b2zβ1
a1 + ezβ2 − aezβ2β2)

+β2(a(−b2b0β1 −A2b
2
2e
− b2zβ1a1 + β2))β1 + a1b0β2 + a1A2b2e

− b2zβ1a1 + β2))β2

+a1b2β1A1) + (b2β1 − a1β2)(A2b2e
− b2zβ1a1 + β2))− a1A1 − b2A2)).

(37)

5 Self similar solutions

To get these solutions we use the similarity transformations z := xω(t), t := t and u(x, t) = U(z, t).
By introducing these later transformations into Eq.(1), it reduces to

Ut + µω(t)UUz + σ ω(t)2Uzz − b U(1− U)(U − a) = 0 . (38)

We write the solution of Eq. (38), with time-dependent coefficients, and appropriate auxiliary
equations as follows

U(z) = a1(t) g(z,t)+a0(t)
b1(t) g(z,t)+b0(t) , gz(z, t) = γ(c2g(z, t)2 + c1g(z, t) + c0) ,

gt(z, t) = h(t)(c2g(z, t)2 + c1g(z, t) + c0) .

(39)

In Eq. (37), we mention that the compatibility equation gzt(z, t) = gtz(z, t) holds. By inserting
Eq. (37) into Eq. (36), we obtain a set of equations in a′1(t), b′1(t), a′0(t) and a1(t), are given by

8



a′1(t) = 1
b1(t)2 /(−ba1(t)3 + a1(t)2((1 + a)bb1(t)− c2γµb0(t)ω(t))

+c2a0(t)b1(t)(2c2γ
2σb0(t)ω(t)2 + b1(t)(h(t)− c1γ2σω(t)2))

+a1(t)(−abb1(t)2 − 2c22γ
2σb0(t)2ω(t)2 + b1(t)(−c2b0(t)h(t)

+c2γ µ a0(t)ω(t) + c1c2γ
2σb0(t)ω(t)2 + b′1(t))) ,

b′1(t) = c2
6µ (b0(t)(6µh(t) + 4γ ω(t)(1 + a)µ2) + b1(t)(c1b0(t)

(−6µh(t) + γω(t)(−2µ2(1 + a) + 3µb′0(t)))

a′0(t) = a0(t)
9σb0(t)2 (−µ2a0(t)2 + (1 + a)µ2a0(t)b0(t)

+b0(t)(−aµ2b0(t) + 9σb′0(t))),

a1(t) = 1
2µ2b0(t) (2µ2a0(t)b1(t) + 3γ(−2µ)σb0(t)

(−c1b1(t) + c2b0(t))ω(t))

(40)

It is worth noticing that the computations, in this case, are not straight forward as (i) the equations
obtained are nonlinear and (ii) compatibility equations have to be satisfied. For example, we have
equations in a′1(t) and a1(t). Thus the compatible equation reads a′1(t)− (a1(t))′ = 0. The result
for this later equation is too lengthy to be produced here. To solve this equation, we find that the

condition for integrability is b = µ2

9σ , and

c0 = 0, γ = 1
3µ , h(t) = A0ω(t), b′0(t) = 1

6 (1 + 6A0)c1b0(t)ω(t),

a0(t) = b0(t)
6γµ2 (µ((1 + a)γµ(1 + 3γµ) +A0(−3 + 9γµ)− 9c1γ

2σω(t))

ω′(t) = 1
108σω(t)(4(1− a+ a2)µ2 − 27c21γ

2σ2ω2(t)).

(41)

Now the compatibility equation a′1(t)− (a1(t))′ = 0 , we get

a = 1
2 , b = µ2

9σ , γ = 1
3µ , c0 = 0, b0(t) = B0e

c1/6(1+6A0)
∫ t1
0 ω(t2)dt2 ,

a1(t) =
8bc2a0(t)b1(t)+γ(−µ+

√
µ2−8bσ)((c21−k

2
0)b21(t)−4c1c2b1(t)b0(t)+4c22b

2
0(t))ω(t)

8bc2b0(t)

b1(t) = B1 + (1+6A0)c2
6

∫ t
0
ω(t1)e

c1(1+6A0)
6

∫ t1
0 ω(t2)dt2

1 dt1,

. (42)

and

ω′(t) = − (ω(t)(µ4 + 3c1µσω(t) + 2c21σω(t)2)

18µ2σ
, c = α(aµ− (d1 + 2r1)ασ) (43)

g(z, t) = − c1e
c1(z γ+A0

∫ t
0
ω(t1)dt1)

−1 + c2e
c1(z γ+A0

∫ t
0
ω(t1)dt1)

, z = αx− cτ. (44)
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By substituting from Eqs. (40)-(43) into the first equation in Eq. (37), we get the required solution.
It is too lengthy to be produced here.

6 Solutions of the fractal and fractional time derivative BNE

To derive the solutions of the time- fractal and fractional BNE, we use the similarity transforma-
tions u(x, t) = ũ(x, τ), where τ takes one of the following forms:

(a) Fractal D τ = tβ .

(b) CFD: τ = Γ(2−α)(Tα−(T−t)α)
α 0 ≤ t ≤ T .

(c) CFFD: τ = (2−α)(1−α)
2α Log( e

α
1−α (T−t)−1

e
α

1−αT−1
) 0 ≤ t ≤ T.

(d) GFD: τ = (λ+2)
2

∫ t
0

1
γ( 1
β ,λ(T−t1)β)

dt1, 0 ≤ t ≤ T, 0 < β < 1.

The solutions of Eq. (1) derived in sections (4) and (5) hold but t is replaced by τ .

6.1 Case of fractal BNE

(i) Case of three waves interactions.

In this case we have z = x− cτ, τ = τ = tβ , c = α(aµ− (d1 + 2r1)ασ). Numerical results of the
solutions of Eq. (33) are shown in figures 1 (i), (ii), and (iii). They are displayed against x andt

for different values of the fractal order β and by varying the parameter σ.

Figures 1 (i), (ii),and (iii). The solutions , given by (33), are displayed against x and t when b0 = 3, b =
5, b = 7, b3 = 2, µ = 0.7, A1 = 0.3, A2 = 0.7, α = 5, , τ = tβ , a = 0.5, A3 = 0.8,d1 = −0.4, r1 = 0.3, a3 =
2.5; a1 = 1.5.

These figures show that for smaller fractal order derivative, soliton wave with double kinks hold when
σ = 1 in (i). While (iii) shows wrinkle soliton in time and soliton with double kinks in space. This holds
for higher fractal order.

Numerical results of the solutions in Eq. (33) are shown in figures 2 (i), (ii), and (iii). They are displayed
against x and t for different values of the fractional order α and by varying the parameter σ.
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(ii) Case of coupled two waves.

Here, we have

c =
1

b2
α(a2µ+ α(−2b1α2 + b2(α1 − β2))σ), z = x− cτ, τ = tβ .

In figures 3 (i), (ii) and (iii) the solutions (Eq. (37)) are displayed against x and t for different values of
the fractal order β and by varying the parameter σ.

Figures 2 (i), (ii) and (iii). The solutions , given by (37), are displayed against x and t when α1 = 0.2, β1 =
0.5, β2 = −0.4, b0 = 5, b1 = 3, b = 0.2, µ = 0.7, A1 = 0.3, A2 = 0.7, α = 0.5, a1 = 1.3, a = 0.5.

These figures in (i), (ii) and (iii) show soliton wave with double kinks and spikes. In (ii) the solution takes
high values when σ = −1.

6.2 The case of CFD.

Here, we have z = x− cτ, τ = (α(Tα − (T − t)α))/Γ(2 − α.

(i) Case of three waves interactions.

The numerical evaluation of the solutions given by Eq. (33) are shown in figures 3 (i)-(iii).

Figures 3 (i), (ii),and (iii). The solutions , given by (33), are displayed against x and t when b0 = 3, b =
5, b = 7, b3 = 2, µ = 0.7, A1 = 0.3, A2 = 0.7, d1 = −0.4, r1 = 0.3, a3 = 2.5; a1 = 1.5,.

These figures show that for smaller fractional order derivative, undulated soliton wave hold when σ = 1in
(i). While (iii) shows soliton wave with spikes, wrinkle soliton and double kinks when σ = −1. In (iii)
soliton wave with double kinks for higher fractional order.
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(i) Case of coupled two waves.

The numerical results of the solutions in Eq. (37) are carried. They are shown in the following in Fig. 4.

Figures 4 (i), (ii),and (iii). The solutions , given by (36), are displayed against x and t when α1 = 0.2, β1 =
0.5, β2 = −0.4, b0 = 5, b1 = 3, b = 0.2, µ = 0.7, A1 = 0.3, A2 = 0.7, α = 0.5, a1 = 1.3, a := 0.5, T = 20.

Fig. (i) shows that a spike occurs for a small time value. While Figs (ii) and (iii) show multi spikes.

7 Conclusions

The fractal and fractional time-derivative BNEs are studied, where exact solutions are obtained. It is
found that the fractal and fractional time-derivative can be reduced to non autonomous ordinary ones.
Thus, the fractal and fractional BNE are transformed to (i) a PDE with time dependent coefficient or (ii)
a PDE with constant coefficients via similarity transformations. the exact solutions are obtained by using
the unified and extended unified methods.

They are obtained are classified to describe traveling and self-similar waves. Numerical computation of
the traveling waves are carried. They reveal various geometric configurations:

(a) Soliton wave with double kinks hold when σ = 1 for smaller fractal order derivative, and wrinkle soliton
wave with double kinks for higher fractional order. This holds in time.

(b) Soliton with spikes are propagating in time.

(c) Soliton wave with double kinks and spikes. in the case of the C FD and the solution is high when
σ = −1.

The authors declare that there is no conflict of interest.
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[8] Estévez P. G., Non-classical symmetries and the singular manifold method: the Burgers and the
Burgers–Huxley equations. J. Phys. A 27 (1994) 2113–2127.
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