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Abstract

Once cancer is initiated, with normal cells mutated into malignant ones, a solid tumour grows, develops and spreads within

its microenvironment invading the local tissue; the disease progresses and the cancer cells migrate around the body leading to

metastasis, the formation of distant secondary tumours. Interactions between the tumour and its microenvironment drive this

cascade of events which have devastating, if not fatal, consequences for the human host/patient. Among these interactions,

biomechanical interactions are a vital component. In this paper, key biomechanical relationships are discussed through a

review of modelling efforts by the mathematical and computational oncology community. The main focus is directed, naturally,

towards lattice-free agent-based, force-based models of solid tumour growth and development. In such models interactions

between pairs of cancer cells (as well as between cells and other structures of the tumour microenvironment) are governed by

forces. These forces are ones of repulsion and adhesion, and are typically modelled via either an extended Hertz model of contact

mechanics or using Johnson-Kendal-Roberts theory, both of which are discussed here. The role of the extracellular matrix in

determining disease progression is outlined along with important cell-vessel interactions which combined together account for

a great proportion of Hanahan and Weinberg’s “Hallmarks of Cancer”.
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Abstract

Once cancer is initiated, with normal cells mutated into malignant ones, a solid
tumour grows, develops and spreads within its microenvironment invading the
local tissue; the disease progresses and the cancer cells migrate around the body
leading to metastasis, the formation of distant secondary tumours. Interactions
between the tumour and its microenvironment drive this cascade of events which
have devastating, if not fatal, consequences for the human host/patient. Among
these interactions, biomechanical interactions are a vital component. In this pa-
per, key biomechanical relationships are discussed through a review of modelling
efforts by the mathematical and computational oncology community. The main
focus is directed, naturally, towards lattice-free agent-based, force-based models
of solid tumour growth and development. In such models interactions between
pairs of cancer cells (as well as between cells and other structures of the tumour
microenvironment) are governed by forces. These forces are ones of repulsion
and adhesion, and are typically modelled via either an extended Hertz model
of contact mechanics or using Johnson-Kendal-Roberts theory, both of which
are discussed here. The role of the extracellular matrix in determining dis-
ease progression is outlined along with important cell-vessel interactions which
combined together account for a great proportion of Hanahan and Weinberg’s
Hallmarks of Cancer [1, 2].

Keywords: agent-based; force-based; in silico tumours; cancer growth and
development; tumour microenvironment

1. Introduction1

The term cancer covers a spectrum of diseases – cancer cells can arise from2

any type of cell in the body and can grow in or around any tissue or organ3

making it highly complex. Tumour cells proliferate, occupying whole areas of4
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tissue; they interact with surrounding cells, tissue structures, vasculature and5

the extracellular matrix (ECM) in a variety of ways. In recent years, mathem-6

atical and computational biologists have endeavoured to accurately capture the7

growth and development of tumours within their local environment through in8

silico models. By simulating virtual tumours, insight is gleaned which comple-9

ments traditional biological and experimental approaches to cancer research at10

limited financial and ethical cost. This paper will focus on highlighting selec-11

ted lattice-free agent-based (specifically force-based models) of tumour growth12

and development. By way of introduction it will be worthwhile to discuss the13

importance of approaching the problem from a mechanical standpoint, as such,14

in Section 1.1, the tumour microenvironment (TM) is presented followed by, in15

Section 1.2, a discussion of the inherent biomechanics of the TM. In Section 1.316

certain other modelling techniques which have been used to study the dynamics17

of tumour growth and development will be highlighted paying specific attention18

to where biomechanics have been successfully implemented.19

1.1. The tumour microenvironment (TM)20

The term tumour microenvironment is given to all aspects of the local en-21

vironment of a tumour, consisting of, but not limited to, the surrounding blood22

vessels/vasculature, ECM, tumour-associated immune cells and signalling mo-23

lecules/proteins released by the cancer cells (see schematic in Figure 1). The24

tumour and the TM are intrinsically linked and there is constant interplay and25

interactions between them starting from the point of tumour initiation [3]. In-26

deed, non-cancerous cells within tissue respond continuously to the external27

signals of their environment, changing their metabolic state, growth, mitosis,28

gene expression, differentiation, movement, or even undergoing programmed29

cell death (apoptosis), accordingly. Should the cell fail to correctly transduce or30

respond to a specific (external) signal it effectively becomes cancerous. A cell31

with a cancerous phenotype has several distinct Hallmarks [1, 2]. For example,32

cancer cells resist apoptosis and enable replicative immortality; this unchecked33

proliferation creates a tumour (or neoplasm) within the tissue.34

Tumours influence the TM in a variety of different ways. Hypoxic tumour35

cells, starved of oxygen, are known to release vascular-endothelial growth factor36

(VEGF) which promotes tumour angiogenesis, supplying the tumour with con-37

stant access to vital nutrient [4, 5]. Equally, as the growing tumour vies for38

space within the tissue, cells release matrix metalloproteinases (MMPs) which39

degrade the ECM making room for tumour growth and local invasion [6, 7].40

Conversely, the TM affects tumour growth and development; the shape and size41

of a tumour; but also its genetic evolution being determined by properties of42

the local environment. For example, cells migrate preferentially up gradients of43

ECM stiffness in a specific type of mechanotaxis called durotaxis [8]. Stiff ECMs44

can promote tumourigenesis through integrin-dependent mechanotransduction45

at focal adhesions [9] while soft ECMs contribute to phenotypic selection of46

tumour-repopulating cells (TRCs) [10]. Indeed the TM has been found to play47

an active role in the progression of malignancies [11, 12].48
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Figure 1: Schematic diagram showing several key aspects of the TM: the cancer
cells (blue), the ECM fibres (black), the vasculature (red), vascular-endothelial
growth factor (VEGF) signalling protein (magenta) and immune cells (orange).

One of the Hallmarks of Cancer is tissue invasion and metastasis in which49

tumours spread both locally and non-locally [1, 2]. Malignant tumours aggress-50

ively take over large areas of tissue, and, of greater concern, are able to move51

from primary locations to secondary locations using the body’s circulatory sys-52

tem. This is a major issue since it is commonly purported that as many as 90%53

of all cancer deaths are due to metastatic spread; note that this figure while54

widely reported and hypothesised is not yet scientifically proven although it is55

true that the majority of cancer fatalities are due to metastases [13]. Never-56

theless, agent-based models of tumours typically and vitally should also include57

aspects of the TM in order to model how cancers invade and metastasise.58

1.2. Biomechanics in the TM59

The focus of this paper is towards force-based models, and as such it is60

important to understand why mechanical interactions are so important. As61

discussed above there is constant interplay between a tumour and the TM.62

Indeed, the TM governs how a tumour establishes and develops; the tumour63

cells respond to mechanical cues actively by changing shape, state or migrating.64

For example, Friedl and co-workers have shown how the specific nature of the65

ECM (it’s density, stiffness and geometry) along with aspects of the cancer66

cell (it’s adhesive properties and polarity) determine how a cell (or a collection67

of cells) migrates through tissue [14–18]. Durotaxis was mentioned above but68

another type of “taxis” experienced by cells is haptotaxis [19] which is motility69

of cells preferentially up gradients of adhesion within the ECM. More generally70

cells are affected by “mechanotransduction”, in which cell-external mechanical71

stresses provoke cell-internal chemical signals leading to some type of adaptive72

response [20]. For further discussion of mechanotransduction in cancer see the73
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review of the same name [21]. Equally, within the tumour itself stresses affect74

development. Homeostatic pressure in which a balance of proliferation and75

apoptosis results in zero net growth has been found to limit the growth of some76

solid tumours [22, 23]. Conversely, such mechanical compression (solid stress)77

may actually drive cancer cells to invade and metastasise [24–27]. Given the78

intrinsic links between cancer cell behaviour and biomechanics, in order to fully79

understand how tumours, initiate, grow, invade and metastasise it is vital to80

include such processes in mathematical and computational models.81

1.3. Other In Silico models82

Early mathematical modelling of cancer (avascular solid tumours) focused on83

deterministic or continuum models of solid tumour spheroids developed from the84

classical Greenspan model [28]. Such models continue to provide insight through85

the ability to efficiently model large scale dynamics (typical palpable tumours86

will contain at least 108 cells [29]) and equally since they lend themselves to87

mathematical analysis. For reviews of deterministic and continuum models see,88

for example, [30, 31]. Selected articles in which mechanical stress is modelled89

using a continuum approach include [3, 32–36] while cell-cell interactions are90

considered in [37–43], and cell-matrix interactions in [44].91

More recently efforts have been focused on using individual-based models92

or agent-based models which allow a more direct comparison to the biology93

through the ability to model at the cell scale and within. In fact, modelling94

cell behaviour on the individual level is naturally scale bridging allowing at95

once intracellular (microscopic) and intercellular (mesoscopic) mechanisms to be96

included even when modelling a large number of cells (macroscopic). Equally,97

taking an individual approach easily allows the modelling of heterogenous cell98

populations or, at the very least, variability between cells.99

1.3.1. On lattice models100

The most simplistic agent-based models are cellular automata models; in101

general, on-lattice agent based models have dominated the literature, these can102

be broadly categorised into four distinct types (see Table 1). Note, in the schem-103

atics in Table 1 each type is shown on a structured square lattice, however, on-104

lattice models often now use unstructured lattices such as the Voronoi-Delaunay105

lattice, for example, which typically results in more biologically realistic shapes,106

both of cells and cell-masses [46, 69]. On-lattice models may be 3D as in the case107

of the classic multicellular tumour spheroid (MCTS) models or 2D as in the case108

of monolayers. On-lattice models lend themselves to efficient large scale simu-109

lations of a great number of cells at little computational cost. Table 1 provides110

details of some selected references for state-of-the-art on-lattice models of tu-111

mour growth, specifying the tumour-TM interactions considered where appro-112

priate. For further discussion of on-lattice models see, for example, the reviews113

in [69–75]. On-lattice models typically do not include mechanics which may be114

necessary to accurately depict the biology (see discussion above). Types I, II115

and IV rely solely on stochastic processes governing changes of state or position116
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Schematic Model Description Selected References

Type I - Single cell
per lattice site

MCTS [45–47]; cell-vessel inter-
actions [48]; cell adhesion [49–
52]; monolayers [53]; phenotypic
heterogeneity [54–57]

Type II - Compart-
ment model. Mul-
tiple cells per lat-
tice site

coarse-grained proliferative rim
[58, 59]

Type III - Single
cell covers mul-
tiple lattice sites
(Cellular-Potts)

MCTS [60]; cell adhesion [61,
62]; angiogenesis [63]; cell-fibre
interaction [64]; monolayers [65]

Type IV - Multiple
(or single) cell(s)
per lattice site,
movement though
velocity channels
(lattice gas cellular
automata)

MCTS [66]; cell-fibre interaction
[67]; cell-ECM interaction [68]

Table 1: Summary of on-lattice models with some selected references.

of a cell as well as mitosis. Cellular-Potts (Type III) is the only type to permit117

the modelling of physical mechanisms by solving an effective energy equation118

which goes some way to modelling the forces between cells (see, for example,119

[76–78]). There are several open-source on-lattice computational frameworks120

which include, notably for cancer, the CompuCell3D Cellular-Potts framework121

[79].122

The remainder of this paper considers lattice-free (or off-lattice) agent-based,123

specifically, centre-based, force-based models of tumour growth and develop-124

ment. It is structured as follows: in Section 2 the modelling approach is intro-125

duced, in Section 3 the specifics of the forces acting between cells are outlined126

and in Section 4 there is a discussion of selected modelling efforts of other as-127

pects of the TM. Throughout, a sample of results from the literature will be128

given.129
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2. Centre-based force-based modelling130

Within a lattice-free agent-based model each component (e.g. cell, tissue131

fibre or vessel segment) is considered explicitly. Let us start by considering the132

most important aspect of the TM, the tumour cells themselves. Each cancer133

cell, i, is an individual agent; this paper focuses on centre-based models (CBM)134

in which the cell geometry is simplified with each cell considered to be a vis-135

coelastic sphere subject to small deformations, described by the position of its136

centre, xi, in the domain (hence centre-based) and its radius, Ri, see leftmost137

image of Figure 2. When growing tumours of significant size it is a reasonable138

assumption/simplification to make that cells may be represented by spheres.139

Other tumour models exist in which cells have non-spherical shape or are fully140

deformable, notably the work of Rejniak and coworkers [80–83]). However, these141

are not the subject of the review given here.

Figure 2: Schematic diagram indicating the basic physical properties of cells
in centre-based models, showing on the left a single cell in isolation primed
for mitosis, in the middle that seed cell having undergone mitosis creating two
daughter cells and on the right two mature cells in contact under a balance of
forces.

142

The behaviour of tumour cells can be broken down into three distinct but143

linked aspects. Firstly, there are biological factors such as the cell cycle; each cell144

has the ability to grow in size and divide, undergoing mitosis. Once a cell has145

reached maturity (proliferative size) it may split into two daughter cells; mitosis146

is considered a stochastic event (taking place randomly, indicated by the DNA147

segments on the growth timescale in Figure 2) with probability inverse to the148

cell-cycle time. When the mother cell divides the simplest implementation is149

to have two smaller (volume preserving) daughter cells replace the mother cell150

(see middle image of Figure 2) [84, 85], more sophisticated models depict the151

splitting more accurately by deforming the spherical mother cell into a dumbbell152

shape the ends of which eventually separate into the daughter cells [86, 87].153

The daughter cells then grow according to a growth rate until they too reach154
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proliferative size and experience forces imposed by each other (see below and155

Section 3). Mitosis may be inhibited by external factors such as an excessive156

compression force due to a high number of neighbouring cells, this is known as157

contact inhibition [86].158

Secondly, there are genetic factors; cells may have given phenotypes or geno-159

types which prescribe their behaviour in some way. For example, cell phenotypic160

evolution might depend on biophysical processes, or biochemical interactions161

such as the availability of nutrients. This will be discussed further in Sec-162

tion 4.3.2, in which the traits of cells with a hypoxic phenotype are compared163

to the Hallmarks of Cancer.164

Lastly, and particularly key, for force-based models interactions between cells165

(and indeed other agents in the model) are described by forces or potentials.166

Typically, each cell is governed by an equation of motion, an ordinary differential167

equation of the form:168

Γẋi(t)︸ ︷︷ ︸
friction

+ fi(t)︸︷︷︸
migration

=
∑

Fi(t)︸ ︷︷ ︸
mechanical forces

. (1)

The equation of motion takes into account three main aspects. Firstly, it ac-169

counts for friction experienced by the cell (first term in Equation (1), in which Γ170

is a 3-dimensional tensor that models the physical structure of the environment)171

- this may be simply background friction imposed by the tissue but may account172

for friction imposed on cells by other structures. Secondly, the cell will have173

some pre-described active migration properties (second term in Equation (1)),174

these may be as simple as random fluctuations/motion as in [84, 85] or may175

take into account a cells preferred direction (polarity) as in [88] and even effects176

of the external environment (e.g. chemotaxis where cells are naturally driven177

up gradients of nutrient, as in [89]). Thirdly, it incorporates mechanical inter-178

actions via forces (third term in Equation (1)) between a cell and other agents179

within the model.180

For two cells in contact (determined when the distance between their centres181

is less than the sum of their radii) a force directed along the vector between their182

centres, dij , is calculated taking into account repulsion and adhesion. Resolving183

the resulting potential between the two cells in the absence of any migration184

terms leads to two cells which remain stationary under a balance of forces (see185

rightmost image of Figure 2). In the following Section we discuss in more186

detail the repulsion and adhesion forces between cells. Later we will outline187

interactions of cells with other aspects of the TM (Section 4).188

3. Repulsion and Adhesion Forces189

Force-based models are naturally governed by forces, specifically, repulsion190

and adhesion forces. In this Section the repulsion and adhesion forces acting191

between cancer cells are elucidated. The types of model discussed assume that192

a cell is spherical in isolation. Thus, any large contact area between a pair193

of cells (and indeed multiple contact areas between a cell and multiple others)194
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creates a significant stress on the cytoskeleton of the cell(s). The limited ability195

to deform or indeed compress (with Poisson numbers found by experiments to196

be between approximately 0.4− 0.5 [90]) leads to repulsion between cells. Con-197

versely, cells are naturally adhesive. For cells in contact, binding due to adhesive198

molecules occurs; as the contact area increases so too do the adhesive bonds.199

The adhesive molecules at play are Cadherins (calcium-dependent adhesion)200

and Catenins, together these proteins form complexes called adherens junctions201

which facilitate cell-cell adhesion. Ramis-Conde and coauthors incorporated the202

E-Cadherin-β-Catenin pathway explicitly into their individual based model of203

tumour development in order to discuss the implications of this pathway on cell204

migration and cancer invasion [91–94].205

The total cell-cell interaction force between two cells, i and j, directed along206

the vector, dij , joining their centres (see righthmost image of Figure 2), is given207

by208

Fi,j =
(
Frep

i,j − Fadh
i,j

) dij

‖dij‖
, (2)

where Frep
i,j is the repulsion force discussed in Section 3.1 and Fadh

i,j is the adhesion209

force discussed in Section 3.2. In order to calculate the change in position of210

cell i at each timestep, the sum of all resulting forces between cell i and any cell211

j with which it is in contact is included in the equation of motion (Equation 1).212

3.1. Hertzian Repulsion213

For two spherical cells, i and j, in contact and subject to small (elastic)214

deformations, the repulsive force experienced is typically described in the liter-215

ature by the classical Hertzian contact mechanics repulsion [95]. The form of216

the repulsion force for two such cells of radii Ri and Rj , is, therefore217

|Frep
i,j | =

4

3
E∗R∗1/2hij

3/2, (3)

where hij = Ri +Rj −‖dij‖ describes the length of “overlap” (or contact area)218

between the two cells. This repulsion force term includes both an effective219

radius, R∗ = RiRj/(Ri + Rj) and an effective Young’s Modulus, E∗, which is220

calculated from221

1

E∗
=

1− ν2
i

Ei
+

1− ν2
j

Ej
, (4)

where Ei and Ej are the cells’ respective Young’s moduli and νi and νj their222

Poisson ratios.223

Under Hertzian elastic contact alone the following assumptions must be224

made: (a) strains on the cells are small and within the elastic limit, (b) the225

area of contact between the spherical cells is much smaller than their radii, (c)226

the cell surfaces are continuous and non-conforming and (d) their is no friction227

between the cells. Moreover, this classical model is strictly non-adhesive. Cells,228

however, are naturally adhesive, governed by adhesion molecules that travel229
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to the cellular membrane, stimulated by the proximity of a neighbouring cell,230

forming adhesive bonds. Thus, for those modelling mechanical cell-cell interac-231

tions using contact mechanics it is necessary to also include an adhesion force232

between cells, thus extending or modifying the classical Hertzian model.233

3.2. Adhesion234

There are several examples in the literature of cell-cell interaction forces,235

with differing expressions for the adhesive force, Fadh
i,j . Here we discuss two key236

variants. These are outlined in Table 2 for quick reference and comparison.237

In each case the force takes into account the strength of adhesion, α, which is238

assumed to be constant among the cell population and considers the contact239

surface area between cells since as contact surface area increases so too does the240

number of adhesive bonds.

Adhesive Force Description References

|Fadh
i,j | = αSij , e.g.

= 2πα
(
Ri − hij

4

)
hij

Adhesion directly propor-
tional to contact surface
area, Sij . The resulting
force can be determined
explicitly.

[84, 85, 91,
92, 96]

|Fadh
i,j | =

4E∗

3R∗
a3 −

[
8παE∗a3

]1/2

Johnson-Kendal-Roberts
(JKR) theory. Contact
surface area (with contact
radius parameter a) is
modified by adhesion.
The resulting force must
be determined implicitly.

[87, 97, 98]

Table 2: Selected forms of CBM adhesion force with selected references.

241

3.2.1. Explicit adhesion force242

In this variant, the adhesion force, Fadh
i,j , between two overlapping cells, is243

assumed be directly proportional to the contact surface between them, Sij .244

The contact surface area is first calculated which then feeds into the adhesion245

force. Within the literature there are different approximations for the contact246

surface area. In [96], for example, they model the contact surface area of cells in247

contact as the area of the circle equidistant between the two cells, underlying the248

spherical cap of height hij/2 (i.e. half the overlap between cells). While in [84]249

they calculate the area to be the average value between the area of the spherical250

cap of height the overlap between the cells, hij , and area of the circle underlying251

the cap (see Figure 3). In this case, the contact surface is approximated as252

Sij =
1

2

[
2πRihij + π

(
2Rihij − h2

ij

)]
= 2πRihij +

πh2
ij

2
,

9



with the resulting adhesion force given by253

|Fadh
i,j | = 2πα

(
Ri −

hij
4

)
hij . (5)

Figure 3: Figure showing how the contact area is estimated in [84].

254

This approach to modelling adhesion considers a “suction” effect as a con-255

sequence of the increasing density of effective bonds between the cells. In such256

an approach certain assumptions have been made [96]. Firstly, it is assumed257

that the adhesion molecules (receptors and ligands) which bind the cells together258

are distributed homogeneously over the whole cell surface and thus the whole259

contact surface area. Secondly, that binding takes place instantaneously and260

furthermore that since adhesion which causes deformations to the cell naturally261

change the cell surface area it is assumed that this process happens rapidly so262

that it is not necessary to explicitly consider the cell surface area.263

Figure 4 shows the growth of a MCTS over 3 000 time steps (approximately264

2 days) in which adhesion is modelled by the explicit adhesion force given by265

Equation 5. The simulation results shown are derived from the model (along266

with parameters) given in [85].267

3.2.2. Implicit JKR adhesion force268

The explicit model(s) of adhesion discussed in the previous Section, do not269

take into account the fact that the adhesion (derived from the surface contact270

area) then affects and modifies the surface contact area. The Johnson-Kendal-271

Roberts (JKR) theory of adhesive contact derives a model for the adhesive force272

which includes this hysteresis phenomena [99] . In this case the force is given273

by274

|Fadh
i,j | =

4E∗

3R∗
a3 −

[
8παE∗a3

]1/2
, (6)

in which E∗ and R∗ are, once again, the effective Young’s modulus and radius,275

respectively and a is the contact surface radius (see Figure 3). However, in this276
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Figure 4: Figures showing the results of a computational simulation of the
growth over time of a MCTS from the CBM of [85] (unpublished result) in
which adhesion is incorporated via Equation 5.

case a is not fixed but rather changes and may be calculated from277

hij =
a2

R∗
−
[

2παa

E∗

]1/2

. (7)

Figure 5 is reproduced, with permission, from [98] (their Figure 5)in which278

they directly compare the behaviour of cells governed by (A) an explicit exten-279

ded Hertzian model of adhesion (Section 3.2.1) with (B) the JKR theory model280

(Section 3.2.2). This study of the destabilisation of a monolayer shows clearly281

how the hysteresis effect between attachment and detachment of cells within282

the JKR model leads to fewer cells detaching from the substrate over the same283

timescale when compared with the extended Hertz model. For further details284

of the model parameters in these simulations, see [98].285

For more details and simulation results of tumour growth under either the286

modified Hertzian or JKR adhesion forces see, for example, the references in287

Table 2.288

4. Additional aspects of the TM289

This review will now consider selected modelling efforts of the mathematical290

and computational oncology community with regards to modelling tumour-TM291

interactions. In Section 4.1 cell-ECM interactions are discussed while in Sec-292

tion 4.3 cell-vessel interactions are considered.293

4.1. Tumour interactions with the ECM294

The ECM, on a basic level, is composed of a structured mesh (matrix) of295

fibres (e.g. collagen and fibronectin) within a gel of glycoproteins. We have296
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Figure 5: Destabilization of a monolayer using the extended Hertz interaction
(A) and the JKR-interaction energy (B). The numbers (I), (II), (III) denote
the knocked-outcontrol mechanisms which lead the destabilisation. (I) contact
inhibition, (II) anchorage-dependent proliferation (III) anchorage-dependent ap-
optosis (anoikis). PERMISSION PENDING

previously discussed cell-cell adhesion but another important adhesive process297

in cell biology is cell-matrix adhesion. Focal adhesions are protein complexes298

which connect the cell’s cytoskeleton to the ECM [9, 100]. Focal adhesions299

not only directly and mechanically link the cell to the ECM but they also act300

as points of signalling (mechanotransduction); transmitting information about301

the mechanics of the extracellular environment to cells through biochemical sig-302

nalling molecules. Focal adhesion mechanotransduction plays an important role303

in regulating both the shape and migration of cells [9]. Specific focal adhesion304

proteins which act as mechanotransducers are the ECM protein, fibronectin,305

and cell-membrane receptor integrins. Fibronectin also binds to collagen fibres306

in the ECM. Collagen fibres give structure to tissue but also, naturally, by307

extension, to the TM.308

The fibrous connective tissue of the ECM performs a wide variety of functions309

within the healthy body. In terms of cancer, and within the TM, the structure of310

the ECM and the interaction of cancer cells with individual fibres of the matrix311

drives both cell proliferation and migration. ECM binding is implicated, for312

example, in proliferative signalling; experimental data, backed up by in silico313

models, have shown that border cells (those connected to the ECM) of a MCTS314

are less proliferative than cells in the interior [46]. Moreover, malignant cells315

activate the “integrin migration pathway” and crawl towards and along the316

protein network of the ECM; migration through the protein network results317

in the rearrangement of the ECM structure as cancer cells use the integrin318

pathway to cut-off the fibres and re-orient the ECM [101, 102]. Cell migration319

can happen as a collective process that presents in different ways depending320

on the tumour type and the nearby environment leading to different migration321

structures [15, 17]. The physical properties of the environment itself affects322
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tumour development and progression. It is widely known that cells prefer stiff323

matrices to softer ones (durotaxis, [8]). Tumours themselves are known to be324

stiffer than normal tissue [103]. Furthermore, it has been shown that stiff ECM325

promotes tumour progression [104, 105]. On the other hand it has been shown326

that tumour-repopulating cells (TRCs) are more proliferative in soft rather than327

stiff environments [10]. To fully understand cancer development and local tissue328

invasion it is important to model the ECM alongside the cancer cells. To model329

the ECM it is natural to incorporate fibres as additional agents within an agent-330

based model.331

4.2. Cell-fibre interactions332

In [88] the ECM fibres are modelled using a force-based, individual-based333

model. Single-cell experiments are carried out to determine the affect that the334

cell’s environment (in this case a 2D substrate) has on its migration. By placing335

a single cell in a domain segregated by substrates with different matrix stiff-336

nesses [88] were able to reproduce the experimental results of [8] showing that337

cells are drawn preferentially to stiffer matrices, hypothesising that it was the338

lack of matrix reorientation by the cell that drives durotaxis. In a second ex-339

periment they showed the observable “follow-the-leader” behaviour of collective340

cell migration [106]. Figure 6 reproduces, with permission, their Figure 10, in341

which a single non-polarised cell becomes polarised and “follows” the path of342

polarised “leader” cell.343

In [85] the 2D model of [88] is extended to 3D and matrix fibres are in-344

corporated into a CBM for tumour growth. Each individual fibre is modelled345

explicitly by a thin cylinder (described by its extrema and radius), and the346

three-dimensional computational domain is filled with fibres of a given distri-347

bution of positions and orientations. In a similar way to cell-cell interactions,348

cell-fibre interactions are governed by attractive and repulsive forces; a cell in349

contact with a fibre will feel an adhesive force, parallel to fibre orientation and350

a repulsive force orthogonal to the fibre [107]. The cell-fibre interaction force is351

computed as the sum of these orthogonal/repulsive and parallel/adhesive terms,352

Fi,f = F‖−F⊥. The combined force Fi,f is added to the right-hand side of the353

equation of motion of each cell (Equation 1). We outline the chosen forms of354

the forces given in [85] in the following Section.355

4.2.1. Cell-fibre forces356

The cell-fibre adhesive force between a cell, i, and fibre, f , is modelled in357

[85] by358

F‖ = αfibre

(
1− ‖vi‖

vmax

)(
|vi · lf |
‖vi‖

)s

lf . (8)

It is directed along the normalised direction vector the fibre, lf , and depends on359

the normalised scalar product between fibre direction and cell velocity (polarity),360

vi (ẋi). Thus, this force is maximised when a cell is already travelling parallel361

to the fibre in question. Moreover, the force depends on an adhesion coefficient,362

αfibre, and on a threshold velocity, vmax, which limits the pulling effect of fibres.363
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Figure 6: Snapshots in time indicating how two cells collectively migrate through
the matrix. A non-polarized cell (red in plot a) becomes polarized (turning
green) and then follows the path of the existing polarized cell (green in plot a).
Reprinted from [88], Copyright (2012), with permission from Elsevier.

The additional parameter s > 0 is used to model additional effects which might364

increase (s < 1) or decrease (s > 1) the pulling effect.365

The cell-fibre repulsion force is modelled via an additional friction exerted366

by the fibre, given in [85] by367

F⊥ = βfibre

(
‖vi‖2 − |vi · lf |2

‖vi‖2

)r

vi . (9)

It is directed parallel to cell velocity and depends on the component of cell368

velocity orthogonal to the fibre, being maximised when the cell is travelling369

directly orthogonal to the fibre in question. The coefficient of cell-fibre friction370

is βfibre and the exponent r > 0 can be used to model nonlinear effects which371

increase (r < 1) or decrease (r > 1) the repulsive forces.372

Figure 7 is reproduced, with permission, from [85] (their Figure 4) shows how373

a tumour develops oriented along fibres which are uniformly distributed aligned374

with the y-axis. Initially a single cancer cell is placed within a fibrous domain,375

the resulting tumour which has developed (after 9 000 timesteps, approximately376

6 days) is shown in Figure 7. Whereas, in the absence of fibres, one would377

typically see a spherical tumour mass form (as in Figure 4), here the growth378

has been stretched out along the fibrous tissue. For further details of the model379

and associated parameters, see [85].380
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Figure 7: Figures showing the results of a simulation of tumour growth within a
domain of uniformly distributed fibres (aligned with the y-axis) after 9 000 time
steps. Cells are represented by red spheres, fibres in grey. Left: View orthogonal
to the fibre orientation (xz-plane). Right: View in the yz-plane, cropped on the
left side. Reprinted from [85], Copyright (2020), with permission from Elsevier.

Figure 8 (simulated under the model of [85]) shows the migration of a single381

(non-proliferating) cell within a given fibrous domain. On the lefthand of the382

domain fibres are directed at 45 degrees to the x-axis while they are aligned383

parallel to the x-axis on the righthand of the domain. The cell is placed at384

(250,50,250) shown by the blue circle. The simulations is run 50 times for385

10 000 timesteps (approximately 7 days), while the path of the cell through the386

fibrous domain is monitored. The trajectories of the cell for each simulation387

are indicated by the light grey lines, with the final position marked in red. The388

mean path is indicated with the dark grey line. As can be seen the cell paths389

follow the orientation of the fibres, switching alignment as they cross from the390

left to righthand of the domain.391

A further biologically relevant aspect that links cancer cells to the ECM392

is matrix re-modelling. Matrix metalloproteinases (MMPs) are enzymes which393

degrade ECM proteins (e.g. collagen fibres) through proteolysis. Proteolytic394

re-modelling of the ECM by MMPs is a key step towards cancer invasion [6].395

Fibre degradation is taken into account in current state-of-the-art continuum396

models, see, for example, [108]. Alternative models of cell-ECM interactions397

include [109] who use Hookean springs which act via the basement membrane398

which links cells to the connective tissue.399

4.3. Tumour interactions with the Vasculature400

Another important aspect of the TM is the vasculature. Blood vessels weave401

through the tissue supplying it with oxygen and other vital nutrients. Cell-vessel402

interactions are both mechanical and biochemical.403

4.3.1. Mechanical cell-vessel interactions404

Cells interact mechanically with segments of the vessel network. In [85]405

they assume that repulsive and adhesive forces act between a cell and a vessel406
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Figure 8: Cell migration simulation within a segregated domain of distributed
fibres (not shown) after 10 000 time steps. The distribution of the fibres is
indicated by the cartoons, being different on the lefthand and righthand sides.
The initial position of the cell is indicated by the blue circle and the final
positions (of 50 simulations) by red circles with paths shown in light grey. The
average path is depicted in dark grey. Unpublished result from [85].

segment and that these forces are analogous to those between cells (Section 3),407

for further details see [85]. Their simulations show tumours developing and408

embedding within pre-existing vasculature. The proliferation of cancer cells409

around blood vessels - modelling so called “tumour cords” is simulated in [89].410

In the case of a tumour chord rather than a spherical tumour growing with the411

classical radial profile (necrotic core, quiescent and proliferative outer ring) the412

opposite profile is derived with necrotic regions on the outside furthest away413

from the central blood vessel(s). Figure 9 is reproduced, with permission, from414

[89] (their Figure 15).415

In order for cancer to metastasise and spread to secondary sites around the416

body, cancer cells must be able to access the vessel network. Intravasation (and417

its analogous reverse, extravasation) is the process by which a cell enters (or418

leaves) the vascular network. In [92] they model the key metastatic process of419

intravasation using a CBM coupled to a deterministic model of the intracellular420

protein pathways which allow cells to migrate through the vessel endothelial421

wall (transendothelial migration, TEM) [110, 111]. In this case adhesion of the422

cancer cell with the vessel endothelia is key, and as before adhesion is driven by423

cadherins. Vascular endothelial cadherins (VE-cadherin) bind the cells of the424

vessel wall together. A cancer cell disrupts endothelial bonds binding itself to425

the wall using N-cadherin. Figure 10 is reproduced, with permission, from [92]426

and shows a single cell approach and then intravasate a vessel wall.427
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Figure 9: Simulation results of a tumour cord interacting with two blood vessels
(black cells are necrotic). (a-b) Tumour cord growing around two vessels, (c)
oxygen profile levels in the tumour cord, (d) cross-section showing corresponding
development of tumour cells. Reprinted by permission from Springer Nature
Customer Service Centre GmbH: Springer Nature, Bulletin of Mathematical
Biology, [89], COPYRIGHT (2018).

4.3.2. Biochemical interactions - The hypoxic phenotype428

Cancer cells, like normal cells, respond to the availability of oxygen, although429

the malignant repsonse is anything but normal. We can characterise cancer430

cells into phenotypes based on their access to oxygen (e.g. normoxic, hypoxic431

and necrotic). Hypoxic cells are chronically lacking in sufficient oxygen, this432

deficiency of the main cell nutrient rather than being tumour suppressing ac-433

tually drives tumour progression in numerous ways [5]. Jain lists the following434

responses of tumour cells to hypoxia: switch to anaerobic metabolism; resist ap-435

optosis; undergo the epithelial-mesenchymal transition (EMT); induce a cancer436

stem-cell “repopulating” phenotype, resist anti-cancer therapies; cause inflam-437

mation and immunosuppression; genomic instability and angiogenic. Notice438

that these classical behaviours are closely aligned with the Hallmarks of Cancer439

[1, 2]; the hypoxic phenotype is what drives cancer progression and makes it so440

deadly.441

Hypoxia is a main driver of the epithelial-mesenchymal transition (EMT)442

[112]. The EMT occurs when epithelial cells detach (losing their cell-cell ad-443

hesion and polarity) and gain mesenchymal cell attributes (migration, invasion444

and differentiation). The EMT is the first step towards cancer metastasis. In445

[113] they model the EMT and metastasis using a hybrid on-lattice individual446
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Figure 10: Spatio-temporal evolution dynamics of a malignant cell (red nucleus
coloured cell, marked with a full arrow) approaching a blood vessel to undergo
TEM. When the malignant cell attaches to the vessel, the VE-cadherin bonds
are disrupted and new N-cadherin bonds are formed (shown in yellow). After
some time, the malignant cell manages to disrupt the endothelial bonds enough
to open a gap in the vessel and undergo TEM. Reproduced with permission
from [92]. PERMISSION PENDING.

based approach. Hypoxia also drives angiogenesis, with hypoxic tumour cells447

releasing vascular-endothelial growth factor (VEGF) which signals for tumour448

angiogenesis. McDougall and coworkers are leading experts in modelling an-449

giogenesis [114–118]. In [84] they incorporate normoxic, hypoxic and necrotic450

phenotypes into a CBM to show how the hypoxia phenotype is implicated in the451

formation of pseudopalisades (hypercellular “walls” surrounding necrotic zones)452

in glioblastoma.453

5. Conclusions454

This paper provides a selective review of in silico models for tumour growth455

and development, with specific emphasis on centre-based force-based agent456

based models. Key authors in the field include Drasdo and coworkers [86, 97,457

98, 119–121] while a great many other authors are contributing to this vibrant458

area of research [84, 85, 122–126]. For a critical evaluation of the available459

agent based modelling techniques, their advantages and disadvantages see, for460

example, [69]. No review of such models would be complete without mentioning461

the work of Macklin and co-authors [127–129] who have recently launched Physi-462

Cell a comprehensive open source C++ code designed to simulate the growth463

of tumours within the TM [130]. One aspect of the TM which has not been464

discussed here, although which is a vital part, are tumour-associated immune465

cells. PhysiCell has been used to model how immune cells attack a MCTS [130],466

other agent-based models of tumour immune interactions-include [131–134].467

The main take home message is that biomechanics need to be taken into468

account. One might contrast individual-based models with reaction-diffusion469
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models of cancer. While reaction-diffusion models (for example, [135–137])470

do offer insight they do not include biomechanics nor can they account for471

phenotypic variations that are well captured through an agent-based force-472

based approach. Even for the subset of reaction-diffusion-taxis models ([138],473

for example) where biomechanics may be implied they are not taken into ac-474

count explicitly. Individual-based modelling, then, has significant advantages475

over reaction-diffusion models in determining the key mechanisms which drive476

metastatic spread. Perhaps in the future effort should be put into integrating477

reaction-diffusion models with biomechanics in order to gain the advantages of478

both approaches.479

Agent-based modelling of tumour growth, however, is just a single strategy480

in the global effort of the scientific community in the fight against cancer. Indeed481

mathematical (and computational) oncology is a growing field in which research482

is being done on a broad range of topics spanning from modelling intracellular483

genetic pathways (see, for example, [139–141]) to modelling cancer therapies484

(see, for example, [142–144]). Looking to the future a multi-scale model of485

a growing tumour within the TM should seek to bring together not only the486

biomechanical aspects laid out above but equally other aspects from the diverse487

field of study. By incorporating intracellular pathways (such as in [91, 93]) which488

results in phenotypic differences between cells it is possible to derive a realistic489

heterogeneous cancer cell population. By using imaging combined with the490

modelling techniques above to render in vivo tumours in silico it is possible to491

simulate in real time and space the development of tumours predicting how they492

will invade and metastasise. By trialing cancer therapies on in silico tumours493

(as in [47, 118, 145]) clinicians can devise optimal therapy protocols that can494

at once become both the standard of care and patient specific. In combination495

these techniques will truly push the frontier of our understanding of cancer496

and lead towards personalised medicine where each patient can be treated truly497

individually.498
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[94] D. K. Schlüter, I. Ramis-Conde, and M. A. J. Chaplain. Multi-scale mod-768

elling of the dynamics of cell colonies: insights into cell-adhesion forces and769

cancer invasion from in silico simulations. J R Soc Interface, 12:20141080,770

2015.771

26
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