Understanding the Interfacial Energy Structure and Electron Ex-traction Process in Inverted Organic Solar Cells with Phos-phine-doped Cathode Interlayers

Yi Yang¹, Jingwen Wang², Xiao Yang¹, Bowei Xu³, and Jianhui Hou⁴

¹Institute of Chemistry Chinese Academy of Sciences ²Institute of Chemistry ³Beijing University of Chemical Technology ⁴State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China

January 30, 2024

Abstract

Cathode interlayers (CILs) play an essential role in achieving efficient organic solar cells (OSCs). However, the electronic structure at the electrode/CIL/active layer interfaces and the underlying mechanisms for electron collection remain unclear, which becomes a major obstacle to develop high-performance CILs. Herein, we investigate the relationship of the electron collection abilities of four cross-linked and n-doped CILs (c-NDI:P0, c-NDI:P1, c-NDI:P2, c-NDI:P3) with their electronic structure of space charge region at hetero-junction interface. By accurately calculating the depletion region width according to the barrier height, doping density and permittivi-ty, we put forward that the optimal thickness of CIL should be consistent with the depletion region width to realize the minimum energy loss. As a result, the depletion region width is largely reduced from 13 nm to 0.8 nm at the indium tin oxide (ITO)/c-NDI:P0 in-terface, resulting in a decent PCE of 17.7% for the corresponding inverted OSCs.

Hosted file

Manuscript.docx available at https://authorea.com/users/725312/articles/708618-understandingthe-interfacial-energy-structure-and-electron-ex-traction-process-in-inverted-organicsolar-cells-with-phos-phine-doped-cathode-interlayers