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Abstract

Magic mushrooms are fungi that produce psilocybin, a compound with breakthrough status for treatment of mental health
disorders. Wood-degrading species of Psilocybe, such as P. subaeruginosa and relatives, have high concentrations of psilocybin
but are discouraged for clinical production due to a temporary paralytic side effect known as Wood Lover’s Paralysis, the cause
of which is unknown. We studied P. subaeruginosa over its partial distribution in Australia based on genomic analyses of
89 isolates to investigate population structure and species boundaries, examine allelic diversity at psilocybin loci, and test its
centre of origin. Psilocybe subaeruginosa is structured by geography in Australia, but geographically separated populations are
fully sexually compatible. Allelic diversity among populations, such as at mating compatibility loci, is likely a result of genetic
drift and minimal gene flow since differentiation from a shared ancestor. Movement of woodchips, mulch, or plants has most
likely spread genotypes of P. subaeruginosa locally within Australia and to the northern hemisphere. Species from the northern
hemisphere, namely P. azurescens and P. cyanescens, clustered among Australian populations, indicating shared ancestry and
supporting a hypothesis these taxa are conspecific with P. subaeruginosa. We identified high allelic diversity in genes of the
psilocybin metabolic pathway and haplotypes of P. subaeruginosa with either one or two putatively functional paralogs of psiH,
however the functionality of this gene duplication is yet to be determined. Our study provides insights into the evolutionary
history and species boundaries of P. subaeruginosa, which has a centre of origin in Australasia.

Introduction

Mushrooms (Agaricomycetes, Basidiomycota) disperse large quantities of wind-borne spores (Dam, 2013), yet
populations of many different species are structured by geography (Amend, Garbelotto, Fang, & Keeley, 2010;
Branco et al., 2017; Dabao Sun et al., 2023). These geographically isolated populations may form allopatric
species if mating compatibility ceases. Mushrooms are typically obligately sexual (heterothallic), and mating
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compatibility is either tetrapolar, in which alleles at two independent loci must differ for gametes to fuse, or
bipolar, controlled at one locus (Coelho, Bakkeren, Sun, Hood, & Giraud, 2017). Mating-compatibility loci
have high allele diversity and long allele residence times (Skrede, Maurice, & Kauserud, 2013; van Diepen,
Olson, Ihrmark, Stenlid, & James, 2013), and this diversity is maintained across populations by negative
frequency selection that favours rare mating types, with minimal divergence of functional parts of mating
genes that control compatibility (Peris et al., 2022). The relationship between speciation and erosion of mate
compatibility in reproductive isolation needs better understanding to delineate populations from species of
Basidiomycota.

Mushrooms that produce psilocybin, magic mushrooms, occupy diverse environmental niches as saprotrophs
that degrade leaves, wood, and dung (Stamets, 1996). A key diagnostic character of magic mushrooms is a
blueing reaction, due to oligomers of psilocin that form when psilocybin is dephosphorylated and oxidised
after tissue damage (Lenz et al., 2020). Psilocin, the active metabolite of psilocybin, binds to serotonin
receptors, which are the targets hypothesised to protect magic mushrooms against fungivory by metazoans
(Reynolds et al., 2018). The etymology behind epithets of wood-degrading magic mushrooms, e.g., P.
azurescens , P. cyanescens , and P. subaeruginosa , describes their strong blueing reaction and these mush-
rooms have some of the highest concentrations of psilocybin (Gotvaldová et al., 2022).

The Oregon Psilocybin Advisory Board discouraged commercialisation of wood-degrading species of Psilocybe
as in some cases a side effect temporarily paralyses users during a psilocybin experience (Abbas et al., 2021).
The cause of ‘wood lover’s paralysis’ is unknown (Dörner et al., 2022). Dörner et al. (2022) and McTaggart et
al. (2023) showedpsiH , a gene in the psilocybin pathway that converts tryptamine into 4- hydroxytryptamine
(Fricke, Blei, & Hoffmeister, 2017), is duplicated with up to three homologs in wood-degrading species
ofPsilocybe , compared to a single copy in P. cubensis . McTaggart et al. (2023) hypothesised these gene
duplications may impact the production of psilocybin and its analogues, however, there is no evidence that
links the psilocybin pathway to wood lover’s paralysis, and Dörner et al. (2022) suggested the symptoms are
likely not linked to tryptamines.

Psilocybe subaeruginosa was described from national parks and natural environments in Australia (Cleland,
1927). It has taxonomic priority in a complex of closely related, potentially conspecific species described from
Australia (P. australiana , P. eucalypta , and P. tasmaniana ), New Zealand (P. makaroraeand P. weraroa
), and the northern hemisphere (P. allenii ,P. azurescens , and P. cyanescens ) (Borovička, Noordeloos,
Gryndler, & Oborńık, 2011; Gotvaldová et al., 2022). The morphological diversity of P. subaeruginosa in
Australia encompasses phenotypes of taxa described in the northern hemisphere (Fig. 1). Psilocybe allenii
and P. cyanescens behave as invasive taxa in the northern hemisphere, occurring in planted garden beds
rather than undisturbed ecosystems (Borovička, Rockefeller, & Werner, 2012; Dennis & Wakefield, 1946),
and having low genetic diversity among populations (Gießler, 2018).

Psilocybe subaeruginosa has a wide distribution across Australia, occurring from southeast Queensland at
its northernmost extent to Tasmania, South Australia, and Western Australia. We examined populations of
P. subaeruginosa across its eastern distribution in Australia to test hypotheses (i) that it has a centre of
origin in Australia, (ii) that it is conspecific with species in the northern hemisphere, (iii) that populations
in Australia are structured by geography, and (iv) that selection shapes the genes in the psilocybin pathway.
To do so, we used population genomics and mating compatibility to compare relationships among Australian
populations and included reference sequences of P. azurescens and P. cyanescens to test conspecificity with
taxa in the northern hemisphere. Our study examines how fungal species connectivity is maintained across
geographic boundaries and provides new knowledge on the centre of origin of wood-degrading species of
Psilocybe .

Methods

Specimen collection, culturing, DNA sequencing

We cultured single basidiospores on malt extract agar from spore prints of P. subaeruginosa collected by
citizen scientists from private land and roadsides in New South Wales, Queensland, South Australia, Tas-
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mania, and Victoria (Australia, Fig 2A). Sampled spore prints were non-uniform, with some received as an
individual pileus and some received as populations of pilei from one location. Sibling haplotypes, those known
to come from the same pileus, are listed in Table S1. Cultures are lodged in the Queensland Plant Pathology
Herbarium. Cultures were grown in half-strength potato dextrose broth for three weeks, then sent to the
Australian Genome Research Facility (AGRF, Brisbane, Australia) for DNA extraction and high-throughput
sequencing. AGRF prepared a Nextera Flex 150PE library that was sequenced on an Illumina HiSeq, which
provided sequencing depth of 42–80 times coverage per isolate. A list of 81 specimens cultured, sequenced
and assembled from Australia in the current study are provided in Table S1.

Genome assembly and annotation

Raw sequencing reads were trimmed with Trimmomatic v.0.12 (Bolger, Lohse, & Usadel, 2014) and as-
sembled with SPAdes v.3.12.0 (Bankevich et al., 2012). Assembled genomes are accessioned in GenBank
(Supplementary Table 1). FunAnnotate (Palmer & Stajich, 2019) was used to annotate all examined ge-
nomes using protein models from the annotated P. cyanescens reference assembly (Reynolds et al., 2018),
BUSCO models for Basidiomycota, and Augustus models from Laccaria bicolor (Martin et al., 2008).

SNP calling

SNPs were called using kSNP (k=91, min frac = 1) (Gardner, Slezak, & Hall, 2015), from 81 genomes of P.
subaeruginosa assembled in the present study, five from a past study (McTaggart et al., 2023), two genomes
of P. azurescens (Dörner et al., 2022; K McKernan et al., 2021), and a genome of P. cyanescens (Reynolds et
al., 2018) (Table S1). PLINK (Purcell et al., 2007) was used to remove SNP sites under linkage disequilibrium
across the entire dataset (r2 cutoff = 0.99). Relationships among SNPs were visualised with a neighbour net
in SplitsTree v.4.14.8 (Huson & Bryant, 2005).

Tests for population structure and ancestry

We used Discriminant Analysis of Principal Components (DAPC) and K-means clustering to determine whe-
ther there was underlying population structure of P. subaeruginosa in Australia and the northern hemisphere
(Jombart, Devillard, & Balloux, 2010). The packages vcfR (Knaus & Grünwald, 2017), adegenet (Jombart,
2008), and ggplot2 implemented in R (R_Core_Team, 2014) were used to import an LD-corrected VCF file,
cluster populations by k-means clustering and DAPC, and plot results, respectively.

We used the relatedness command in vcftools v1.17 (Danecek et al., 2011), which estimates relationships
based on pairwise similarity of genetic markers between individuals due to shared genetic ancestry, as defined
as the AJK statistic by Yang et al. (2010). We plotted relatedness values in a pairwise heat map using ggplot2
in R (R_Core_Team, 2014).

Analyses of single copy orthologs

We used OrthoFinder v.1.0.6 (Emms & Kelly, 2019) with a Diamond search (Buchfink, Xie, & Huson, 2015)
to identify orthologous groups of genes. All single copy orthologs were aligned with MAFFT (Katoh &
Standley, 2013), concatenated with FASconCAT-G (Kück & Longo, 2014), and their relationships visualised
with a neighbour net in SplitsTree.

Studies of selection, divergence, and diversity at mating compatibility loci

Alleles at mating compatibility loci identified by McTaggart et al. (2023) were searched in gene annotations
with BLASTp. STE3.2genes and HD genes (HD1 and HD2 ) at pheromone/receptor (PR) and homeodo-
main (HD) loci, were aligned with MAFFT, concatenated, and the most likely tree was searched in IQTree
v.2 (Minh et al., 2020) with a model test (command -m TEST), 10,000 ultrafast bootstraps and 10,000
approximate likelihood ratio tests (Minh, Nguyen, & von Haeseler, 2013).

We called SNPs with kSNP across the longest contigs that contained mating compatibility loci (HD locus:
BRIP75299; PR locus: POZ38-3). A lower kmer cutoff was used (kmer cutoff 21) to increase the number of
SNPs called across these shorter genomic regions. vcftools (Danecek et al., 2011) was used to determine FST,
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nucleotide diversity (pi), and Tajima’s D across contigs and using populations defined by DAPC analyses.
FST, pi, and Tajima’s D were plotted across HD and PR contigs with 10,000 and 3,500 base pair windows
using ggplot2 in R.

Mating compatibility was tested based on clades recovered in phylogenetic relationships of the PR locus.
Pieces of culture, 1×1 cm, were placed adjacently on rice water agar (333 g rice, 20 g sucrose, 15 g agar,
1L distilled water) and left for three weeks. Presence or absence of clamp connections, as an indication of
mate compatibility, was determined from hyphae sampled at the interaction zone under a light microscope
at ×1000 magnification.

Allelic diversity at psilocybin loci and mitochondria

tBLASTn was used to identify contigs that contained the psilocybin gene cluster and BLASTp was used
to search annotated assemblies based on genes in the psilocybin pathway identified in wood-loving species
ofPsilocybe (Reynolds et al., 2018). Amino acid sequences of psilocybin genes annotated by FunAnnotate
were aligned with MAFFT and their homology was confirmed with a search for the most likely tree using
IQTree. The coding sequences of genes in the psilocybin pathway, including psiD, psiM, psiT2, psiH (paralog
1), psiT1, psiH (paralog 2), psiK, psiR , were aligned with MAFFT, concatenated with FASconCAT-G, and
visualised with a neighbour net in SplitsTree. FST, nucleotide diversity, and Tajima’s D were calculated
across coding sequences of the psilocybin locus using vcfools and plotted with ggplot2 in R.

The psiH gene family, including pseudogenes, was annotated with exonerate (Slater & Birney, 2005). We
aligned all alleles of thepsiH family with MAFFT, and searched for a maximum likelihood tree with IQTree
v.2. We used Clinker (Gilchrist & Chooi, 2021) to align representative genotypes of the entire psilocybin
locus.

Mitochondrial contigs of P. subaeruginosa were identified using a BLASTn search against the mitochondrial
genome (NW_025952838) of theP. cubensis reference assembly (K. McKernan et al., 2021). SNPs were
called from all mitochondrial contigs using kSNP (k=31, min frac=1), and relationships were visualised with
a haplotype network using PopART (Leigh & Bryant, 2015) with sites masked that had more than 5%
missing data.

Intraspecific diversity of the ITS region

The ITS region was extracted directly from assembled genomes using the top hit with a BLASTn search
(command -outfmt ‘6 sseq’-max_target_seqs 1 ) and aligned with ITS sequences of P. allenii , P. azurescens
, P. cyanescens , P. makarorae , P. subaeruginosa , and P. weraroa from GenBank using MAFFT. Sequences
of P. cubensis were used as an outgroup, based on its sister group relationship with P. cyanescens(Bradshaw
et al., 2022). We searched for the maximum likelihood tree in IQTree v.2 based on an alignment that contained
one representative of each ITS sequence type and used a phylogenetic hypothesis to explore whether the ITS
region was monophyletic at species rank in P. subaeruginosa and related taxa. We used PopART to visualise
the distribution of ITS genotypes across the entire ITS dataset.

Results

Analyses of SNPs and genes clustered wood-degrading magic mushrooms from the northern hemisphere among
Australian populations

We included 86 haplotypes from at least 28 separate mushrooms in Australia, with some haplotypes collected
as populations and not associated with a single pileus. Our sampling covered 12 sites in eastern Australia
(Fig. 2A) and included two reference genomes ofP. azurescens and one of P. cyanescens from the USA. kSNP
called 1,580,296 SNPs, and we tested for population structure based on ancestry of 6,757 LD-corrected SNPs,
which was a subset that excluded all sites that contained indels or missing data (Figs 2B, 2C). Mixed ancestry
within sites and among known siblings appeared in DAPC analyses beyond K=7 (Fig. 2C). DAPC analyses
showed populations were admixed in geographic locations. Psilocybe azurescens and P. cyanescens clustered
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with P. subaeruginosa in 2D plots (Fig 2B) and had recent shared ancestry with Australian populations
(Fig. 2C).

We visualised relationships among genomes of P. subaeruginosawith SplitsTree neighbour networks based
on 1,555,848 LD-corrected SNPs, including indels (Fig. 2D), and 194 aligned protein coding genes (76,076
amino acids, Fig. S1) identified by OrthoFinder. Relationships recovered by SNPs and genes were congruent.
Psilocybe azurescens andP. cyanescens clustered among Australian populations.

Most individuals in populations from Bunya, Clifton Hill, Ellendale, kunanyi, Ravensbourne, and Shelley
were sampled as siblings that could be linked to the same pileus (Fig. 2D). We used the AJK statistic
(Yang et al., 2010) to investigate the relatedness of haplotypes within populations (Fig. S2). The observed
relatedness suggests that haplotypes in clusters observed in Figure 2D are as related as known siblings even
if they were not from the same pileus. These close relationships are supported by likelihoods of the AJK
statistic [?]0.91, which is the lowest likelihood for known siblings sampled from Ellendale, Tasmania.

Groups defined by DAPC and supported by network analyses of SNPs and genes show that P. subaeruginosa
is structured by geography in Australia. Relationships among groups reflect geographic boundaries, for
example, samples east of the Great Dividing Range (which divides the eastern coast of Australia), namely
Khancoban, Shelley, Clifton Hill, and Geelong, differed from populations west of the range in South Australia,
Tasmania, and central Victoria. Full sib haplotypes sampled from one spore print from Clifton Hill (Fig. 2D
e) were completely intermixed with sibling haplotypes (based on genetic distance and the AJK statistic) of
other fruiting bodies from planted garden beds in both Clifton Hill and Geelong. A possible explanation for
this is that a parental, dikaryotic genotype has spread long distances via woodchips and mulch in Victoria,
facilitated by the perennial nature of P. subaeruginosa mycelium. Geographic areas with mixed ancestry
based on DAPC (Fig. 2C) and genetic distance (Fig. 2D), namely Clifton Hill and Shelley, indicate that
pilei were sampled from fruiting mycelia of different genotypes at the same location.

Alleles at mating genes are diverse and haplotypes are sexually compatible across geographically isolated
populations

We explored the boundaries of sexual reproduction with a hypothesis that allopatric and sympatric speciation
may erode mate compatibility and conspecific populations are sexually compatible. We examined phyloge-
netic relationships of two concatenated STE3.2 genes at the pheromone/receptor (PR) locus and HD1 and
HD2 genes at the homeodomain locus (HD) (Figs 3A, B). We identified approximately 25–30 alleles at PR
and HD loci across the Australian population, which we consider high diversity given that many samples
are siblings. Alleles at PR and HD loci were rarely shared among geographically distant populations, and
we did not expect to see any geographic pattern beyond this given the high allelic diversity and effects of
negative frequency selection, which distributes alleles equally across populations.

Crosses between one haploid culture from the Bunya population were compatible, based on formation of
clamp connections, with isolates from the most geographically distant and genetically diverse populations in
Tasmania and Victoria. This suggests there are no barriers to reproductive compatibility, even among mating-
compatibility loci that have differentiated in populations, and gene flow could occur among geographically
limited populations if given the opportunity.

We expected incompatible crosses between haplotypes with identical or near-identical STE3 alleles (e.g.,
BRIP75264 x BRIP75266, BRIP75402 x BRIP75297) and different alleles at HD loci. A cross of two near
identical haplotypes of siblings in the Bunya population (BRIP75388 x POZ13-2) was successful, which is
expected in tetrapolar mating systems (25% of siblings are sexually compatible). However, three crosses
against BRIP75297 and a cross of BRIP75266 x POZ16-3 were incompatible (based on a lack of clamp
connections) despite different alleles at PR and HD loci.

Balancing selection across mate compatibility loci in differentiated populations inferred from FST, pi, and
Tajima’s D

We used FST, pi, and Tajima’s D as measures of gene flow and selection and tested whether the contigs that
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contain mating-type loci were differentiated among populations. FST was comparable among all populations
(Fig. 4A and 4D), but decreased when the South Australian, Tasmanian, and Victorian population was
removed (mean FST of all populations at the HD locus = 0.36; mean FST of all populations sans South
Australian, Tasmanian, and Victorian population = 0.26). This difference in FST supports gene flow or
shared ancestry among the eastern populations of P. subaeruginosa in Australia, which are less differentiated
from each other than from the South Australia, Tasmanian, and Victorian population.

Nucleotide diversity (pi) varied greatly across populations for these two regions (Fig. 4B and 4E) and was
generally low (<0.2) across the contigs that contained mating-type genes. Mating-compatibility loci did not
have higher or lower nucleotide diversity than other parts of the contig, which may reflect genetic drift since
populations became isolated.

Tajima’s D was positive across the contigs that contained mating-type loci (Fig. 4C and 4F), which is
expected when multiple alleles are maintained in populations under balancing selection.

Diversity of alleles at psilocybin loci

We examined variation at the psilocybin gene cluster in P. subaeruginosa with two approaches, namely com-
paring individual genes annotated by FunAnnotate, and comparing aligned, concatenated coding sequences
across the entire locus. We used a phylogenetic hypothesis to analyse the putatively functional and non-
functional copies of thepsiH gene family (Fig. S3). There were 178 amino acid differences among haplotypes
across the translated alignment, (number of amino acid differences psiD =10, psiK =24, psiM =15,psiR
=14, psiT1 =35, psiT2 =23, psiH1 =15, andpsiH2 =42).

A SplitsTree network of 11,768 nucleotides from concatenated coding sequences of psiD, psiK, psiM, psiT1,
psiT2, psiR and two paralogs of psiH (psiH1 and psiH2 ) show that genotypes of psilocybin loci cluster by
geographic location (Fig. 5A). The locus is heterozygous in some dikaryotic parents, as siblings from the
same parental genotype had different alleles (e.g., the Bunya population in Fig. 5A), and there is possible
evidence of recombination within the locus with siblings from Bunya and Shelley sharing three genotypes.

We calculated FST, nucleotide diversity (pi), and Tajima’s D index across coding sequence of the psilocybin
locus as measures of differentiation between populations, diversity in different populations, and selection.
FST did not vary in comparisons of populations, which may indicate that allelic differences in the psilocybin
pathway have occurred by genetic drift in differentiated populations (Fig. 5B). There was high nucleotide
diversity (pi) in genes of the psilocybin pathway within and among populations (Fig. 5C), expected under
balancing selection. Analyses of Tajima’s D index that recovered mostly positive values indicate that some
genes of the psilocybin pathway may be under balancing selection, specifically psiT2 , psiT1 , and psiH2
, suggesting that there is some advantage to maintaining multiple alleles (Fig. 5D).psiH2 had the highest
values of the Tajima’s D index, which may reflect differential functionality at the locus.

We examined gene diversity of the psiH family, annotated with exonerate, with a phylogenetic analysis,
which delineated clades closely approximating the psiH1 , psiH2 , and psiH3 positions (Fig. S3A). psiH 1
formed a strongly supported clade with short branch lengths. psiH2 appears paraphyletic in respect topsiH1
, and psiH3 appears to have originated frompsiH 2. Alternate topologies in psiH2 and psiH3 could reflect
recombination among populations or ambiguity in the alignment and splice sites of pseudogenes. All but
one ortholog ofpsiH3 were considered pseudogenes, and only 29 of 76 isolates annotated for psiH2 had
a putatively functional allele. We plotted gene synteny and identity using Clinker and noted structural
variation and differential sequence conservation at psiH2 andpsiH3 positions.

Diversity of alleles at mitochondria

We called 1,334 SNPs in mitochondrial contigs using a k-mer approach (k=31) with kSNP and plotted
mitochondrial genotypes in a haplotype network (Fig. S4). There were 17 mitochondrial genotypes across
the 9 populations defined by DAPC analyses and 14 geographic locations (including P. azurescens and P.
cyanescens ), indicating high mitochondrial diversity. Psilocybe cyanescens had a near-identical mitochon-
drial genotype to populations of P. subaeruginosa in Australia, and P. azurescens clustered among Australian
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genotypes differing by as few as two parsimony informative characters.

High intraspecific diversity of the ITS region in P. subaeruginosa

We examined whether the ITS region was informative at species rank inP. subaeruginosa , as phylogenetic
relationships based on the ITS region are used as a proxy for species identification. Phylogenetic relation-
ships were compared across 26 different ITS types, reflective of ITS sequence diversity within and among
populations of P. subaeruginosa and related taxa identified on GenBank (Fig. 6). We used a haplotype net-
work to visualise the proportions of individuals that shared a particular ITS type. Psilocybe subaeruginosa
was paraphyletic in the ITS region with respect to P. allenii ,P. azurescens , P. cyanescens , P. makarorae
, andP. weraroa . Based on parsimony informative characters, ITS sequences of P. allenii , P. azurescens
, and P. cyanescens clustered with samples of P. subaeruginosa from Australia, whereas P. makarorae and
P. weraroa had unique ITS sequences not sampled from Australia. Psilocybe cubensis , sampled from eight
ITS-types in 166 individuals, is a sister taxon toP. subaeruginosa (Bradshaw et al., 2022) and most sequences
cluster with cultivars (exemplified by the AlbinoAplus sequence, Fig. 6). These sequences of P. cubensis are
representative of naturalised and cultivated populations rather than diversity in its centre of origin.

Discussion

Psilocybin has breakthrough potential for treatment of mental health disorders, and as momentum builds
in the clinical landscape, knowledge of diversity in magic mushrooms will impact development of natural
medicines. Our results suggest that Psilocybe subaeruginosaoriginated in Australasia as evidenced by its
widespread distribution in natural areas, high allelic diversity of mating genes, high genetic diversity at
mitochondria and psilocybin loci, and high phenotypic diversity. Mushrooms in the P. subaeruginosa species
complex were likely introduced to the northern hemisphere through movement of plants, soil, or wood chips,
as they cluster among Australian populations in analyses of genetic diversity based on SNPs or genes, have
low genetic diversity in their invaded areas (Giessler, 2018), and behave as weedy taxa, occurring in disturbed
rather than natural areas (Borovička et al., 2012; Dennis & Wakefield, 1946).

Psilocybe subaeruginosa colonises wood chips and leaf litter, and mushrooms from one vicinity often fruit
from the same mycelial genotype, based on sibling relationships supported by the AJK statistic and genetic
distance within populations defined by DAPC. We studied 86 haplotypes across eastern Australia, although
the overall effective sample size is reduced as many haplotypes were siblings, and greater genetic diversity
is expected with wider sampling, potentially including kin genotypes of P. azurescens and P. cyanescens
. Mushrooms collected from geographically different areas that were recovered as siblings support that P.
subaeruginosa spreads as a saprotrophic invader of garden beds. Genotypes of P. subaeruginosa likely persist
perennially, and anecdotal evidence from citizen scientists in the present study shows that fruiting sites are
re-visited to collect mushrooms, likely with the same genotype, year after year. This contrasts with P.
cubensis , in which genotypes are ephemeral, with mycelia disappearing after manure is degraded, akin to
annual plants.

Our findings indicate that P. subaeruginosa is one taxon rather than a complex of species, supported by
evidence from population analyses, phylogenetic analyses, gene flow measured by FST, and mating compat-
ibility. The alternative hypothesis of cryptic species diversity is rejected by evidence of gene flow among
sexually compatible populations and shared mating type alleles. Low phenotypic diversity or a fixed pheno-
type in populations from the northern hemisphere is likely caused by underlying low genetic diversity from
an invasion event, as P. azurescens and P. cyanescens share close ancestry with P. subaeruginosa in all
analyses. Additional species described in this taxonomic complex are likely phenotypic/geographic variants
and are con-specific with P. subaeruginosa . Taxonomic synonyms may be useful to describe invasive pop-
ulations, such as P. cyanescens in Europe, however, these taxa have an origin from Australia and could be
considered subpopulations ofP. subaeruginosa . The ITS region is intraspecifically variable in the Australian
population, and this genetic diversity is expected in the centre of origin. Dabao Sun et al. (2023) found
that differentiated lineages in a fungal taxon at a global scale had complicated species boundaries because
sympatric inter-sterile populations could theoretically exchange genetic material by crossing through other
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compatible populations. More crosses in the case of P. subaeruginosa will be needed to determine if any
reproductive isolation exists, however, most populations show some degree of mating compatibility.

Mushrooms produce copious spores that are wind dispersed (Dam, 2013), and allopatric speciation of mush-
rooms has occurred at the scale of continental geographic boundaries (Geml, Tulloss, Laursen, Sazanova, &
Taylor, 2008; James, Moncalvo, Li, & Vilgalys, 2001; Li, Han, Liu, Zhao, & Yang, 2020; M.-Z. Zhang et al.,
2023). Our study, which found isolated populations of P. subaeruginosa on mountain ranges in Australia,
may add to evidence that mushrooms limited by their available habitat and spore dispersal, by nature, have
more opportunities for allopatric speciation than panmictic organisms that migrate. For example, Amend
et al. (2010) found montane populations ofTricholoma matsutake were isolated based on topography, with
mountain ranges a barrier to gene flow. Another study found that the ectomycorrhizal species Suillus bre-
vipes was structured into subpopulations within North America due to isolation by and on mountain ranges
(Branco et al., 2017). The mean level of population differentiation we report here from haploid genomes,
FST=0.36, may be high compared to other taxa, yet, these values vary considerably across species of mush-
room (Carriconde, Gryta, Jargeat, Mouhamadou, & Gardes, 2008; Mi et al., 2016; J. Zhang et al., 2022).
This level of differentiation suggests that spatial populations of P. subaeruginosa have had sufficient time
to show the effects of isolation within their centre of origin. Why some species show strong intracontinental
population substructure while others do not is uncertain and highlights how little we understand fungal niche
breadth, gene flow, distribution, and the temporal and geographic scale of the centre of origin.

Isolation and infrequent gene flow lead to divergence; in fungi with dominant asexual stages, isolation
generates near clones, in which clonal reproduction is interspersed with infrequent sexual reproduction that
maintains species cohesion (Taylor, Hann-Soden, Branco, Sylvain, & Ellison, 2015). In obligate outcrossing
fungi, mating compatibility loci maintain species connectivity because allelic diversity benefits compatibility,
and MAT genes diverge but maintain key amino acids at functional sites (Peris et al., 2022; van Diepen
et al., 2013). Populations of P. subaeruginosa were sexually compatible, and slight differences at mating
compatibility loci among populations may be caused by genetic drift and isolation, or alternatively, we under-
sampled potentially shared alleles. Allopatric species boundaries may be interrupted given that humans move
soils and their accompanying microorganisms, and as shown with magic mushrooms here, species connectivity
through mate compatibility persists even in disparate populations with small evidence of gene flow.

Psilocybin loci were genetically different within and among populations of P. subaeruginosa in Australia,
whether from allelic diversity, or potential differences in presence or absence of functional homologs of psiH
. Some haplotypes contained two putatively functional paralogs of the psiH gene family (psiH1 and psiH2 ),
whereas others contained one (psiH1 ). One isolate, BRIP75275 has a putative functional psiH in the psiH3
position, but a pseudogene in the psiH2 position. That sequence groups at the base of the psiH2 clade with
several pseudogenes that are also in the psiH3 position. Analyses of FST and Tajima’s D indicated that
differentiation of the psilocybin locus among populations may be a result of genetic drift, such as from a
founder effect in isolated populations, and populations maintain allelic diversity through balancing selection.
McTaggart et al. (2023) found the psilocybin locus was homozygous in five siblings of P. subaeruginosa ,
however, with increased sampling, we show heterozygosity in dikaryons at the psilocybin locus.

Allelic differences of genes in the psilocybin pathway may increase/decrease metabolism of tryptamines, and
the ratios of psilocybin and its analogues may differ among genotypes. Humans have at least 14 types of
serotonin receptors; 5-HT2A has the highest affinity for psilocin and is linked to hallucinogenic effects of
magic mushrooms (Glennon, Titeler, & McKenney, 1984; Lee & Roth, 2012; Madsen et al., 2019). The suite
of tryptamines produced by magic mushrooms in the psilocybin pathway may have different affinities for
types of serotonin receptors beyond 5-HT2A (Glatfelter et al., 2022). We put forward the hypothesis that
alternate allelic combinations at paralogs ofpsiH may cause wood lover’s paralysis by producing a derivative
of tryptamine that agonises peripheral serotonin receptors, such as those linked to Parkinson’s disease (Ohno,
Shimizu, & Tokudome, 2013).

High genetic diversity of all examined alleles/loci in the centre of origin of P. subaeruginosa contrasts with
low diversity in naturalised and cultivated populations of P. cubensis . Our findings put perspective on what
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may be expected in terms of genetic diversity in the centre of origin of P. cubensis . Mitochondrial diversity
and allelic diversity at mating loci was variable between and among all examined populations, as should be
expected in the centre of origin of P. cubensis .

Our study shows that P. subaeruginosa is a widespread and invasive mushroom with a centre of origin
in Australia. Geographically limited populations are sexually compatible, although there is little evidence
of contemporary gene flow, with mitochondria, mating genes, and alleles at psilocybin loci differentiated
among populations.Psilocybe subaeruginosa produces high concentrations of psilocybin and is a commercially
attractive species if the cause of wood lover’s paralysis can be determined and excluded for safe clinical use.
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Figure captions

Fig. 1. Phenotypic diversity of Psilocybe subaeruginosa from populations in Australia, including pilei that are
conical, papillate, or sinuate, and fruiting from diverse substrates, including grass, leaf litter, moss, and wood.
A. Ellendale, Tasmania. B. Dover, Tasmania. C. Tasmania (image courtesy of Karen Keats). D. Ellendale,
Tasmania. E. Victoria (image courtesy of Tannar Coolhaas). F. Tasmania (image courtesy of Karen Keats).
G. kunanyi, Tasmania. H. Ellendale, Tasmania. I. Western Australia (image courtesy of Otto). J. Victoria
(image courtesy of Tannar Coolhaas). K. Victoria. L. Bunya Mountains, Queensland.

Fig. 2. Analyses of Australian populations of Psilocybe subaeruginosa (n=85), and P. azurescens (n=2) and
P. cyanescens (n=1) from the northern hemisphere. A. Provenance map of Australian collections used in the
study. B. 2-dimensional plot of Discriminant Analysis of Principle Components (DAPC) based on 6,757 SNPs
with indels and sites under LD removed from the dataset, and individuals coloured based on K=7 in the
barplot of 2C. C. DAPC exploring K-values 2–8 based on the same dataset in 2B. Facets reflect geographic
sampling from local populations. D. SplitsTree network based on 1,555,848 LD-corrected SNPs, including
indels, with all genomes treated as haploids. Individuals are coloured by populations defined in DAPC
analysis at K=7. Sibling haplotypes sampled from the same pileus are labelled with the same letter. Edge
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length reflects genetic difference and reticulation may indicate recombination. Figures B and C produced by
R packages adegenet, vcfR, and ggplot2.

Fig. 3. Phylograms from maximum likelihood searches based on translated, aligned, concatenated genes at
mating-compatibility loci. Individuals are coloured based on structured populations in Fig. 2C. Concate-
natedSTE3 genes at the pheromone/receptor (PR) locus, with compatible (black) and incompatible (red)
crosses among connected haplotypes. B. Relationships among concatenated HD1 and HD2 genes at the ho-
meodomain (HD) locus. Alleles at mating compatibility loci are mostly private to the sampled populations,
which indicates high allelic diversity in Australia.

Fig. 4. Measures of differentiation, nucleotide diversity and selection across contigs containing mate compa-
tibility genes among populations ofP. subaeruginosa . A–C homeodomain (HD) locus (826,289 base pairs).
D–F pheromone/receptor (PR) locus (122,582 base pairs). A. FST plotted in 10,000 base pair windows of the
HD locus as a measure of differentiation among populations. Line colour indicates which population has been
removed from the comparison of all populations. FST values approach 0 in admixed, recombinant populati-
ons, and high FST values may indicate divergence or a lack of recombination. FSTdecreases when the South
Australian, Tasmanian, and Victorian population is removed from the comparison, which indicates genetic
differentiation from populations east of the Great Dividing Range. B. Nucleotide diversity (pi) plotted across
10,000 base pair windows of the HD locus as a measure of diversity within defined populations. Diversity is
low within all populations (pi < 0.2). C. Tajima’s D index plotted in 10,000 base pair windows across the
HD locus as a measure of selection across all populations. Positive values may be a signature of balancing
selection, in particular negative frequency dependent selection, in which multiple alleles are maintained in
populations and no allele becomes dominant. D. FST plotted in 3,500 base pair windows of the PR locus,
with similar levels of differentiation across the locus in all populations. E. Nucleotide diversity (pi) plotted
across 3,500 base pair windows of the PR locus, with divergence among populations driven by diversity in
the South Australian, Tasmanian, and Victorian population. F. Tajima’s D index plotted in 3,500 base pair
windows across the PR locus, with support for balancing selection based on positive values comparable to
the HD locus.

Fig. 5. Analyses of genetic diversity at the psilocybin locus. A. SplitsTree network of aligned coding sequences
of psiD, psiK, psiM, psiT1, psiT2, psiR and two paralogs of psiH (psiH1and psiH2 ). Individuals are coloured
based on structured populations in Fig. 1A. Sibling isolates sampled from the same pileus are linked by dashed
lines. Siblings that have different alleles at psilocybin loci indicate heterozygosity in the parental genotype.
Siblings with more than two genotypes (in populations from Bunya and Shelley) may reflect recombination
within the psilocybin locus. B. FST plotted across individual genes as a measure of differentiation among
populations at the psilocybin locus. FST is comparable among populations. C. Nucleotide diversity (pi)
plotted across individual genes as a measure of genetic diversity at the psilocybin locus. The Khancoban
population is the most genetically diverse at the psilocybin locus relative to other populations. D. Tajima’s
D index plotted across individual genes as a measure of selection at the psilocybin locus. Most genes have
neutral to positive values of Tajima’s D, which indicates balancing selection or maintenance of diversity at the
psilocybin locus. Measures of genetic diversity were plotted in 50 base pair windows of all genes exceptpsiM
, which used a 30-base pair window.

Fig. 6. Phylogram from a maximum likelihood search of an alignment of 26 ITS types of Psilocybe subaerugi-
nosa and related taxa, showing a sister relationship to P. cubensis . Sequences were obtained from genomes in
the present study, and from GenBank for sequences of P. allenii, P. azurescens, P. cyanescens, P. makarorae
, and P. weraroa . Sequence abundance for each ITS type is shown in the adjacent haplotype networks for
P. subaeruginosa and P. cubensis , with dashes indicating the number of parsimony informative sites bet-
ween ITS types. The ITS region is intraspecifically variable in P. subaeruginosa , which is paraphyletic with
respect to other related taxa.

Fig. S1. SplitsTree network based on 76,076 amino acids aligned from 194 single copy orthologs in Psilocybe
subaeruginosa and relatives. Branch length is informative for genetic distance between points, reticulation
is indicative of recombination, homoplasy, or incomplete lineage sorting.
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Fig. S2. Heatmap of sibling relationships based on pairwise comparisons of the AJK statistic. Several of the
relationships are known siblings, and based on likelihood values of the AJK statistic, pairwise relationships
[?]0.91 are an indication that isolates are siblings.

Fig. S3. Evolution of psiH paralogs in the psilocybin locus inPsilocybe subaeruginosa .

A. Maximum likelihood tree of positional orthologs of the threepsiH paralogs extracted from cluster loci using
exonerate. Bold alleles are annotated as pseudogenes, and all sequences in thepsiH3 clade were pseudogenes.
Isolate BRIP75275 has a predicted functional paralog in the psiH3 position and a predicted pseudogene in
the psiH2 position. B. Clinker plot of synteny and relatedness of genes in the psilocybin metabolic pathway.
Darker connections between plots indicate higher percent nucleotide identity.psiH2 is likely a duplicated
copy of psiH1 , andpsiH3 is likely a duplication of psiH2 .

Fig. S4. Haplotype network of SNP diversity in the mitochondrial genome based on 1,334 SNPs. Sibling
populations shared the same mitochondrial genotype (e.g., populations from Bunya, Ravensbourne, and
Clifton Hill and Geelong).
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