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Abstract

Accumulating data from several large, placebo-controlled studies suggests that sodium-glucose transporter 2 (SGLT-2) inhibitors

and glucagon-like peptide 1 receptor (GLP-1) receptor agonists offer therapeutic benefits in the management of cardiovascular

diseases, regardless of the patient’s diabetic status. In addition to their effects on glucose excretion, SGLT2 inhibitors have a

positive impact on systemic metabolism. The aim of this study was to establish a non-invasive preclinical model of metabolic

syndrome (MetS) to investigate the effects of novel antidiabetic therapies beyond glucose reduction, independent of obesity.

Eighteen healthy adult Beagle dogs were fed an isocaloric Western diet (WD) for ten weeks. Biospecimens were collected

at baseline (BAS1) and after ten weeks of WD feeding (BAS2) for measurement of blood pressure (BP), serum chemistry,

lipoprotein profiling, fasting blood glucose, glucagon, insulin, NT-proBNP, BUN, creatinine, angiotensins, oxidative stress

biomarkers, serum, urine and fecal metabolomics. Differences between BAS1 and BAS2 were analyzed using non-parametric

Wilcoxon signed-rank testing with continuity correction. The isocaloric WD model induced significant variations in several

markers of MetS, including elevated BP, increased glucose levels, and reduced HDL-cholesterol. It also caused an increase in

circulating NT-proBNP levels, a decrease in serum bicarbonate levels, and significant changes in general metabolism, lipids, and

biogenic amines. Short-term, isocaloric feeding with a WD in dogs replicates key biological features of MetS while also causing

low-grade metabolic acidosis and elevating natriuretic peptides. These findings support the use of the WD canine model for

studying the metabolic effects of new antidiabetic therapies independent of obesity.
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ABSTRACT 1 

Background and Purpose 2 

Accumulating data from several large, placebo-controlled studies suggests that sodium-3 

glucose transporter 2 (SGLT-2) inhibitors and glucagon-like peptide 1 receptor receptor 4 

agonists offer therapeutic benefits in the management of cardiovascular diseases, 5 

regardless of the patient's diabetic status. In addition to their effects on glucose excretion, 6 

SGLT-2 inhibitors have a positive impact on systemic metabolism. The aim of this study 7 

was to establish a non-invasive preclinical model of metabolic syndrome (MetS) to 8 

investigate the effects of novel antidiabetic therapies beyond glucose reduction, 9 

independent of obesity.  10 

Experimental Approach 11 

Eighteen healthy adult Beagle dogs were fed an isocaloric Western diet (WD) for ten 12 

weeks. Biospecimens were collected at baseline (BAS1) and after ten weeks of WD 13 

feeding (BAS2) for measurement of blood pressure (BP), serum chemistry, lipoprotein 14 

profiling, blood glucose, glucagon, insulin, NT-proBNP, angiotensins, oxidative stress 15 

biomarkers, serum, urine and fecal metabolomics. Differences between BAS1 and BAS2 16 

were analyzed using non-parametric Wilcoxon signed-rank testing. 17 

Key Results 18 

The isocaloric WD model induced significant variations in several markers of MetS, 19 

including elevated BP, increased glucose levels, and reduced HDL-cholesterol. It also 20 

caused an increase in circulating NT-proBNP levels, a decrease in serum bicarbonate 21 

levels, and significant changes in general metabolism, lipids, and biogenic amines.  22 

Conclusions and Implications 23 

Short-term, isocaloric feeding with a WD in dogs replicates key biological features of MetS 24 

while also causing low-grade metabolic acidosis and elevating natriuretic peptides. These 25 

findings support the use of the WD canine model for studying the metabolic effects of new 26 

antidiabetic therapies independent of obesity. 27 
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INTRODUCTION 28 

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by 29 

hyperglycemia resulting from insulin resistance and impaired insulin secretion (Diabetes 30 

Prevention Program Research Group, 2015). Recent data from the National Diabetes 31 

Statistics Report indicate that 37.3 million Americans suffer from T2DM (Center for 32 

Disease Control and Prevention, 2023). In addition, the economic cost of diabetes and 33 

prediabetes was estimated to have reached $322 billion in the U.S in 2012. Current 34 

protocols for the management of T2DM include lifestyle modifications, the administration 35 

of oral antidiabetic agents, and insulin therapy. However, these approaches often prove 36 

insufficient in achieving adequate glycemic control and mitigating the progression of 37 

concomitant cardiovascular and renal complications.  38 

Two classes of drugs that are showing significant promise in the treatment of T2DM are 39 

glucagon-like peptide 1 receptor (GLP-1) receptor agonists and sodium-glucose co-40 

transporter 2 (SGLT-2) inhibitors. SGLT-2 inhibitors, such as dapagliflozin, velagliflozin, 41 

and empagliflozin, work by inhibiting glucose reabsorption in the kidneys, thus increasing 42 

urinary glucose excretion and lowering blood glucose levels (Cowie and Fisher, 2020). 43 

These drugs have proven more effective in reducing glycated hemoglobin (HbA1c) levels 44 

compared to conventional antidiabetic therapy (Cowie and Fisher, 2020). In addition to 45 

their effects on glucose excretion, SGLT-2-inhibitors positively impact systemic 46 

metabolism by reducing inflammation and oxidative stress, shifting metabolism towards 47 

ketone body production, promoting autophagy and suppressing glycation end-product 48 

signaling (Packer, 2020). 49 

Evidence from numerous large-scale, placebo-controlled studies suggests that SGLT-2 50 

inhibitors may offer benefits in the treatment of cardiovascular diseases, regardless of the 51 

patient's diabetic status (Zinman et al., 2015; Neal et al., 2017; Birkeland et al., 2017; 52 

Persson et al., 2018; McMurray et al., 2019; Inzucchi et al., 2020; Packer et al., 2020; 53 

Butler et al., 2021). Notably, the EMPA-REG OUTCOME trial showed that empagliflozin 54 

reduced the risk of major adverse cardiovascular events (MACE) by 14% and 55 

cardiovascular death by 38% in patients with type 2 diabetes and established 56 

cardiovascular disease (Zinman et al., 2015). Similarly, the CANVAS and CANVAS-R 57 
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trials established that canagliflozin reduced the risk of MACE by 14% and heart failure 58 

hospitalization by 33% in patients with T2DM and a high risk of cardiovascular disease 59 

(Neal et al., 2017). SGLT-2 inhibitors have also demonstrated potential in improving renal 60 

outcomes in patients with T2DM and diabetic kidney disease. The CREDENCE trial 61 

showed that canagliflozin reduced the risk of end-stage kidney disease, doubling of serum 62 

creatinine, renal or cardiovascular death by 30% in patients with T2DM and established 63 

diabetic kidney disease (Perkovic et al., 2019). These findings provide further evidence 64 

of the multifaceted benefits of SGLT-2 inhibitors beyond glycemic control and support 65 

their therapeutic use in modulating cardiorenal metabolic diseases.  66 

Unlike SGLT-2 inhibitors, the benefit of GLP-1 agonists in improving cardiovascular 67 

outcomes for patients with heart failure or those without T2DM has not yet been fully 68 

established (Khan et al. 2020). Ongoing studies are currently examining the potential 69 

cardiovascular benefits of semaglutide in patients with T2DM (NCT03914326, SOUL), as 70 

well as in overweight or obese patients (NCT03574597, SELECT). Additionally, a recent 71 

randomized, double-blind, placebo-controlled trial (NCT04788511, STEP-HFpEF) has 72 

shown promising results, suggesting that semaglutide can improve both symptoms and 73 

physical function in patients with heart failure with preserved systolic function and obesity 74 

(Kosiborod et al., 2023). Alongside GLP-1 receptor agonists, the effectiveness of newer 75 

combinations with glucagon agonists and/or glucose-dependent insulinotropic peptide 76 

(GIP) agonists is also being studied in regards to MACE in patients with T2DM 77 

(NCT04255433, SURPASS CVOT). 78 

As defined by the American Heart Association (Ndumele et al., 2023), cardiovascular-79 

kidney-metabolic health reflects the interaction between metabolic risk factors, chronic 80 

kidney disease, and the cardiovascular system. The pleiotropic effects of SGLT-2 81 

inhibitors and GLP-1 agonists provide an opportunity to target several cardiorenal 82 

metabolic disorders. This can be achieved experimentally using a disease model that 83 

replicates key features of metabolic syndrome (MetS), a cluster of risk factors that include 84 

obesity, dyslipidemia, hypertension, and insulin resistance. Collectively, these factors 85 

increase the risk of developing cardiorenal diseases, metabolic dysfunction-associated 86 

steatohepatitis and T2DM (Packer, 2020; Newsome and Ambery, 2023) (Figure 1). 87 

Implementing such a model would enable mechanistic studies to explore the metabolic 88 
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effects of novel antidiabetic therapy beyond glycemic control. Concurrently, it could 89 

generate pivotal preliminary data that could guide the development of similar therapeutic 90 

applications in veterinary medicine, such as canine congestive heart failure, chronic 91 

kidney disease, or systemic hypertension under the One Health paradigm (Mochel et al., 92 

2015; Mochel and Danhof, 2015; Schneider et al., 2018; Mochel et al., 2019).  93 

Previous studies suggest that consistently overfeeding dogs with high-calorie Western 94 

diets (WDs) leads to obesity and MetS, regardless of the diet composition (Moinard et al., 95 

2020; Xue et al., 2022). Indeed, prior studies investigating the effects of WDs in dogs 96 

have primarily focused on metabolic dysfunction related to obesity (Tvarijonaviciute et al., 97 

2012b; Peña et al., 2014; Moinard et al., 2020; Sun et al., 2023; Vecchiato et al., 2023). 98 

Within the context of obesity, both dogs and humans exhibit a redistribution of adipose 99 

tissue characterized by an increase in visceral fat, as opposed to subcutaneous fat. This 100 

shift is independently associated with the onset of MetS. In addition, most clinical studies 101 

demonstrating therapeutic benefits from dapagliflozin and empagliflozin on cardiorenal 102 

outcome measures include a majority of non-obese patients (McMurray et al., 2019; 103 

Wheeler et al. 2020; Butler et al., 2021; Oyama et al., 2022; EMPA-KIDNEY Collaborative 104 

Group, 2023). Recently, a study conducted by Adamson et al. and published in the 105 

European Journal of Heart Failure has unequivocally established that the efficacy of 106 

dapagliflozin for heart failure patients with reduced ejection fraction remains consistent 107 

regardless of their body mass index (Adamson et al., 2021). There is, therefore, a clear 108 

rationale for studying the pharmacodynamic effects of these therapeutic drugs in a 109 

metabolic dysfunction model that is not dependent on obesity. 110 

In a preliminary study conducted by our consortium, dogs fed a WD for about a month 111 

presented with elevated fasting bile acids, cholesterol, and blood pressure compared to 112 

control (Iennarella-Servantez et al., 2021). These findings suggest that short-term feeding 113 

with a WD can induce a clinical response that mimics MetS in healthy dogs. The aim of 114 

this study was to characterize the metabolic and molecular signatures associated with a 115 

high-fat, high-monosaccharide, and low-fiber isocaloric WD after ten weeks in dogs. Once 116 

established, this preclinical model can be used to assess the therapeutic benefits of novel 117 

antidiabetic therapy in the context of obesity-independent MetS, and pave the way for 118 

translational studies that could benefit both human and veterinary medicine. 119 
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METHODS 120 

Animals 121 

Experimental procedures were approved by the Institutional Animal Care and Use 122 

Committee at Iowa State University (Protocol Number: 21-164). All methods were 123 

performed in accordance with the relevant guidelines and regulations at Iowa State 124 

University. The authors complied with ARRIVE guidelines in the completion of this study. 125 

The study population consisted of 18 neutered young adult Beagles (9 males and 9 126 

females, age 23-26 months) weighing between 7.5 and 11.5 kg. Prior to inclusion, each 127 

dog was assessed for its general health and condition with a physical examination and 128 

had received appropriate vaccinations and deworming treatments. Normal cardiovascular 129 

structure and function were confirmed through an echocardiogram performed prior to 130 

acclimation to the study facility. No dog had received topical or systemic medications 131 

within the 28 days preceding inclusion.  132 

Each animal was assigned a unique 4-letter ear tattoo for identification purposes. 133 

Throughout the in-life phase, daily evaluations of the animals' general health and behavior 134 

were conducted by the study veterinarian (Dr. Agnes Bourgois-Mochel). Body weight and 135 

body condition scores (recorded as “underweight” vs. “ideal” vs. “overweight”) were 136 

recorded on a weekly basis. All observations, including any adverse events and study 137 

interventions were systematically recorded in the raw data file. 138 

 139 

Housing 140 

The study animals were acclimatized to the facility for one week before the start of the 141 

study. Housing conditions were strictly in accordance with the requirements set by the 142 

United States Department of Agriculture. Each dog was housed in a 16-square foot 143 

kennel (dimensions: 4'x4') with an interconnecting door, allowing for the co-housing of 144 

two animals. However, individual separation was implemented during specific periods, 145 

such as feeding times, or when necessary for specific interventions or observations.  146 

The lighting schedule was kept from 6 a.m. to 6 p.m. The ambient temperature within the 147 

housing facilities was consistently set to 70°F (21.1°C), with continuous monitoring. 148 



 7 

Throughout the study, the recorded temperature varied minimally, with the range 149 

extending from 67°F (19.4°C) to 72°F (22.2°C).  150 

Relative humidity was also closely monitored, with values fluctuating between 34% and 151 

45%. The dogs were provided with unrestricted access to tap water, delivered via 152 

individual nipple water feeders. 153 

 154 

Experimental Design 155 

In order to replicate the dietary intake of an average American diet, dogs were fed a high-156 

fat, high-monosaccharide, low-fiber WD adjusted from parameters of the National Health 157 

and Nutrition Examination Survey (NHANES 2015-2016: Males and Females over 20 158 

years) for ten weeks. Dogs were fed isocalorically based on individually calculated 159 

metabolizable energy needs. Blood samples were collected at baseline (BAS1) when 160 

dogs were fed their regular diet, and then again after ten weeks of WD feeding (BAS2). 161 

 162 

Diet Composition for BAS1 Measurements 163 

Dogs were fed a daily diet of Royal Canin® Beagle Adult dry food (12% fat content), once 164 

in the morning, around 9 a.m. The portion size for each dog was individually calculated 165 

based on weight and resting energy requirements. Any leftover food was weighed and 166 

recorded in the raw data file. 167 

 168 

Diet Composition for BAS2 Measurements 169 

Western diets were formulated to model the average intake of American subjects over 20 170 

years from the NHANES and were fed to meet the nutrient and energy requirements for 171 

each dog. Diets were home cooked and offered once daily in the morning, around 9 a.m. 172 

In cases where the provided meal was not entirely consumed, the remaining portion was 173 

carefully weighed and documented in the raw data file. The exact composition of the WD 174 

can be found in Table 1. 175 

 176 
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Sample Collection 177 

• Blood samples were drawn using a jugular catheter whenever possible, or from 178 

the saphenous or cephalic veins with single use needles. Blood samples were 179 

collected at baseline (BAS1) when dogs were fed their regular diet, and then again 180 

after ten weeks of WD feeding (BAS2) for measurement of:  181 

 182 

o Complete blood count (CBC) (plasma, K3 EDTA, Iowa State University 183 

College of Veterinary Medicine); 184 

o Standard chemistry panel, including alanine aminotransferase (ALT), 185 

alkaline phosphatase (ALP), albumin, total protein, triglycerides, total 186 

cholesterol, blood urea nitrogen (BUN), serum creatinine, serum 187 

bicarbonates, calcium, phosphorus, chloride, sodium and potassium 188 

(serum, plain tube, Iowa State University College of Veterinary Medicine); 189 

o Fasting blood glucose (serum, plain tube, Iowa State University College of 190 

Veterinary Medicine); 191 

o Glucagon1 and insulin2 (serum, plain tube, Cornell University College of 192 

Veterinary Medicine); 193 

o Lipid profiling: High-Density Lipoprotein (HDL) and Low-Density Lipoprotein 194 

(LDL) cholesterol (serum, plain tube, Texas A&M College of Veterinary 195 

Medicine); 196 

o Renin-angiotensin aldosterone system (RAAS) biomarkers (serum, plain 197 

tube, Attoquant Diagnostics, Vienna); 198 

o N-terminal prohormone of brain natriuretic peptide (NT-proBNP3) (plasma, 199 

K3 EDTA, IDEXX Laboratories, Maine); 200 

o Oxidative stress biomarkers (serum, plain tube, University of Murcia 201 

Facultad de Veterinaria); 202 

 
1 EMD Millipore’s Glucagon Radioimmunoassay (RIA) Kit GL-32K. 
2 EMD Millipore’s Human Insulin Radioimmunoassay (RIA) Kit HI-14K. 
3 IDEXX Laboratories Cardiopet ProBNP Test-Canine. 
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o Metabolomics, including (1) General Metabolism; (2) Complex Lipids and 203 

(3) Biogenic Amines (serum, plain tube, University of California Davis 204 

Genome Center). 205 

• Voided urine and fecal samples were collected at BAS1 and BAS2 for the purpose 206 

of conducting metabolomic analyses, including (1) General Metabolism; (2) 207 

Complex Lipids and (3) Biogenic Amines (University of California Davis Genome 208 

Center). 209 

• BP was measured at BAS1 and BAS2 by a certified cardiologist using a Doppler 210 

device, following standard procedures from the American College of Veterinary 211 

Internal Medicine (ACVIM), as outlined in consensus panel guidelines (Acierno et 212 

al., 2018). As Doppler-derived single measurements of blood pressure are an 213 

estimate of systolic blood pressure (SBP) (Littman, 1994), the abbreviation SBP 214 

will be used throughout this manuscript. To avoid any potential disruptions or bias 215 

in the recordings, these measurements were consistently taken before any blood 216 

was collected during each study period. To follow the consensus panel guidelines 217 

for assessing hypertension (Acierno et al., 2018) and ensure accuracy, five 218 

consecutive and consistent SBP measurements were obtained from each subject. 219 

These values were then averaged to calculate an individual estimate of SBP. 220 

A comprehensive overview of the experimental procedure, including a visual timeline of 221 

the study with specific sampling days, is presented in Figure 2. 222 

 223 

Specific Analytical Methods 224 

Lipoprotein Profiling 225 

Lipoprotein profiling was carried out using the continuous lipoprotein density profiling 226 

(CLPDP) method, adhering to procedures detailed in prior literature (Larner, 2012; 227 

Minamoto et al., 2018). Briefly, a solution of 0.18 M NaBiEDTA (Tokyo Chemical Industry) 228 

measuring 1280 µL was combined with 10 µL of both serum and NBD C6-ceramide 229 

(Cayman Chemical Company). Subsequently, 1150 µL of the resultant blend was 230 

allocated to a polycarbonate centrifuge container (Beckman Coulter). The samples 231 

underwent centrifugation for 6 hours at 4ºC and 867,747 g using an Optima MAX-LP 232 
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ultracentrifuge (Beckman Coulter) equipped with a fixed-angle rotor (MLA-130; Beckman 233 

Coulter). Immediately post-centrifugation, the samples were imaged using a fluorescence 234 

imaging system comprising a digital camera (Quantifire XI; Optronics) and a constant 235 

metal halide light source (Dolan-Jenner Industries).  236 

The images obtained were transformed into density profiles via software analysis 237 

(OriginPro7.5; OriginLab). Lipoprotein profiles were produced by plotting the average 238 

intensity of fluorescence on the y-axis, while the actual centrifuge tube coordinates (mm) 239 

served as the x-axis. A unique numbering system was established for the statistical 240 

examination. The area under the curve (AUC) of the total fluorescence trace and each 241 

segment were used to determine the total lipoprotein intensity and fractional intensities, 242 

respectively. AUCs were then calculated for LDLs and HDLs based on their density 243 

intervals. Individual AUC values were finally normalized using the total AUC and 244 

expressed as percentage, as presented by Minamoto et al. (2018). 245 

 246 

RAAS Fingerprinting 247 

Determination of angiotensin and aldosterone analytes from canine serum was derived 248 

as previously published by our consortium (Ward et al., 2021; Ward et al., 2022; Sotillo 249 

et al., 2023; Schneider et al., 2023). Briefly, serum samples were analyzed to determine 250 

the equilibrium concentrations of Angiotensin I (Ang I (1–10)), Angiotensin II (Ang II (1–251 

8)), Angiotensin III (Ang III (2–8)), Angiotensin IV (Ang IV (3–8)), Angiotensin 1–7 (Ang1–252 

7), Angiotensin 1–5 (Ang1–5), and aldosterone using validated Liquid Chromatography-253 

Tandem Mass Spectrometry (LC-MS/MS) assays at a commercial laboratory4 (Domenig 254 

et al., 2016). Following ex vivo equilibration, each sample was spiked with a stable 255 

isotope-labeled internal standard for each angiotensin peptide and a deuterated internal 256 

standard for aldosterone (aldosterone D4). The analytes were then extracted using C18-257 

based solid-phase extraction. The extracted samples underwent mass spectrometry 258 

analysis using a reversed-analytical column, which was operated in tandem with a XEVO 259 

TQ-S triple quadrupole mass spectrometer in multiple reaction monitoring mode. 260 

 
4 Attoquant Diagnostics, Vienna, Austria. 
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Internal standards were used to ensure analyte recovery throughout the sample 261 

preparation process for each sample. Concentrations of the analytes were calculated 262 

from the integrated chromatograms when the integrated signals exceeded a signal-to-263 

noise ratio of 10, taking into account the corresponding response factors derived from 264 

suitable calibration curves in the serum matrix. The lower limit of quantification (LLOQ) 265 

was established at 3.0 pM, 2.0 pM, 3.0 pM, 2.0 pM, 2.5 pM, 2.0 pM and 13.9 pM for Ang 266 

I (1–10)), Ang II (1–8), Ang1–7, Ang1–5, Ang III (2–8), Ang IV (3–8) and aldosterone, 267 

respectively. 268 

Markers for renin (PRA–S) and angiotensin-converting enzyme (ACE–S) based on 269 

angiotensin were obtained from Ang II (1–8) and Ang I (1–10) levels by calculating their 270 

sum and ratio, respectively (Guo et al., 2020). Renin-independent alternative RAAS 271 

activation (ALT–S) was calculated using the formula [(Ang 1-7 + Ang 1-5) / (Ang I + Ang 272 

II + Ang 1-7 + Ang 1-5)] (Zoufaly et al., 2020). 273 

 274 

Oxidative Stress Markers 275 

The development and validation of analytical techniques for assessing oxidative stress 276 

markers adhered to protocols outlined in previous studies (González-Arostegui et al., 277 

2022). The following provides an abridged overview of the specific procedures used in 278 

evaluating antioxidant and oxidant statuses. 279 

Antioxidant Status 280 

• The Cupric Reducing Antioxidant Capacity (CUPRAC) assay, initially described by 281 

Campos et al. (2009), is based on the conversion of Cu2+ to Cu+ through the action 282 

of non-enzymatic antioxidants in the serum sample. Quantification of CUPRAC 283 

followed the protocol previously validated for canine serum (Rubio et al., 2016), 284 

with results reported in mmol/L. 285 

• The Ferric Reducing Ability of Plasma (FRAP) assay relies on the conversion of 286 

ferric-tripyridyltriazine (Fe3+-TPTZ) to its ferrous form (Benzie et al., 1996). 287 

Quantification of FRAP was performed as described in previous studies (Benzie et 288 

al., 1996; Rubio et al., 2017). Results are expressed in mmol/L. 289 
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• Measurements of Trolox Equivalent Antioxidant Capacity (TEAC) followed the 290 

procedures outlined by Arnao et al. (1996) later adapted to canine serum samples 291 

by Rubio et al. (2016). The assay involves the generation of ABTS radicals and 292 

their subsequent reduction by non-enzymatic antioxidants in the serum specimen 293 

(Arnao et al., 1996), with results presented in mmol/L. 294 

• Total thiol (µmol/L) determination was based on the reaction between sample 295 

thiols and DTNB (Jocelyn, 1987; Da Costa et al., 2006).  296 

• The evaluation of Paraoxonase type 1 (PON-1) was based on the conversion of 297 

phenylacetate to phenol, following the same methods used for canine serum by 298 

Tvarijonaviciute et al. (2012a). Results are expressed as IU/mL. 299 

• Quantification of Glutathione Peroxidase (GPx) activity was performed using a 300 

commercial assay kit according to the manufacturer's instructions5, as described 301 

in previous studies (Kapun et al., 2012; Verk et al., 2017). Results are reported in 302 

IU/ml units. 303 

 304 

Oxidant Status 305 

• The Total Oxidant Status (TOS) was determined following Erel's method (2005), 306 

which had previously been applied to dog serum (Rubio et al., 2016). Results are 307 

expressed in µmol/L. 308 

• The Peroxide-Activity (POX-Act) assay involved the detection of total peroxides 309 

through a peroxide-peroxidase reaction using tetramethylbenzidine as the 310 

chromogenic substrate (Tatzber et al., 2003). Results are expressed in µmol/L. 311 

• The Derivatives-Reactive Oxygen Metabolites (d-ROMs) assay used an acidic 312 

medium to react with the sample in the presence of DEPPD, as per the method 313 

previously established by Alberti et al. (2000). Results are reported in Carratelli 314 

Units (U.CARR). 315 

• Determination of Advanced Oxidation Protein Products (AOPP) was based on 316 

oxidized albumin and di-tyrosine containing cross-linked proteins, as described in 317 

 
5 RANDOX Glutathione Peroxidase (Ransel) Kit RS504 



 13 

previous studies (Witko-Sarsat et al., 1996; Rubio et al., 2018). Results are 318 

expressed in µmol/L. 319 

 320 

Serum/Urine/Fecal Metabolomics 321 

General Metabolism 322 

Samples were extracted using the extraction procedure by Matyash et al. (2008), which 323 

includes MTBE, MeOH, and H2O. The organic (upper) phase was dried down and 324 

submitted for resuspension and injection onto the LC, while the aqueous (bottom) phase 325 

was dried down and submitted for derivatization for GC. Samples were shaken at 30°C 326 

for 1.5 hours. Then, 91 μL of MSTFA + FAMEs were added to each sample, and tubes 327 

were shaken at 37°C for 0.5 hours to complete the derivatization. Samples were then 328 

vialed, capped, and injected onto the instrument. A 7890A GC coupled with a LECO time 329 

of flight mass spectrometer (TOFMS) was used for the procedure. Then, 0.5 μL of the 330 

derivatized sample was injected using a splitless method onto a RESTEK RTX-5SIL MS 331 

column (30 m × 0.25 mm inner diameter with 0.25 μm film thickness) with an Intergra-332 

Guard at 275°C with a helium flow of 1 mL/min. The GC oven was set to hold at 50°C for 333 

1 minute, then ramped up to 20°C/min to 330°C and held for 5 minutes. The transfer line 334 

was set to 280°C, while the EI ion source was set to 250°C. The mass spectrometry 335 

parameters collected data from 85 m/z to 500 m/z at an acquisition rate of 17 336 

spectra/second. All compounds detected were tentatively identified to the Metabolomics 337 

Standards Initiative (MSI) Level 2 with a spectral library match score of 800 or higher 338 

(Sumner et al., 2007). 339 

 340 

Complex Lipids 341 

Samples were extracted using the extraction procedure by Matyash et al. (2008), which 342 

includes MTBE, MeOH, and H2O. The organic (upper) phase was dried down and 343 

resuspended for injection onto the LC, while the aqueous (bottom) phase was dried down 344 

and submitted for derivatization for GC. The samples were then resuspended with 110 345 

μL of a solution of 9:1 methanol:toluene and 50 ng/mL CUDA. Samples were then shaken 346 
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for 20 seconds, sonicated for 5 minutes at room temperature, and centrifuged for 2 347 

minutes at 16100 rcf. Thirty three μL of samples were aliquoted into a vial with a 50 μL 348 

glass insert for positive and negative mode lipidomics. The samples were then loaded 349 

onto an Agilent 1290 Infinity LC stack. The positive mode was run on an Agilent 6546 with 350 

a scan range of m/z 120-1200 Da and an acquisition speed of 2 spectra/s. Positive mode 351 

had between 0.5 and 2 μL injected onto an Acquity Premier BEH C18 1.7 μm, 2.1 x 50 352 

mm column. The gradient used was 0 min 15% (B), 0.75 min 30% (B), 0.98 min 48% (B), 353 

4.00 min 82% (B), 4.13-4.50 min 99% (B), 4.58-5.50 min 15% (B) with a flow rate of 0.8 354 

mL/min. Another aliquot was run in negative mode on an Agilent 1290 Infinity LC stack 355 

and injected onto the same column, with the same gradient, using an Agilent 6550 QTOF 356 

mass spectrometer. The acquisition rate was two spectra per second with a scan range 357 

of m/z 60-1200 Da. The mass resolution for the Agilent 6530 is 10,000 for ESI (+) and 358 

20,000 for ESI (-) for the Agilent 6550. 359 

 360 

Biogenic Amines 361 

Sample extraction for biogenic amines consisted of a liquid-liquid extraction method 362 

(Matyash et al., 2008) with MTBE, methanol, and water, creating a biphasic partition. The 363 

polar phase was then dried down to completion and run on a Waters Premier Acquity 364 

BEH Amide column. A short 4-minute liquid chromatography method was used for the 365 

separation of polar metabolites from a starting condition of 100% LCMS H2O with 10 mM 366 

ammonium formate and 0.125% formic acid to an end condition of 100% ACN:H2O 95:5 367 

(v/v) with 10 mM ammonium formate and 0.125% formic acid. A Sciex Triple-ToF scanned 368 

from 50-1500 m/z with MS/MS collection from 40-1000, selecting the top five ions per 369 

cycle. Data processing was done with MS-Dial using an MZ-RT list for annotations, in 370 

addition to a library for MS/MS matching. 371 

  372 
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Statistics 373 

The sample size for this experiment was established based on preliminary data from a 374 

previous study conducted by our group (Iennarella et al., 2021). In that study, statistically 375 

significant differences in BP and total cholesterol were observed in a group of ten dogs 376 

receiving an isocaloric WD, with an alpha level of 0.05 and a statistical power of 80%. 377 

Study variables were visually inspected for normality, summarized, and displayed as 378 

median (interquartile range [IQR]). Differences between BAS1 and BAS2 were analyzed 379 

using non-parametric Wilcoxon signed rank test with continuity correction. P-values < 380 

0.05 were considered statistically significant. The R6 software version 4.2.2 was used for 381 

statistical analyses. (R Core Team (2022). Graphical representation of the data was 382 

produced using the ggplot2 package in R version 4.2.2. 383 

For metabolomic analyses, the peak tables were uploaded into the Matlab® (R2023b, 384 

The Mathworks Inc., Natick, MA) environment and converted to datasets with appropriate 385 

class labels. In PLS_Toolbox (Version 9.0; Eigenvector Research, Manson, WA), 386 

Principal Component Analysis (PCA) was performed on the autoscaled data. To 387 

determine the variables responsible for differences between groups, Cluster Resolution 388 

Feature Selection (FS-CR) was applied (Sinkov et al., 2011; Adutwum et al., 2017). For 389 

each dataset, the FS-CR process of sequential backward elimination and forward 390 

selection was repeated 100 times, permuting the subsets of data, and only variables 391 

selected 85% of the time were retained to prevent overfitting (Sinkov et al., 2011). The 392 

distance between clusters (cluster resolution) was used to determine which variables 393 

contributed to the separation between classes (Sinkov et al., 2011). PCA was then 394 

performed using the selected variables from FS-CR, and the variables and their loadings 395 

were extracted. 396 

  397 

 
6 R: A language and environment for statistical computing. R Foundation for Statistical Computing, 
Vienna, Austria. URL https://www.R-project.org/). 

https://www.r-project.org/
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RESULTS 398 

Physical Examination and Adverse Events 399 

The study veterinarian, along with approved study personnel, conducted weekly physical 400 

examinations and reported no notable changes in the dogs' overall condition, behavior, 401 

cardiovascular system, hydration level, respiratory system, or skin appearance 402 

throughout the study. 403 

During the transition from their regular diet (Royal Canin® Beagle Adult) in the first 404 

baseline phase (BAS1) to the Western diet (BAS2), several dogs experienced one or 405 

more episodes of softened stools. These instances were considered as "non-serious" 406 

digestive adverse events by the study veterinarian and resolved on their own within a few 407 

days. No significant adverse effects were reported over the duration of the study. 408 

 409 

Body Weight 410 

Differences in body weight between BAS1 (8.9 [7.8 to 9.6] kg) and BAS2 (8.7 [7.4 to 9.2] 411 

kg) were statistically significant (P < 0.001), but were not considered clinically meaningful 412 

by the study veterinarian. Overall, no changes of more than (-) 13% in individual weights 413 

from BAS1 to BAS2 were reported after ten weeks of feeding with the WD. Similarly, no 414 

notable changes in body condition scores were reported between BAS1 (N = 0, 13 and 5 415 

for “underweight”, “ideal” and “overweight”, respectively) and BAS2 (N = 1, 11 and 6 for 416 

“underweight”, “ideal” and “overweight”, respectively). 417 

 418 

Complete Blood Count and Chemistry 419 

All hematological parameters were within normal physiological limits, and there were no 420 

clinically relevant or statistically significant changes in CBC between BAS1 and BAS2. 421 

No significant changes in liver-related chemical parameters, including ALT, ALP, albumin, 422 

and total protein, were observed between BAS1 and BAS2. However, dogs fed a WD for 423 

ten weeks had a decrease in serum bicarbonate (-2.5 [-4.0 to -1.0] mEq/L, P < 0.001), 424 

phosphorus (-0.8 [-1.3 to -0.5] mg/dL, P < 0.001), and potassium (-0.5 [-0.7 to -0.3] mEq/L, 425 
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P < 0.001), and an increase in chloride levels (+1.5 [0.0 to 3.0] mEq/L, P = 0.001). The 426 

diet also induced some borderline statistically significant changes in calcium (P = 0.049) 427 

and sodium (P = 0.041) levels at BAS2. Additionally, there was a significant decrease in 428 

BUN at BAS2 (-4.5 [-5.0 to -3.0] mg/dL, P < 0.001), along with an increase in serum 429 

creatinine (+0.1 [0.0 to 0.2] mg/dL, P = 0.001). These variations, although statistically 430 

significant, remained within physiological limits. A summary of the clinical chemistry 431 

parameters at BAS1 and BAS2 is presented in Figure 3. 432 

 433 

Fasting Blood Glucose, Serum Insulin and Glucagon 434 

The biological effects of the WD on fasting blood glucose, as well as the glucose-435 

regulating hormones insulin and glucagon, are presented in Figure 4. Over a span of ten 436 

weeks, the WD induced a significant increase in fasting blood glucose concentrations. 437 

This increase approached the upper physiological limit, demonstrating an average 438 

increase of 15.8% relative to baseline (BAS1 88.0 [82.0 to 91.0] mg/dL vs. BAS2 102.5 439 

[95.0 to 109.0] mg/dL, P < 0.001). 440 

The increase in fasting blood glucose was accompanied by a significant decrease of 441 

25.6% in circulating insulin concentrations (BAS1 11.6 [10.2 to 12.3] uIU/mL vs. BAS2 442 

7.4 [5.2 to 10.4] uIU/mL, P = 0.04). Furthermore, a trend indicative of a decline in serum 443 

glucagon concentrations was observed at BAS2 (BAS1 69.3 [64.0 to 77.2] pg/mL vs. 444 

BAS2 61.8 [49.8 to 64.3] pg/mL); however, it did not reach statistical significance (P = 445 

0.055).  446 

 447 

Blood Pressure 448 

Overall, SBP measurements were significantly higher at BAS2 compared with pre-WD 449 

readings (BAS1 133.5 [126.0 to 141.0] mmHg vs. BAS2 143.0 [133.0 to 152.0] mmHg, P 450 

= 0.017) (Figure 5). 451 

  452 
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Renin-Angiotensin System (RAAS) 453 

Our analysis revealed a slight downward trend in biomarkers in both the traditional and 454 

alternative arms of the RAAS, though this trend was not statistically significant. This 455 

included reductions in plasma renin activity (PRA–S), Angiotensin I (Ang I (1–10)), 456 

Angiotensin II (Ang II (1–8)), Angiotensin III (Ang III (2–8)), Angiotensin IV (Ang IV (3–8)), 457 

Angiotensin 1–7 (Ang1–7), and Angiotensin 1–5 (Ang1–5).  458 

A comprehensive overview of the RAAS biomarker profile is provided in Table 2. 459 

Importantly, aldosterone data was not available for statistical analysis, as over 45% of the 460 

samples had analyte levels below the lower limit of quantification.  461 

 462 

Total Cholesterol, Triglycerides and Lipoproteins 463 

Figure 6 summarizes the impact of the WD on total cholesterol, HDL-cholesterol and 464 

LDL-cholesterol levels. After ten weeks of feeding with the WD, there was a 44.0% 465 

increase in total cholesterol levels (from BAS1 130.0 [125.0 to 145.0] mg/dL to BAS2 466 

187.5 [173.0 to 219.0] mg/dL, P < 0.001), along with a significant reduction in HDL-467 

cholesterol (from BAS1 84.2 [80.5 to 85.6] % to BAS2 81.1 [72.8 to 83.1] %, P < 0.001) 468 

and a 26.8% elevation in LDL-cholesterol (from BAS1 14.5 [13.0 to 17.0] % to BAS2 18.0 469 

[15.5 to 24.5] %, P < 0.001). The detailed lipoprotein profiles, including levels at both 470 

baseline (BAS1) and post-WD feeding (BAS2), along with their statistical significance, 471 

are presented in Table 3. Notably, these changes were not accompanied by significant 472 

alterations in serum triglyceride levels (P = 0.54). 473 

 474 

NT-proBNP 475 

The levels of NT-proBNP significantly increased after the WD, as shown by the change 476 

from baseline (BAS1 250.0 [250.0 to 401.0] pmol/L) to post-WD (BAS2 460.5 [330.0 to 477 

750.0] pmol/L) (P < 0.001). Notably, two dogs exhibited NT-proBNP concentrations 478 

exceeding 900 pmol/L. 479 

  480 
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Oxidative Stress 481 

Antioxidant Status 482 

Overall, the effect of the WD on antioxidant markers was mild, with no significant changes 483 

in CUPRAC, FRAP, TEAC, and Thiol values. In contrast, PON-1 levels significantly 484 

decreased at BAS2 compared to BAS1 (BAS1 4.2 [3.7 to 4.4] IU/mL vs. BAS2 3.8 [3.6 485 

to 4.0] IU/mL, P = 0.004), and GPx activity increased significantly at BAS2 (BAS1 6460.0 486 

[5448.0 to 7764.0] U/L vs. BAS2 8432.0 [6964.0 to 8852.0] U/L, P <0.001). These effects 487 

are summarized in Figure 7(A). 488 

 489 

Oxidant Status 490 

The impact of the WD on oxidative stress parameters was more consistent, with total 491 

oxidant status significantly increasing at BAS2 (BAS1 4.8 [3.9 to 5.8] µmol/L vs. BAS2 492 

7.0 [4.9 to 8.7] µmol/L, P = 0.018). The increase extended to reactive oxygen metabolites 493 

(BAS1 21.3 [13.2 to 28.9] U.CARR vs. BAS2 28.8 [17.9 to 43.0] U.CARR, P = 0.084). 494 

Conversely, there was a decrease in POX-Act post-WD (BAS1 101.8 [79.1 to 114.0] 495 

µmol/L vs. BAS2 92.3 [62.1 to 94.2] µmol/L, P < 0.001). However, there were no 496 

discernible effects on AOPP (Figure 7(B)).  497 

 498 

Metabolomics 499 

General Metabolism 500 

Before feature selection, a clear separation between BAS1 and BAS2 was observed in 501 

the PCAs for urine, stool, and serum (Figure 8). To identify variables responsible for this 502 

separation, FS-CR was further employed (Sinkov et al., 2011; Armstrong et al., 2021; 503 

Adutwum et al., 2017). FS-CR identified 48 significant metabolites in the urine samples, 504 

37 significant metabolites in stool samples, and 10 in serum samples. The loadings of the 505 

selected variables are included in the Supplementary Information (Supplementary 506 

Figures 1-3, 2-6 and 7-9, for General Metabolism, Complex Lipids and Biogenic Amines, 507 

respectively). Following feature selection, BAS1 and BAS2 were clearly separated along 508 
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PC1 for all three sample types, which explained 29.4%, 48.6%, and 82.3% of the total 509 

variance for urine, stool, and serum samples, respectively (Figure 9).  510 

In urine, 29 metabolites were correlated with BAS1, including pipecolinic acid, piperidone, 511 

cytosine, and nicotinamide (Supplementary Table 1). Additionally, 19 metabolites were 512 

strongly correlated with BAS2, including 2,3-dihydroxybutanoic acid (tartaric acid), 513 

arabitol, cellobiose, and glycerol (Supplementary Table 1).  514 

In stool, seven metabolites were correlated with BAS1, such as cadaverine, trans-4-515 

hydroxyproline, tryptamine, and isopalmitic acid (Supplementary Table 2). Thirty 516 

metabolites were strongly correlated to BAS2, including fructose, pipecolinic acid, 517 

erythrose, and 2-deoxyerythritol (Supplementary Table 2). 518 

In serum, nine of the ten significant metabolites from FS-CR were correlated to BAS1, 519 

including 3-Amino-2-piperidone and 2-picolinic acid (Supplementary Table 3).  520 

 521 

Complex Lipids 522 

Prior to feature selection, no separation was observed between BAS1 and BAS2 for 523 

complex lipid urine samples (Figure 10(A)). However, separation between BAS1 and 524 

BAS2 was observed along PC1 and PC2 for stool (Figure 10(B)), and along PC1 for 525 

serum (Figure 10(C)). 526 

With feature selection, a clear separation was achieved between BAS1 and BAS2 along 527 

PC1 for all three biospecimens (Figure 11). It is noteworthy that more than three-quarters 528 

of the total variation was explained by PC1 for stool (76.7%) and serum (82.6%) samples. 529 

With FS-CR, 36 lipids in urine, 36 in stool, and 30 in serum were selected as significant 530 

metabolites describing differences between BAS1 and BAS2.  531 

In urine, 25 lipids were correlated with BAS1 and 11 lipids were correlated with BAS2 532 

(Supplementary Table 4).  533 

In stool, 32 lipids were correlated with BAS1, including eicosapentaenoic acid and various 534 

triglycerides, and four lipids were correlated with BAS2, including margaric acid 535 

(Supplementary Table 5).  536 
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In serum, 14 lipids were correlated with BAS1, including phosphatidylcholine 38:5 and 537 

phosphatidylcholine 40:7, and 16 lipids were correlated with BAS2, including 538 

sphingomyelin (d36:2) and a number of phosphatidylcholines (Supplementary Table 6). 539 

 540 

Biogenic Amines 541 

Prior to feature selection, there was significant overlap between BAS1 and BAS2 for urine 542 

(Figure 12(A)). However, for stool (17.6%) and serum (11.8%) samples, there was a clear 543 

separation along PC2 (Figure 12(B) and (C)). FS-CR identified 90 significant metabolites 544 

in urine, 68 significant metabolites in stool, and 26 significant metabolites in serum. After 545 

feature selection, BAS1 and BAS2 samples were clearly separated along PC1 for all 546 

biospecimens, accounting for approximately half of the total variance in the experimental 547 

data (Figure 13).  548 

In urine, 47 metabolites were correlated with BAS1, including N-acetylmannosamine, 549 

threonic acid, nicotinamide, and dopamine (Supplementary Table 7). Additionally, 43 550 

urinary metabolites correlated with BAS2, including N-methylphenylalanine, tartaric acid, 551 

and propoxyphene (Supplementary Table 7).  552 

In stool, 51 metabolites were correlated with BAS1, including O-acetylsalicylic acid, 553 

caffeic acid, and 3-pyridinemethanol, while 17 metabolites were correlated with BAS2, 554 

including stachydrine and prochlorperazine (Supplementary Table 8).  555 

In serum, 11 metabolites were correlated with BAS1, including 4-aminobenzoic acid and 556 

L-histidinol, while 15 metabolites were correlated with BAS2, including secnidazole, 557 

tartaric acid, and vanillin (Supplementary Table 9). 558 

  559 
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DISCUSSION 560 

Several landmark trials have demonstrated the efficacy of SGLT-2 inhibitors and GLP-1 561 

receptor agonists in managing T2DM, with benefits extending to cardiovascular diseases 562 

and renal protection (Zinman et al., 2015; Neal et al., 2017; Birkeland et al., 2017; Persson 563 

et al., 2018; Perkovic et al., 2019; Inzucchi et al., 2020; Packer et al., 2020; Kosiborod et 564 

al., 2023). These findings provide further evidence of the multifaceted benefits of these 565 

therapeutic drugs beyond glycemic control. The pleiotropic effects of SGLT-2 inhibitors 566 

and GLP-1 agonists hold the potential to target cardiorenal, hepatic and metabolic 567 

disorders using a disease model that replicates key features of MetS. Previous studies 568 

have primarily focused on obesity-related metabolic dysfunction when examining the 569 

effects of WDs in dogs. However, there is a lack of comprehensive studies on the 570 

biological and metabolic impacts of WDs independent of obesity. This is relevant as most 571 

clinical investigations on the effectiveness of dapagliflozin and empagliflozin for 572 

cardiovascular and renal outcomes had a majority of non-obese subjects (McMurray et 573 

al., 2019; Wheeler et al. 2020; Butler et al., 2021; Oyama et al., 2022; EMPA-KIDNEY 574 

Collaborative Group, 2023). Furthermore, a recent study by Adamson et al. (2021) 575 

confirms that the effectiveness of dapagliflozin in treating heart failure patients with 576 

reduced ejection fraction remains consistent regardless of their body mass index. 577 

Collectively, these findings provide a strong rationale for studying the pharmacodynamic 578 

effects of novel antidiabetic therapy in a metabolic dysfunction model that is not 579 

dependent on obesity. 580 

Our study maintained isocaloric conditions to isolate the effect of the diet’s composition 581 

from obesity as a confounding factor. It builds on preliminary data from Lyu et al. (2022), 582 

which showed a tendency towards elevated glucose levels in ten healthy Beagles under 583 

an isocaloric high-fat diet for six weeks. To the best of our knowledge, our research 584 

represents the first comprehensive characterization of the biological effects of a WD 585 

model, independent of obesity. By inducing MetS without causing weight gain, we have 586 

successfully developed a non-invasive, inducible, and potentially reversible preclinical 587 

model in just a few weeks. For ethical reasons and considerations related to animal 588 

welfare, it is important to emphasize that our objective was not to induce clinical 589 

symptoms of MetS in our study. Therefore, the majority of the observed changes reported 590 
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herein remained within physiological limits. Overall, the WD was well tolerated, with no 591 

adverse events reported during the course of the study. Minor digestive issues appeared 592 

when transitioning from a regular diet to the WD, but they resolved within a few days.  593 

Hematological parameters consistently remained within normal physiological limits, 594 

showing no clinically meaningful changes. The most notable variations were observed in 595 

metabolic parameters. Specifically, the WD induced a statistically significant increase in 596 

fasting blood glucose levels, nearing the upper physiological limit. This resulted in an 597 

average increase of approximately 20% in blood glucose concentrations compared to 598 

baseline. Interestingly, this observation was accompanied by a significant decrease 599 

(around 30%) in circulating insulin levels, which could indicate impaired insulin secretion, 600 

as seen in T2DM (Clark et al., 2001). It is worth noting that our results differ from previous 601 

findings where plasma insulin levels increased in cases related to obesity-related 602 

metabolic dysfunction in dogs (Tvarijonaviciute et al., 2012b; Moinard et al., 2020). This 603 

highlights the value of our approach in modeling key features of MetS pathophysiology 604 

independently of obesity. The decrease in circulating glucagon levels may be indicative 605 

of a physiological feedback mechanism in order to maintain glucose homeostasis in 606 

response to increased FBG and reduced insulin concentrations (Rix et al., 2019). 607 

Our dietary intervention also resulted in significant changes to serum chemistry 608 

parameters. These fluctuations, although still within physiological limits, demonstrate the 609 

ability of our model to greatly influence metabolism and homeostasis. Specifically, we 610 

observed a decrease in serum bicarbonate levels, which is in line with low-grade 611 

metabolic acidosis (Burger and Schaller, 2023). This is important because a recent meta-612 

analysis, which included data from over 30,000 patients, found an association between 613 

MetS, lower bicarbonate levels, and a higher risk of metabolic acidosis (Lambert et al., 614 

2023). Concurrently, there was a measurable increase in chloride levels, which may be 615 

attributed to hyperchloremic acidosis (Sharma et al., 2023) and/or the onset of MetS 616 

(Kimura et al., 2016). In addition, the WD induced marked reductions in both phosphorus 617 

and potassium levels, both of which have been linked to an increased risk for MetS 618 

(Kalaitzidis et al., 2005; Stoian and Stoica, 2014; Sun et al., 2014). 619 
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Consistent with the definition of MetS by the National Heart, Lung, and Blood Institute 620 

(NHLBI), our diet induced a significant elevation of SBP by approximately 10 mmHg. 621 

Interestingly, SBP was not found to increase in a previous canine study focusing on 622 

obesity-related cardiac dysfunction and MetS (Tropf et al., 2017), again supporting our 623 

rationale for studying the effect of western diets independently of obesity. Our study also 624 

found mild increases in NTproBNP, although mostly within the reference range. We 625 

suspect that the increase in circulating natriuretic peptides occurred secondarily to the 626 

increase in SBP, as previously reported in the literature (Hussain et al., 2022; Jang et al., 627 

2023), but it could also be indicative of cardiac stress (Bayes-Genis et al., 2023). Notably, 628 

some dogs showed NT-proBNP concentrations exceeding 900 pmol/L, a level commonly 629 

associated with structural heart disease in canines (Singletary et al., 2012; Wilshaw et 630 

al., 2021). 631 

Total cholesterol increased by approximately 45% after ten weeks. Importantly, in line 632 

with the definition of MetS, dogs fed the isocaloric WD model experienced a significant 633 

reduction in HDL-cholesterol, along with an increase of LDL-cholesterol (of around 25%). 634 

These shifts occurred independently of any corresponding alterations in serum 635 

triglyceride levels. While surprising, this finding is consistent with earlier research from 636 

Lahm Cardoso et al. (2016) which showed a strong correlation between body condition 637 

scores (BCS) and triglyceride levels in dogs, with values approaching the upper limit of 638 

200 mg/dL in dogs with a BCS of 8 or above (classified as "overweight" or "obese" in our 639 

study).  640 

Our results on redox status align with previous human studies (Matsuzawa-Nagata et al., 641 

2008; Boden et al., 2017; Aleksandrova et al., 2021). Specifically, we observed significant 642 

increases in TOS and d-ROMs at BAS2. In contrast, the effect on antioxidant markers 643 

was more nuanced and generally mild, with levels of CUPRAC, FRAP, TEAC, and Thiol 644 

remaining stable at BAS2. This is in line with the variable impact of dietary fat on systemic 645 

antioxidative stress markers in dogs. Some studies have shown no effect of carbohydrate 646 

and fat concentrations on oxidative stress biomarkers (Chiofalo et al., 2020), while others 647 

have reported an increase in antioxidant capacity, but no effect on oxidative stress 648 

markers (Vecchiato et al., 2023). 649 
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Our study highlights the comprehensive metabolic changes induced by the WD, which 650 

impacts various biological pathways, including those related to general metabolism, 651 

complex lipids, and biogenic amines. These observations underscore the potential 652 

relevance of this model in studying MetS and its associated health complications. 653 

Notably, all the metabolites detected in our study were classified according to MSI Level 654 

2 standards (Sumner et al., 2007). The correlation of nicotinamide to the baseline diet 655 

(BAS1) in both general metabolism (urine) and biogenic amines (urine) suggests that 656 

dogs had lower levels of this essential form of vitamin B3 after ten weeks of feeding with 657 

a WD (BAS2) compared to their standard diet. Nicotinamide plays a crucial role in various 658 

metabolic pathways, particularly in energy production and DNA repair (Surjana et al., 659 

2010; Amjad et al., 2021). Similarly, the correlation of glycerol to BAS2 in general 660 

metabolomics (urine) indicates that glycerol levels were increased during feeding with the 661 

WD. Glycerol is a key component of triglycerides and is involved in energy metabolism, 662 

especially in lipid breakdown and synthesis (Frühbeck et al., 2014). This elevation is likely 663 

related to an increased metabolism of triglycerides caused by the WD, indicating a 664 

potential shift in lipid metabolism. The correlation of tartaric acid (2,3-dihydrobutanoic 665 

acid) with BAS2 in multiple classes (general metabolomics in urine, biogenic amines in 666 

urine, and biogenic amines in serum) indicates that tartaric acid levels increased during 667 

the WD phase. These changes are likely associated with the increased catabolism of the 668 

antioxidant ascorbic acid and accompany variations in oxidative stress markers 669 

highlighted above (Bánhegyi et al., 2004).  670 

A greater diversity of fatty acids was correlated with BAS1, especially in stool, indicating 671 

a wider range of fatty acid profiles in the baseline diet. This diversity is essential for energy 672 

production and cell membrane structure (Hishikawa et al., 2014). Moreover, after the WD 673 

diet, saturated fatty acids (namely FA 17:0 in stool lipidomics and PC 18:0) were 674 

increased. High levels of saturated fatty acids have been linked to negative health 675 

outcomes such as cardiovascular diseases (Siri-Tarino et al., 2010; Hooper et al., 2020). 676 

The identified correlations between fatty acid diversity and saturated fatty acids suggest 677 

a significant change in lipid metabolism, a key feature of MetS. 678 
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Palmitoleic acid, an omega-7 monounsaturated fatty acid commonly found in adipose 679 

tissues, was correlated with BAS2 in stool general metabolomics. This increase may 680 

indicate alterations in adipose tissue metabolism, potentially related to the storage and 681 

release of lipids in response to the WD. Palmitoleic acid (16:1n7) increases lipolysis, 682 

glucose uptake and glucose utilization for energy production in white adipose cells 683 

(Bolsoni-Lopes et al., 2014; Cruz et al., 2018). Pipecolinic acid (found in urine general 684 

metabolomics) and 2-picolinic acid (found in serum general metabolomics) showed a 685 

correlation with BAS1. These metabolites are byproducts of tryptophan metabolism. 686 

Tryptophan metabolism has been implicated in various physiological processes, such as 687 

neurotransmitter synthesis and immune regulation (Florensa-Zanuy et al., 2021). 688 

In both general metabolomics (GC-MS) and LC-MS assays, several unidentified 689 

metabolites were detected. For GC-MS, this was due to spectral library matches failing 690 

to identify metabolites below the 800 threshold. Advanced data processing techniques, 691 

such as Parallel Factor Analysis, could be employed to deconvolve data and obtain 692 

cleaner spectra (Amigo et al., 2008; Giebelhaus et al., 2022a). However, this would 693 

require a separate and dedicated study. Additionally, the bioamines assay detected 694 

several non-amine compounds due to its ability to detect compounds without an amine 695 

group. With LC-MS, the presence of unidentified metabolites could possibly be attributed 696 

to biotransformation of known metabolites, which involves the addition or removal of 697 

specific chemical moieties such as (de)-glycosylation, (de)-methylation, (de)-amination, 698 

and (de)-hydroxylation. These transformations often occur during metabolic processes 699 

(Giebelhaus et al., 2022b). To identify these metabolites, biotransformation analysis 700 

techniques and exploration of additional libraries and databases would be necessary. 701 

However, this is beyond the scope of this study.  702 

This study presents several limitations worth mentioning. First, the study was limited in 703 

size and did not address the potential for reversibility of the model, specifically regarding 704 

the metabolic impacts of transitioning back to a standard diet. While the non-invasive 705 

nature of the model suggests reversibility, this would need to be confirmed in a separate 706 

experiment. Additionally, the study lacks some functional data, such as the time-707 

dependent effects of the WD on glucose and insulin levels, as well as intestinal 708 
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permeability and fecal microbiome composition. This was partly deliberate, as those 709 

effects have been extensively characterized previously in the literature (e.g., Moinard et 710 

al., 2020). Lastly, our diet failed to induce an increase in triglyceride levels, which is an 711 

important component of MetS. This outcome was expected, however, given the isocaloric 712 

nature of the feeding regimen and existing literature that established a clear relationship 713 

between BCS and triglyceride levels in dogs (Lahm Cardoso et al., 2016). 714 

In summary, our isocaloric WD, designed to mimic the NHANES diet, which is high in fat, 715 

monosaccharides, and low in fiber, effectively replicated key characteristics of MetS. 716 

These included elevated BP, increased fasting glucose levels, and reduced HDL-717 

cholesterol, all independent of abdominal obesity. Additionally, the WD induced significant 718 

changes in general metabolism, complex lipids, and biogenic amines in dogs, while also 719 

leading to a mild state of metabolic acidosis and elevated natriuretic peptides.  720 

Our findings underscore the utility of this model for investigating the metabolic effects of 721 

novel antidiabetic therapies within the context of obesity-independent MetS. Furthermore, 722 

this research opens the door to translational studies with potential benefits for both human 723 

and veterinary medicine. 724 

  725 
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BULLET POINT SUMMARY 726 

What is already known? 727 

• The pleiotropic effects of novel antidiabetic therapy provide an opportunity to 728 
impact cardiovascular-kidney-metabolic health. 729 

• The effectiveness of dapagliflozin in heart failure is independent of the patient's 730 
body mass index. 731 

 732 

What this study adds? 733 

• This study establishes a non-invasive and inducible preclinical model of obesity-734 
independent metabolic syndrome (MetS). 735 

• First description of the metabolic signatures associated with Western diets 736 

independent of obesity. 737 

 738 

Clinical significance? 739 

• The canine model can be used to study the pharmacodynamics of antidiabetics in 740 
obesity-independent MetS. 741 

• This opens the door to translational studies with potential benefits for human and 742 

veterinary medicine. 743 

  744 
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TABLES 1234 

Table 1. Nutritional Characteristics (1A) and Composition (1B) of the Western Diet. 1235 
Eighteen healthy adult Beagle dogs were fed a high-fat, high-monosaccharide, low-fiber 1236 
Western diet (WD) adjusted from parameters of the National Health and Nutrition 1237 
Examination Survey (NHANES) for a period of ten weeks. The dogs were provided with 1238 
isocaloric feedings based on their individually calculated metabolizable energy. The diets 1239 
were home cooked and offered to the dogs once daily in the morning, typically around 9 1240 
a.m.  1241 

1A. 1242 

  1243 

PARAMETER TARGET ACTUAL 
   
Energy (kcal) 1,000.0 1,000.3 
Protein (g/Mcal) 40.1 40.3 
Fat (g/Mcal) 40.8 40.9 
CHO (g/Mcal) 118.3 117.9 
Fiber (g/Mcal) 8.4 8.4 
Sugar (g/Mcal) 51.4 51.4 
Saturated fat (%) 37.0 36.4 
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1B. 1244 

  1245 

INGREDIENT g per 1,000 kcal 
  
Ground beef, 80% lean 56.0 
Egg protein powder  9.8 
Bread brown  99.0 
Bread white  70.0 
Light corn syrup 47.0 
Corn oil 11.0 
Unsalted butter 15.5 
Psyllium husk 3.0 
Iodized salt 5.0 
Balance.it® Canine K 14.4 
Calcium/phosphate 
Welactin Canine liquid 
Fleet enema 

2.3 
0.5 

1.0 (mL) 
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Table 2. Effect of the Western Diet Model on Biomarkers of the Renin-Angiotensin 1246 
Aldosterone System (RAAS). Pharmacodynamic changes in both the classical and 1247 
alternative arm of the RAAS after ten weeks of feeding with a high-fat, high-1248 
monosaccharide, low-fiber Western diet (WD), including: Angiotensin I (Ang I (1–10)), 1249 
Angiotensin II (Ang II (1–8)), Angiotensin III (Ang III (2–8)), Angiotensin IV (Ang IV (3–8)), 1250 
Angiotensin 1–7 (Ang1–7), and Angiotensin 1–5 (Ang1–5). Markers for renin (PRA–S) 1251 
and angiotensin-converting enzyme (ACE–S) based on angiotensin were obtained from 1252 
Ang II (1–8) and Ang I (1–10) levels by calculating their sum and ratio, respectively (Guo 1253 
et al., 2020). Renin-independent alternative RAAS activation (ALT–S) was calculated 1254 
using the formula [(Ang 1-7 + Ang 1-5) / (Ang I + Ang II + Ang 1-7 + Ang 1-5)], as 1255 
previously described (Zoufaly et al., 2020). 1256 

 1257 
  1258 

VARIABLE BAS1 BAS2 P-VALUE 
    
Ang I (1–10) 100.7 (70.7-114.5) 71.6 (40.3-102.3) 0.30 
Ang II (1–8) 68.8 (40.8-81.3) 45.4 (25.4-91.7) 0.62 
Ang III (2–8) 14.8 (8.4-15.4) 11.0 (7.7-12.3) 0.68 
Ang IV (3–8) 13.7 (10.3-15.8) 7.6 (5.5-11.6) 0.11 
Ang (1–7) 25.5 (11.7-35.2) 17.1 (9.0-19.0) 0.42 
Ang (1–5) 57.9 (34.7-70.6) 35.4 (25.1-54.2) 0.30 
ACE–S 0.68 (0.57-0.72) 0.64 (0.52-0.68) 0.73 
PRA–S 176.8 (121.8-194.5) 106.9 (67.5-196.5) 0.42 
ALT–S 0.34 (0.28-0.38) 0.32 (0.27-0.39) 0.62 
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Table 3. Effect of the Western Diet Model on Circulating Lipoprotein Fractions. 1259 
Lipoprotein profiles were produced by plotting the average intensity of fluorescence on 1260 
the y-axis, while the actual centrifuge tube coordinates (mm) served as the x-axis. A 1261 
unique numbering system was established for statistical examination. The area under the 1262 
curve (AUC) of the total fluorescence trace and each segment were used to determine 1263 
the total lipoprotein intensity and fractional intensities, respectively. Moreover, AUCs were 1264 
calculated for high-density lipoproteins (HDLs) and low-density lipoproteins (LDLs), 1265 
based on their density intervals. These AUC values were normalized using the total AUC 1266 
and expressed as percentage, as previously presented by Minamoto et al. (2018). 1267 

 1268 

  1269 

VARIABLE BAS1 BAS2 P-VALUE 
    
HDL 2a (AUC%) 28.3 (26.4-28.8) 24.7 (21.8-27.1) <0.001 
HDL 2b (AUC%) 21.4 (18.4-23.3) 21.1 (19.2-22.2) 0.39 
HDL 3a (AUC%) 25.1 (23.2-27.9) 24.6 (22.4-26.2) 0.14 
HDL 3b (AUC%) 7.1 (6.0-8.0) 7.4 (6.5-8.7) 0.13 
HDL 3c (AUC%) 1.2 (1.0-1.3) 1.3 (1.0-1.5) 0.61 
HDL total (AUC%) 84.2 (80.5-85.6) 81.1 (72.8-83.1) <0.001 
    
LDL 1 (AUC%) 0.6 (0.5-0.8) 0.6 (0.5-0.7) 0.44 
LDL 2 (AUC%) 1.4 (1.2-1.5) 1.5 (1.2-1.7) 0.30 
LDL 3 (AUC%) 2.6 (2.4-3.5) 4.8 (3.9-6.9) <0.001 
LDL 4 (AUC%) 4.1 (3.7-4.9) 5.2 (4.4-6.8) <0.001 
LDL 5 (AUC%) 6.1 (4.9-6.7) 6.2 (5.0-7.4) 0.26 
LDL total (AUC%) 14.5 (13.0-17.0) 18.0 (15.5-24.5) <0.001 
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Figure 1. Rationale for the Use of SGLT-2i in CardioRenal Metabolic (CRM) 1270 
Diseases. Molecular basis for the interrelationshipt between cardiovascular, renal and 1271 
metabolic disoders. Adjusted and simplified from Kadowaki et al. (2022). 1272 

 1273 

 1274 

  1275 
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Figure 2. Experimental Study Design. Eighteen healthy adult Beagle dogs were fed a 1276 
high-fat, high-monosaccharide, low-fiber western diet (WD) adjusted from parameters of 1277 
the National Health and Nutrition Examination Survey (NHANES) for ten weeks. Blood 1278 
samples were collected at baseline (BAS1) when dogs were fed their regular diet, and 1279 
then again after ten weeks of WD feeding (BAS2) for measurement of complete blood 1280 
count, standard chemistry panel, fasting blood glucose, glucagon and insulin, lipid 1281 
profiling, renin-angiotensin aldosterone system biomarkers, NT-proBNP, oxidative stress 1282 
biomarkers, and serum metabolomics. Voided urine and fecal samples were collected at 1283 
BAS1 and BAS2 for the purpose of conducting urine metabolomics, including (1) General 1284 
Metabolism; (2) Complex Lipids and (3) Biogenic Amines. Blood pressure was measured 1285 
by a certified cardiologist utilizing a Doppler device. ACC: acclimatation. 1286 

 1287 

 1288 
  1289 
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Figure 3. Temporal Changes in Standard Clinical Chemistry Parameters After Ten 1290 
Weeks of Feeding with a High-Fat, High-Monosaccharide, Low-Fiber Western Diet. 1291 
No notable alterations were observed in liver-related chemical parameters, such as ALT, 1292 
ALP, albumin, and total protein, when comparing BAS1 to BAS2. Dogs at BAS2 had 1293 
decreased levels of serum bicarbonates, phosphorus, and potassium, but increased 1294 
levels of chloride. There was also a reduction in BUN at BAS2, along with an elevation in 1295 
serum creatinine levels. Box plots represent the 25th, 50th and 75th percentile of the data 1296 
± 1.5 IQR (interquartile range). •: 0.01 < P ≤ 0.05; ••: 0.001 < P ≤ 0.01; •••: P ≤ 0.001. 1297 

 1298 
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Figure 4. Temporal Changes in Fasting Blood Glucose, Serum Insulin and 1299 
Glucagon After Ten Weeks of Feeding with a High-Fat, High-Monosaccharide, Low-1300 
Fiber Western Diet. The WD resulted in a significant 16.5% increase in fasting blood 1301 
glucose, approaching the upper physiological limit. This was accompanied by a significant 1302 
36.2% decrease in insulin levels, and a trend towards lower serum glucagon levels which 1303 
did not reach statistical significance. Box plots represent the 25th, 50th and 75th percentile 1304 
of the data ± 1.5 IQR (interquartile range). •: 0.01 < P ≤ 0.05; •••: P ≤ 0.001. 1305 

 1306 

 1307 

  1308 
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Figure 5. Temporal Changes in Systolic Blood Pressure After Ten Weeks of 1309 
Feeding with a High-Fat, High-Monosaccharide, Low-Fiber Western Diet. Dogs fed 1310 
a WD for ten weeks had significantly higher blood pressure measurements compared 1311 
with baseline (BAS1). Measures were taken by a certified cardiologist using a Doppler 1312 
device. To avoid bias in the recordings, these measurements were consistently taken 1313 
before any blood was collected during each study period. To follow the ACVIM consensus 1314 
panel guidelines for assessing hypertension (Acierno et al., 2018) and ensure accuracy, 1315 
five consecutive and consistent SBP measurements were obtained from each subject. 1316 
These values were then averaged to calculate an individual estimate of SBP. Box plots 1317 

represent the 25th, 50th and 75th percentile of the data ± 1.5 IQR (interquartile range). •: 1318 
0.01 < P ≤ 0.05. 1319 

 1320 

 1321 

  1322 
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Figure 6. Temporal Changes in Total Cholesterol, HLD-Cholesterol and LDL-1323 
Cholesterol After Ten Weeks of Feeding with a High-Fat, High-Monosaccharide, 1324 
Low-Fiber Western Diet. Circulating levels of cholesterol were significantly increased 1325 
(+44.2%) after ten weeks of feeding with the isocaloric WD. Notably, this change was 1326 
accompanied by a significant reduction in HDL-cholesterol and a 26.8% elevation in LDL-1327 

cholesterol. Box plots represent the 25th, 50th and 75th percentile of the data ± 1.5 IQR 1328 
(interquartile range). •••: P ≤ 0.001. 1329 

 1330 

 1331 

  1332 
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Figure 7. Temporal Changes in Antioxidant (A) and Oxidant (B) Stress Markers 1333 
After Ten Weeks of Feeding with a High-Fat, High-Monosaccharide, Low-Fiber 1334 
Western Diet. The WD had mild effects on antioxidant markers, with no significant 1335 
changes in CUPRAC, FRAP, TEAC, and Thiol values. However, PON-1 levels 1336 
significantly decreased at BAS2. The impact of the WD on oxidative stress parameters 1337 
was more consistent, with total oxidant status significantly increasing at BAS2. The 1338 
increase extended to reactive oxygen metabolites (d-ROMs). Conversely, there was a 1339 
decrease in POX-Act post-WD, but no notable effects on AOPP. Box plots represent the 1340 

25th, 50th and 75th percentile of the data ± 1.5 IQR (interquartile range). •: 0.01 < P ≤ 0.05; 1341 
••: 0.001 < P ≤ 0.01; •••: P ≤ 0.001. 1342 

 1343 

 1344 

  1345 
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Figure 8. PCA scores plots (General Metabolism) of (A) Urine, (B) Stool, and (C) Serum 1346 
before feature selection. 1347 

 1348 

 1349 

 1350 

Figure 9. PCA scores plots (General Metabolism) of (A) Urine, (B) Stool, and (C) Serum 1351 
after feature selection. 1352 
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Figure 10. PCA scores plots (Complex Lipids) of (A) Urine, (B) Stool, and (C) Serum 1356 
before feature selection. 1357 

 1358 

 1359 

 1360 

Figure 11. PCA scores plots (Complex Lipids) of (A) Urine, (B) Stool, and (C) Serum after 1361 
feature selection. 1362 
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 1364 

  1365 
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Figure 12. PCA scores plots (Biogenic Amines) of (A) Urine, (B) Stool, and (C) Serum 1366 
before feature selection. 1367 
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Figure 13. PCA scores plots (Biogenic Amines) of (A) Urine, (B) sSool, and (C) Serum 1371 
after feature selection. 1372 
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