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Abstract: All-optical signal processing based on nonlinear optical devices is promising for ultrafast 

information processing in optical communication systems. Recent advances in two-dimensional 

(2D) layered materials with unique structures and distinctive properties have opened up new ave-

nues for nonlinear optics and the fabrication of related devices with high performance. This paper 

reviews the recent advances in research on third-order optical nonlinearities of 2D materials, focus-

ing on all-optical processing applications in the optical telecommunications band near 1550 nm. 

First, we provide an overview of the material properties of different 2D materials. Next, we review 

different methods for characterizing the third-order optical nonlinearities of 2D materials, including 

the Z-scan technique, third-harmonic generation (THG) measurement, and hybrid device character-

ization, together with a summary of the measured n2 values in the telecommunications band. Fi-

nally, the current challenges and future perspectives are discussed. 

Keywords: Third-order optical nonlinearity, 2D materials, telecommunications band 

 

1. Introduction 

All-optical signal processing based on nonlinear optical devices is an attractive tech-

nique for ultrahigh speed signal processing for optical communication systems. It offers 

broad operation bandwidths, ultra-high processing speeds, together with low power con-

sumption and potentially reduced footprint and cost. Integrated nonlinear optical pho-

tonic chips have been based on a few key materials including silicon (Si) [1-3], doped silica 

(SiO2) [4, 5], silicon nitride (Si3N4) [6, 7], aluminum gallium arsenide (AlGaAs) [8-10], and 

chalcogenide glasses [11, 12]. These have enabled a wide range of devices from Raman 

amplification and lasing [13-15], wavelength conversion [5, 12, 16-18], optical logic gates 

[19-22], and optical frequency comb generation [23-26], to optical temporal cloaking [27], 

quantum entangling [28-30], and many others. Despite their success, no platform is perfect 

– they all have limitations, such as a relatively small Kerr nonlinearity (n2) (e.g., for Si3N4) 

or high two photon absorption (for silicon in the telecommunications band), resulting in 

a low nonlinear figure of merit (FOM = n2 / (λβTPA), with n2 and βTPA denoting the effective 

Kerr coefficient and TPA coefficient of the waveguides, respectively, and λ the light wave-

length). 

To overcome these limitations, newly emerging materials have attracted significant 

attention, particularly 2D layered materials, such as graphene [31-33], GO [34-36], TMDCs 

[37-40], h-BN [41-43], and BP [44-46], where their atomically thin nature yields unique and 

superior optical properties. In particular, their properties are highly dependent on the 

number of atomic layers – not only is their optical bandgap highly layer thickness 

dependent but they can also exhibit an indirect-to-direct bandgap transition (and the 

reverse), which provides powerful ways in which to tune their optical responses [37, 46-
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48]. Further, their broadband photoluminescence and ultrahigh carrier mobility are highly 

attractive features for photonic and optoelectronic applications [33, 49-53]. Finally, in 

addition to their linear optical properties, 2D materials exhibit remarkable nonlinear optical 

properties including strong saturable absorption (SA) [54-57], a giant Kerr nonlinearity 

[58-62], and prominent second- (SHG) and third-harmonic generation (THG) [44, 63-65], 

opening up new avenues for high-performance nonlinear optical devices.  

In contrast to the second-order optical nonlinearity that only exists in non-

centrosymmetric materials, the third-order susceptibility is present in all materials, which 

gives rise to a rich variety of processes, including four-wave mixing (FWM), self-phase 

modulation (SPM), cross-phase modulation (XPM), THG, two-photon absorption (TPA), 

SA, stimulated Raman scattering, and many others. These third-order nonlinear optical 

processes are quasi-instantaneous with ultrafast response times on the order of 

femtoseconds [66]. This has motivated ultrafast all-optical signal generation and 

processing for telecommunications, spectroscopy, metrology, sensing, quantum optics, 

and many other areas [67, 68].  

In this paper, we review recent progress in the study of the third-order optical 

nonlinearities of 2D materials specifically in the telecommunications wavelength band 

near 1550 nm, in contrast with other reviews [44, 69, 70] that focus predominantly in the 

visible wavelength range. We discuss the different techniques for characterizing the third-

order optical nonlinearity and the prospects for future development. In Section 2, the 

material properties of different 2D materials are briefly introduced and compared. Next, 

we review different methods used to characterize the third-order nonlinear optical 

response of 2D materials, including Z-scan technique, THG measurement, and hybrid 

device characterization. We also summarize the measured values of n2 of different 2D 

materials in the telecommunications band. Finally, the conclusion and future perspectives 

are discussed in Section 4. 

2. 2D materials  

The past decade has witnessed an enormous surge in research on layered 2D materi-

als – many have been discovered and synthesized with a wide range of properties. In this 

section, we briefly introduce some key 2D materials such as graphene, GO, TMDCs, h-

BN, and BP and discuss their electrical and optical properties.  
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Figure 1. Illustration of typical 2D layered materials.  

2.1 Graphene and graphene oxide 

Graphene, and its derivative, graphene oxide (GO), have been intensely studied due 

to their excellent mechanical, electrical, and optical properties [33, 71, 72]. Graphene has a 

gapless band structure, in which the conduction and valence bands meet at the K point of 

Brillouin zone, resulting in its semimetal nature [31, 44, 73]. In contrast, GO is an electron-

ically hybrid material, featuring both conducting π-states from sp2 carbon sites and a large 

energy gap between the σ-states of its sp3-bonded carbons [34, 74]. Their unique band 

structures result in novel electrical and optical properties, where for graphene, for exam-

ple, the electrons and holes act as massless Dirac fermions resulting in extremely high 

carrier mobilities ( >105 cm2/Vs) even under ambient conditions [31]. In contrast, GO ex-

hibits a band gap that is tunable by adjusting the degree of reduction, which in turn affects 

the electric and optical properties. In addition, GO exhibits fluorescence in the near-infra-

red (NIR), visible and ultraviolet regions [34-36], which is very promising for light emit-

ting devices. Moreover, the excellent nonlinear optical properties of both materials have 

been reported, including strong saturable absorption (SA) [75, 76], a giant optical Kerr 

nonlinearity [58, 59], leading to efficient self-phase modulation [77], FWM [78, 79], as well 

as high harmonic generation [63]. 

2.2 Transition metal dichalcogenides 

Transition metal dichalcogenides (TMDCs) with the formula of MX2 (where M is a 

transition metal and X is a chalcogen), is another widely studied family of 2D materials. 

Different to the semimetal graphene, monolayer TMDCs, such as MoS2, MoSe2, WS2, and 

WSe2, are typically semiconductors that have bandgaps from 1 eV to 2.5 eV, covering the 

spectral range from the near infrared to the visible region [37, 38]. Moreover, TMDCs can 

exhibit a transition from direct- to indirect-bandgaps with increasing film thickness, re-

sulting in strongly thickness-tunable optical and electrical properties. For instance, MoS2 
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exhibits layer-dependent photoluminescence, with monolayer films showing a much 

stronger photoluminescence [80]. Monolayer hexagonal TMDCs also exhibit unique band 

structure valley-dependent properties, such as valley coherence and valley-selective cir-

cular dichroism [37, 81], offering new prospects for novel applications in optical compu-

ting and information processing. For the nonlinear optical properties, TMDCs with odd 

numbers of layers have no inversion symmetry, and so exhibit a non-zero second-order 

(and higher even-order) nonlinearities that are absent in graphene and even-layer TMDCs 

[44, 64]. Recently, noble metal TMDCs, including PdSe2 and PtSe2, and PdTe2, have also 

attracted increasing interest in the fabrication of high performance electronic and optical 

devices, such as ultra-broadband photodetectors [39, 40] as well as mode-locked lasers 

[82]. 

2.3 Black phosphorus 

Black phosphorus (BP) is another attractive single element 2D layered material which 

has been widely studied. It has a puckered crystal structure, yielding a strong in-plane 

anisotropy in its physical properties in the “armchair” and “zigzag” directions, opening 

new avenues for anisotropic electronic and optoelectronic devices [44, 45, 83]. Moreover, 

BP is a semiconductor that features a layer thickness dependent direct bandgap from 0.3 

eV (bulk) to 2.0 eV (monolayer), bridging the gap between the zero-bandgap graphene 

and large-bandgap TMDCs [48, 83]. This broad bandgap tunability is very suitable for the 

photodetection and photonic applications from the visible to mid-infrared spectra regions 

[46, 47, 84]. For the nonlinear optical properties, the layer thickness tunable and polariza-

tion dependent THG and optical Kerr nonlinearity have been demonstrated recently [65, 

83, 85]. Broadband SA has also been observed in BP, demonstrating its strong potential 

for ultrafast pulsed lasers [86-88].  

2.4 Other emerging 2D materials 

A wide range of other novel 2D low-dimensional materials have been investigated, 

including h-BN, MXenes, perovskites, as well as MOFs, which greatly enriches the family 

of 2D materials. h-BN is an electrical insulator with a large bandgap of around 5.9 eV [41, 

89] making h-BN a candidate for ultraviolet light applications. It also has an ultra-flat sur-

face as well as excellent resistance to oxidation and corrosion, which are both highly useful 

as a dielectric or capping layer to protect the active materials or devices from degradation 

[41].   

MXenes belong to another family of 2D materials, including 2D transition metal car-

bides, nitrides, and carbonitrides. Typically, the electronic structure of MXenes can be 

tuned by varying the surface functional groups. For instance, nonterminated Ti3C2 theo-

retically resembles a typical semimetal with a finite density of states at the Fermi level, 

whereas it can transition to a semiconductor when terminated with surface groups, such 

as OH and F groups [90]. MXnens also exhibit superior optical properties, such as a high 

optical transmittance of visible light ( > 97% per nm) [38, 91], and excellent nonlinear op-

tical properties [57].  
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Organometal-halide perovskites have a general formula of ABX3, where typically A 

= CH3NH3+, B = Pb2+, and X = I–, Br–, Cl– or mixtures [92]. Due to their prominent photovol-

taic features and luminescence properties, organometal-halide perovskite semiconductors 

have been widely used to design high performance solar cells as well as light-emitting 

diodes [51-53]. Metal-organic frameworks (MOFs) are organic–inorganic hybrid porous 

crystalline materials with metal ions or metal-oxo clusters coordinated with organic link-

ers [93, 94]. Thanks to this unique structure, 2D MOFs exhibit enhanced photo-physical 

behaviour and are promising for various applications, from light emission and sensing to 

nonlinear optical applications [95, 96]. 

3. Third-order optical nonlinearities of 2D materials in the telecommunications band 

With their excellent third-order optical nonlinearities, 2D materials are promising 

functional materials for high-performance nonlinear optical devices. In this section, we 

review the different methods used to characterize their third-order nonlinear optical re-

sponse. These include the Z-scan technique, THG measurement, and hybrid device char-

acterization. We also summarize and compare the measured n2 values of different 2D ma-

terials in the telecommunications band. 

3.1 Third-order optical nonlinearity 

The nonlinear optical response of a material in the dipole approximation is given by 

[1, 97]: 

𝑃̃(𝑡)  = 𝜀0[𝜒(1) ∙ 𝐸̃(𝑡) + 𝜒(2) ∶  𝐸̃(𝑡)𝐸̃(𝑡) + 𝜒(3) ⋮  𝐸̃(𝑡)𝐸̃(𝑡)𝐸̃(𝑡) + ⋯ ]                (1) 

where the 𝑃̃(𝑡) is the material electronic polarization, 𝐸̃(𝑡) is the incident field, χ(n) are 

the nth-order nonlinear optical susceptibility. The first-order term χ(1) describes the linear 

refractive index including refraction and absorption and is a result of the dipole response 

of bound and free electrons to a single photon [1]. The second-order term χ(2) is a 3rd rank 

tensor, nonzero only for non-centrosymmetric materials, describes second-harmonic gen-

eration (SHG), sum- and difference frequency generation (SFG, DFG), optical rectification, 

the Pockels effect and others. The third-order nonlinear optical susceptibility χ(3) is partic-

ularly important because it exists in all materials regardless of the crystal symmetry and 

gives rise to a rich variety of nonlinear processes, represented by THG [1, 97], FWM [78, 

98], SPM [61, 99], and XPM [100, 101]. These form the basis of all-optical processing de-

vices, such as wavelength conversion, optical comb generation, quantum entanglement, 

and more. 

 Equation (2) gives a simple description of the relevant third-order nonlinear optical 

effects corresponding to 𝑃̃(3)(𝑡) = 𝜀0𝜒(3) ∙ 𝐸̃3(𝑡) [97] as follows: 

𝑃̃(3)(𝑡) = 𝜀0 ∫
𝑑𝜔1

2𝜋
∫

𝑑𝜔2

2𝜋
∫

𝑑𝜔3

2𝜋

∞

−∞

∞

−∞

∞

−∞
𝜒(3)(𝜔𝜎; 𝜔1, 𝜔2, 𝜔3) × 𝐸(𝜔1)𝐸(𝜔2)𝐸(𝜔3)𝑒−𝑖𝜔𝜎𝑡        (2)  

where 𝜔𝜎 = 𝜔1 + 𝜔2 + 𝜔3, with 𝜔1, 𝜔2, and 𝜔3 denoting the angular frequencies. Dif-

ferent χ(3) effects can be described with different wave frequency combinations, such as 

THG ( 𝜒(3)(𝜔𝜎 = 3𝜔1; 𝜔1, 𝜔1, 𝜔1) ), non-degenerate FWM ( 𝜒(3)(𝜔𝜎 = 𝜔1 + 𝜔2 −

𝜔3; 𝜔1, 𝜔2, −𝜔3)) and degenerate FWM (𝜒(3)(𝜔𝜎 = 2𝜔1 − 𝜔2; 𝜔1, 𝜔1, −𝜔2)). 
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A key component of χ(3) given by 𝑛2 = 3 · Re[
𝜒(3)

4𝑐𝑛0
2𝜀0

⁄ ], where n2 is the intensity-de-

pendent refractive index change, known as the Kerr effect and the complex refractive in-

dex n can be expressed as [1, 97]: 

𝑛 = 𝑛0 + 𝑛2𝐼 − 𝑖
𝜆

4𝜋
(𝛼0 + 𝛼2𝐼)                                                       (3) 

where I is the light intensity, λ is the wavelength, n2 represents the Kerr coefficient or Kerr 

nonlinearity, α2 is the nonlinear absorption induced by the third-order susceptibility χ(3), 

and n0 , α0 are the linear refractive index and absorption, respectively.  

In this paper, we focus on χ(3) of 2D materials for key nonlinear processes that form 

the basis for ultra-high speed all-optical signal generation and processing, with response 

times on the order of femtoseconds [102, 103]. These include SPM and XPM, governed 

largely by n2 via the Re (χ(3)), as well as FWM and THG that are mainly governed by the 

magnitude of |χ(3)|, although the latter are also sensitive to the complex value of χ(3) via 

phase-matching effects. The n2 component of χ(3), accounts for two-photon absorption 

(TPA) via the Im (χ(3)) and can also result in saturable absorption (SA). Both are intrinsic 

functions of the material’s bandgap, but can also be influenced by free carrier effects. At 

photon energies well below the bandgap, all χ(3) components will become degenerate, but  

near, or above, the bandgap, they will in general be quite different. Finally, since nonlinear 

absorption is always present, it will affect the efficiency of all 3rd order nonlinear optical 

processes, not just n2, even though it does not arise directly from other χ(3) components 

such as THG and FWM, for example. Further, these processes will generally scale differ-

ently with pump power to n2, and so the conventional nonlinear FOM may not be a useful 

benchmark.     

3.2 Characterization methods   

3.2.1 Z-scan technique 

Measuring the Kerr coefficient of a material is needed in order to design and fabricate 

nonlinear optical devices. The Z-scan method, introduced in the 1990s [104] is an elegant 

method to measure the third-order optical Kerr nonlinearity of a material. This technique 

involves open-aperture (OA) and closed-aperture (CA) measurements, which can be used 

to measure the third-order nonlinear absorption and nonlinear refraction, respectively. 

CA Z-scan method is widely used to measure the nonlinear refractive index (Kerr coeffi-

cient) of an optical material. The valley-peak and peak-valley transmission curves are the 

typical results of the CA measurement, as shown in Figure 2(a). When the nonlinear ma-

terial has a positive nonlinear refractive index (n2 > 0), self-focusing will occur which re-

sults in the valley-peak transmission curve. The peak-valley CA curve arises from de-fo-

cusing and occurs with a negative nonlinear refractive index (n2 < 0).  
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Figure 2. (a) Schemes showing the principle of closed-aperture (CA) Z-scan. (b) A typical Z-scan 

setup: PD: power detector, CCD: charge-coupled-device [62]. 

Figure 2(b) shows a typical Z-scan setup [62]. To measure the ultrafast nonlinear re-

sponse, a femtosecond pulsed laser is used to excite the samples. A half-wave plate com-

bined with a linear polarizer can be employed to control the power of the incident light. 

The beam is focused onto the sample with a lens or an objective. During the measurements, 

samples are oriented perpendicular to the beam axis and translated along the Z axis with 

a linear motorized stage. For the measurements of small micrometer sized samples, a 

high-definition charge-coupled-device imaging system can be employed to align the light 

beam to the target area. Two PDs are employed to detect the transmitted light power for 

the signal and reference arms. 

For the CA Z-scan method, the normalized transmittance can be written as [62, 104]: 

 𝑇 (𝑧, ∆Φ0) ≃ 1 +
4∆Φ0𝑥

(𝑥2+9)(𝑥2+1)
                                                         (4) 

where 𝑥 = 𝑧/𝑧0 , 𝑧0 = 𝑘𝜔0
2/2 with 𝜔0  the beam waist radius and k the wave vector. 

∆Φ0 represents the on-axis phase shift at the focus, is defined as [62, 104]: 

∆Φ0 = 𝑘𝑛2𝐼0𝐿𝑒𝑓𝑓                                                                     (5) 

In equation (5), 𝐿𝑒𝑓𝑓  =  (1 − 𝑒−𝛼𝐿)/𝛼, with L denoting the sample length and 𝛼0 the 

linear absorption coefficient, k is the wave vector which is defined by 𝑘 = 2𝜋/𝜆, and 𝐼0 is 

the laser irradiance intensity with in the sample [104]. Based on the measured Z-scan 

curves, one can derive the Kerr coefficient n2 with the fitting equations. 



 8 of 28 
 

 

 

Figure 3. (a) CA Z-scan result of graphene under an excitation laser wavelength at 1550 nm. (b) 

Measured n2 of graphene as a function of laser intensity [105]. (c) CA Z-scan result of CH3NH3PbI3 

under an excitation laser wavelength at 1560 nm [106]. (d) CA Z-scan result of MXene films under 

an excitation laser wavelength at 1550 nm [57]. (e) CA Z-scan result of MoS2/BP/MoS2 

heterostructure at different laser intensities. The excitation laser wavelength is 1550 nm [107]. 

Graphene is the first 2D material to have been discovered, and its optical nonlineari-

ties have been widely studied using Z-scan measurements and other methods. Figure 3(a) 

shows the CA Z-scan signal of a graphene film with an excitation laser wavelength at 1550 

nm.[105] A peak-valley configuration can be observed, indicating a negative Kerr nonlin-

earity. The measured Kerr coefficient n2 of graphene is as large as 10-11 m2/W which is 

about 6 orders of magnitude larger than bulk Si, demonstrating the strong potential of 2D 

materials for nonlinear optical devices. A laser peak intensity dependent n2 has also been 

observed (Figure 3(b)), providing a potential method for modulating its nonlinear prop-

erties. Figures 3(c) and (d) show the CA curves of CH3NH3PbI3 perovskite[106] and Ti3C2Tx 

MXene films [57] measured at a wavelength of 1550 nm, where a positive and negative 

Kerr nonlinearity were observed, respectively. The different response of these two mate-

rials forms the basis of their applications in different functional devices. For example, a 

negative Kerr nonlinearity can be used to self-compress ultrashort pulses in the presence 

of positive group-velocity dispersion while the materials with positive nonlinearity are 

promising for achieving a net parametric modulational instability gain under abnormal 

dispersion conditions. 

2D van der Waals (vdW) heterostructures offers many new features and possibilities 

beyond what a single material can provide, and there has been significant activity in this 

field [108, 109]. Recently, the optical nonlinear response of 2D heterostructures has also 

been investigated via the Z-scan method. Figure 3(e) plots the CA curve of a 

MoS2/BP/MoS2 heterostructure at different laser intensities [107]. A negative Kerr 

nonlinearity at the telecommunications wavelength of 1550 nm can be observed. The 

strong Kerr nonlinearity of graphene/Bi2Te3 at the same wavelength was also 

demonstrated recently [110]. By fitting the experimental data, a large n2 of ⁓ 2 × 10-12 m2/W 

was obtained, which is highly attractive for all-optical modulators and switches. 
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Figure 4. The CA Z-scan results of GO films under different irradiances: (a) 0.38 GW/cm2; (b) 1.78 

GW/cm2; (c) 3.20 GW/cm2; (d) 4.68 GW/cm2 [60]. 

One of the unique features of GO is its tunable optical and electrical properties 

through laser reduction, which is particularly attractive for nonlinear optical applications. 

To investigate laser tunable optical nonlinearities, an in-situ third-order Kerr nonlinearity 

measurment for GO films has been conducted with the Z-scan method [60]. Figures 4(a)-

(d) show the CA signal of GO films at different laser intensities. At low intensity, GO 

exhibits a positive Kerr nonlinearity with a valley-peak CA configuration. With increasing 

the laser intensity, GO reduction occurs and the positive nonlinearity finally transitions 

into a negative nonlinearity at an intensity of 4.63 GW/cm2 , at which point GO completely 

reduces to graphene. In addition to the ability to laser tune optical nonlinearities in GO, 

the measured Kerr coefficient n2 of GO is as large as 4.5 × 10-14 m2/W at 1550 nm, which is 

four orders of magnitude higher than single crystalline silicon. These properties render 

GO a promising candidate for nonlinear applications in the telecommunications band. 

3.2.2 THG measurement 

In addition to Z-scan method, another technique that can be used to directly charac-

terize the third-order optical nonlinearity of a material is THG measurement. As intro-

duced in section 3.1, THG is a fundamental third-order optical nonlinear process in which 

three photons at the same frequency (ω1) excite the nonlinear media to generate new signal 

(ω = 3ω1). Measuring the THG of a material provides a direct method to characterize its 

third-order optical nonlinearity. Figure 5 shows a typical setup for THG measure-

ments[111] where a fundamental (ω, red) pulse is incident normally on the sample. The 
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third harmonic (3ω, green) is detected in the reflected direction by a CCD camera, a spec-

trometer, or a photodiode connected to a lock-in amplifier.  

To quantitatively analyze the THG effect, an equation for the THG intensity (𝐼3𝜔), 

can be introduced [112]:  

𝐼3𝜔(𝑡) =
9𝜔2

16|𝑛̃3𝜔||𝑛̃𝜔|3𝜖0
2𝑐4

𝐼𝜔
3 |𝜒(3)|

2
(

𝑒−2𝛼𝑡 − 2 cos(Δ𝑘𝑡)𝑒−𝛼𝑡 + 1

𝛼2 + Δ𝑘2
) 𝑒−2𝛼𝑡           (6) 

where 𝑛̃𝜔 and 𝑛̃3𝜔 are the complex refractive indexes at the fundamental and harmonic 

wavelengths, respectively, α is the absorption coefficient at the THG wavelength, Δk is the 

phase mismatch between the fundamental and harmonic waves, and 𝜒(3) is the third-or-

der susceptibility of the sample. By fitting the THG data with Equation (6), an effective 

third order susceptibility χ(3) value can be obtained. 

 

Figure 5. The scheme of a typical THG setup: CCD, charge-coupled-device [111]. 

Strong THG in graphene was demonstrated by Kumar et al.[111] Figure 6(a-i) shows 

the THG of monolayer graphene as a function of incident laser powers. The incident laser 

was 1720.4 nm. By fitting the experimental data, a large ꭓ(3) of ⁓ 0.4 × 10-16 m2/V2 was 

obtained. In addition, a thickness dependent THG signal can be observed (Figure 6(a-ii), 

while ꭓ(3) remains constant wth increasing graphene layer number. Recently, Jiang et al. 

[113] investigated the gate-tuneable THG of graphene. Figure 6(b-ii) shows the THG 

signal as a function of chemical potential generated at different wavelengths. When tuning 

the doping level of graphene, an enhanced THG and ꭓ(3) were observed. 



 11 of 28 
 

 

 
Figure 6. (a) THG in graphene:[111] (i) The average power of the THG signals as a function of the 

average power of the incident laser. Inset is the THG spectrum. (ii) The average power of the THG 

signals as a function of the number of atomic layers for an average fundamental power of 1 mW. (b) 

Gate-tunable THG in graphene:[113] (i) Schematic of an ion-gel-gated graphene monolayer on a 

fused silica substrate covered by ion-gel and voltage biased by the top gate. (ii) THG signal as a 

function of 2μ generated by different input wavelengths: 1,300 nm, 1,400 nm, 1,566 nm and 1,650 nm. 

THG in other 2D materials, such as TMDCs and BP, have also been investigated re-

cently. Rosa et al.[114] characterized THG in mechanically exfoliated WSe2 flakes at an 

excitation wavelength of 1560 nm. By measuring the THG for different numbers of layers, 

a clear thickness-dependent behaviour was observed, as shown in Figures 7(a-i) and (a-

iii). The ꭓ(3) of WSe2 was measured to be in the order of 10-19 m2/V2, which is comparable to 

other TMD [115] and BP [116]. Youngblood et al.[116] reported THG in BP by using an 

ultrafast near-IR laser obtaining a ꭓ(3) of ⁓ 1.4 × 10-19 m2/V2. In addition, an anisotropic THG 

were demonstrated, as shown in Figure 7(b-iii). Nonlinear optical properties of few-layer 

GaTe were also studied by characterizing the THG at a pump wavelength of 1560 nm [117]. 

The THG intensity was found to be sensitive to the number of GaTe layers (Figure 7(c-iii)). 

They obtained a large ꭓ(3) of ⁓ 2 × 10-16 m2/V2.  
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Figure 7. (a) THG in WSe2:[114] (i) Spatial THG intensity mapping across the WSe2 sample. (ii) THG 

spectrum of WSe2. (iii) THG intensities as a function of sample layers. (b) THG in BP:[116] (i) THG 

emission (bright spot) from the BP flake. (ii) Measured spectrum of THG emission with a peak 

wavelength at 519 nm. (iii) Anisotropic THG in BP. (c) THG in GaTe:[117] (i) THG images of the 

few-layer GaTe flake. (ii) Measured spectra of THG emission. (iii) THG signals of samples with 

different thicknesses. 

3.2.3 Hybrid device characterization 

Z-scan and THG measurements are usually employed to characterize the material 

property directly. While on the one hand, the properties of a material form the basis for 

applications to electronic and optical devices, the reverse is true – device performance can 

also provide key information about the material properties. A typical example is field 

effect transistors (FETs) which have been one of the main techniques to evaluate the 

electrical properties of 2D materials. Optical structures and waveguides can also be 

exploited to characterize the material optical properties. By integrating 2D materials with 

photonic cavities and optical waveguides, the third-order optical nonlinearity of 

atomically thin 2D material has been  characterized by measuring the nonlinear optical 

responses of the hybrid devices, such as FWM [78], SPM [99], and supercontinuum 

generation [118]. This method also enables the investigation of the layer-dependence of 

the nonlinear properties, which is challenging for conventional Z-scan methods due to the 

weak response of ultrathin 2D films. 
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Figure 8. (a) FWM in graphene-clad silicon nanocavities:[118] (i) Scanning electron micrograph 

(SEM) of the photonic crystal cavity partially covered by graphene monolayer. (ii) Measured 

transmission spectrum of the cavity device with pump laser fixed on cavity resonance, and signal 

laser detuning scanned from 20.04 to 20.27 nm. (iii) Measured and simulated conversion efficiencies 

of the cavity. Solid and dashed black lines are modelled conversion efficiencies for the graphene–

silicon and monolithic silicon cavities, respectively. (b) Layer dependent optical nonlinearities in 

GO-coated integrated MRR:[78] (i) Microscopic image of an integrated MRR patterned with 50 

layers of GO. Inset shows zoom-in view of the patterned GO film. (ii) Optical spectra of FWM at a 

pump power of 22 dBm for the MRRs with 1−5 layers coated GO. (iii) n2 of GO versus layer number 

at fixed pump powers of 12 and 22 dBm. (c) Electrically tunable optical nonlinearities in graphene-

covered SiN Waveguides:[119] (i) Sketch of the gating scheme (up) and optical microscope image 

(down) of the device. Calculated values of third-order conductivity as a function of Fermi energy 

for different wavelength detunings (ii) and as a function of detuning for a range of Fermi energies 

(iii). 

For the hybird device characterization, the data analysis is performed in the 

following steps. First, by fitting the measured FWM or SPM spectra of corresponding hy-

brid devices, one can obtain the nonlinear parameters (γ) for the bare and hybrid wave-

guides. Then based on the fit γ of the hybrid waveguides, the Kerr coefficient (n2) of the 

coated 2D films can be extracted using [120-122]:  

𝛾 =
2π

𝜆 

∬ n0
2(x, y)n2(x, y)Sz

2
D dxdy

[∬ n0(x, y)SzD dxdy]
2                          (7) 

where λ is the central wavelength, D is the integral of the optical fields over the material 

regions, Sz is the time-averaged Poynting vector calculated using mode solving software, 
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n0 (x, y) and n2 (x, y) are the refractive index profiles calculated over the waveguide cross 

section and the Kerr coefficient of the different material regions, respectively.  

FWM is a fundamental third-order nonlinear optical process that has been widely 

used for all optical signal generation and processing, including wavelength conversion 

[98, 123], optical frequency comb generation [124, 125], optical sampling [126, 127], quan-

tum entanglement [29, 30], and many other processes. The conversion efficiency (CE) of 

FWM is mainly determined by the third-order Kerr nonlinearity of the material that makes 

of the device. Therefore, it is useful to obtain the Kerr coefficient of a material by measur-

ing its FWM CE.  

Gu et al.[118] fabricated a silicon nanocavity covered with graphene (Figure 8(a-i)) 

and measured the FWM CE with different pump and signal detuning wavelengths around 

1550 nm, as shown in Figures 8(a-ii) and (a-iii). From the CE data, a n2 of ⁓ 4.8 × 10-17 m2/W 

was obtained for a graphene integrated with a silicon cavity. The layer-dependence of the 

Kerr nonlinearity of GO films has been investigated by measuring the FWM performance 

of GO hybrid devices based on doped-silica and SiN optical waveguides and microring 

resonators (MRRs) [78, 128-130]. Figure 8(b-i) shows a fabricated doped-silica MRR cov-

ered with patterned GO films.[78] By fitting the CE to theory for a device with different 

GO thicknesses, the layer thickness dependence of n2 of GO at 1550 nm was characterized, 

as shown in Figure 8(b-iii). Recently, electrically tuneable optical nonlinearities of gra-

phene at 1550 nm was also demonstrated by measuring FWM in graphene-SiN wave-

guides at different gate voltages, as shown in Figure 8(c) [119]. 

SPM is another third-order nonlinear optical process that can be used to characterize 

the optical nonlinearity of 2D materials. Feng et al.[131] studied the Kerr nonlinearities of 

graphene/Si hybrid waveguides with enhanced SPM (Figure 9(a)). The n2 of the Graphene 

on Si hybrid waveguides was measured to be ⁓ 2 × 10-17 m2/W, which is three times larger 

than that of the Si waveguide. Even though the intrinsic n2 of graphene is orders of mag-

nitude larger than bulk silicon, the monolayer thickness of the graphene film results in a 

very low optical mode overlap, which yields only a factor of three improvement in the 

effective nonlinearity of the waveguide. For GO, on the other hand, comparatively larger 

film thicknesses are achievable which result in an overall much higher waveguide nonlin-

earity. Optical nonlinearities of GO films have also been investigated by SPM experiments. 

Zhang et al.[99] demonstrated the enhanced optical nonlinearity of silicon nanowires in-

tegrated with 2D GO Films (Figure 9(b-i)). Figure 9(b-ii) shows the experimental SPM 

spectra of the devices with different numbers of GO layers, where increased spectral 

broadening can be observed in GO coated silicon nanowires. The layer dependent Kerr n2 

coefficient of GO was also characterized by fitting the spectra to theory, as shown in Figure 

9(b-iii). In addition to graphene and GO, the optical Kerr nonlinearity of MoS2 monolayer 

films was also characterized by analysing the SPM of MoS2-silicon waveguides [132]. The 

experiments demonstrated a large Kerr coefficient n2 of ⁓ 1.1 × 10-16 m2/W for a monolayer 

of MoS2 in the telecommunications band. 
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Figure 9. (a) SPM experiments in graphene-silicon hybrid waveguides:[131] (i) Schematic diagram 

and Raman spectra of the device. (ii) Measured transmission spectra of comparison between the Si 

(green solid curve) and G/Si hybrid (blue solid curve) waveguides under the same input energy 

with 1.5 ps input pulse (spectrum denoted by the red dashed curve). (iii) Output SPM spectra of the 

hybrid waveguide under various coupled energies. (b) SPM experiments in GO-silicon 

waveguide:[99] (i) Microscopic image of a GO-coated silicon nanowire. (ii) Optical spectra of SPM 

at a coupled pulse energy of∼51.5 pJ with 1−3 layers coated GO. (iii) n2 of GO vs layer number at 

fixed coupled pulse energies of 8.2 and 51.5 pJ. (c) SPM experiments in MoS2-coated silicon 

waveguides:[132] (i) scanning electron microscope image of the device, with MoS2 covering both the 

grating couplers and waveguide regions. (ii) Measured transmission spectra of the devices with and 

without MoS2. (iii) Simulation result for the redshift of the grating to estimate the refractive index 

of MoS2. (iv) SPM spectra of MoS2–silicon waveguide and bare silicon waveguide. 

3.3 Comparison of measured results 

By using different characterization techniques discussed above, Kerr coefficient n2 or 

THG 𝜒(3) value of graphene, GO, TMDCs, BP, and different heterostructures at telecom-

munication wavelengths have been obtained. In Table 1, we compare these parameters 

characterizing the third-order optical nonlinearity. It can be seen that monolayer graphene 

exhibits the largest n2 value (up to 10-11 m2/W). The n2 value of GO films is on the magni-

tude of 1014 m2/W, which is relatively smaller than graphene, but still more than 3 orders 

of magnitudes larger than that of bulk silicon. For MoS2, MXene film, and 2D heterostruc-

tures, the measured n2 varies from 10-16 to 10-22 m2/W. In terms of 𝜒(3) susceptivity ob-

tained by using THG measurements, the value ranges from 10-19 to 10-15 m2/V2 for graphene, 

TMDCs, and BP.     
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Table 1. Comparison of third-order optical nonlinear parameters of different 2D materials. FWM: 

four-wave mixing; SPM: self-phase modulation; WG: waveguide; MRR: microring resonator; THG: 

third-harmonic generation. 

Material Wavelength a) Thickness Nonlinear parameter Method Ref. 

Graphene 1550 nm ⁓ 1 layer n2 = ⁓ 10−11 m2/W Z-scan [105] 

Graphene 1550 nm ⁓ 5-7 layers n2 = ⁓ -8 × 10−14 m2/W Z-scan [58] 

GO 1560 nm ⁓ 1 um n2 = ⁓ 4.5 × 10−14 m2/W Z-scan [60] 

GeP 1550 nm ⁓ 15-40 nm n2 = ⁓ 3.3 × 10−19 m2/W Z-scan [133] 

CH3NH3PbI3 1560 nm ⁓ 180 nm n2 = ⁓ 1.6 × 10−12 m2/W Z-scan [106] 

MXene 1550 nm ⁓ 220 um n2 = ⁓ -4.89 × 10−20 m2/W Z-scan [57] 

MOF 1550 nm ⁓ 4.2 nm n2 = ⁓ -8.9 × 10−20 m2/W Z-scan [134] 

MoS2/BP/MoS2 1550 nm ⁓ 17-20 nm n2 = ⁓ 3.04 × 10−22 m2/W Z-scan [107] 

Graphene/Bi2Te3 1550 nm ⁓ 8.5 nm n2 = ⁓ 2 × 10−12 m2/W Z-scan [110] 

Graphene 1550 nm ⁓ 1 layer n2 = ⁓ 10−13 m2/W SPM in WG [135] 

GO 1550 nm ⁓ 4 nm n2 = ⁓ 1.5 × 10−14 m2/W FWM in WG [128] 

GO 1550 nm ⁓ 2-100 nm n2 = ⁓ (1.2-2.7) × 10−14 m2/W FWM in MRR [[78]] 

GO 1550 nm ⁓ 2-20 nm n2 = ⁓ (1.3-1.4) × 10−14 m2/W FWM in WG [129] 

GO 1550 nm ⁓ 2-40 nm n2 = ⁓ (1.2-1.4) × 10−14 m2/W SPM in WG [99] 

MoS2 1550 nm ⁓ 1 layer n2 = ⁓ 1.1 × 10−16 m2/W SPM in WG [132] 

Graphene 1560 nm ⁓ 1 layer ꭓ(3) = ⁓ 4 × 10−15 m2/V2 THG [136] 

Graphene 1560 nm ⁓ 1 layer ꭓ(3) = ⁓ 1.5 × 10−19 m2/V2 THG [137] 

MoS2 1560 nm ⁓ 1 layer ꭓ(3) = ⁓ 2.4 × 10−19 m2/V2 THG [137] 

MoSe2 1560 nm ⁓ 1 layer ꭓ(3) = ⁓ 2.2 × 10−19 m2/V2 THG [138] 

WS2 1560 nm ⁓ 1 layer ꭓ(3) = ⁓ 2.4 × 10−19 m2/V2 THG [138] 

WSe2 1560 nm ⁓ 1 layer ꭓ(3) = ⁓ 1.2 × 10−19 m2/V2 THG [114] 

SnSe2 1560 nm multilayer ꭓ(3) = ⁓ 4.1 × 10−19 m2/V2 THG [139] 

ReS2 1515 nm ⁓ 1 layer ꭓ(3) = ⁓ 5.3 × 10−18 m2/V2 THG [140] 

BP 1560 nm multilayer ꭓ(3) = ⁓ 1.6 × 10−19 m2/V2 THG [141] 

a) Here is the excitation laser wavelength. 
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4. Outlook and prospects 

Despite these remarkable achievements, challenges still exist for engineering the 

nonlinear optical properties of 2D materials. First, accurate and efficient characterization 

of the linear and nonlinear optical properties remains challenging. Although the Z-scan 

method has been highly successful, the very weak Z-scan signals of ultra-thin films limit 

its applications in mono- or few layer 2D materials, especially for the layer-dependent 

measurements. In contrast, integrating 2D films with optical waveguides provides a 

powerful method to obtain accurate nonlinear parameters of atomic-thin 2D materials by 

analyzing the nonlinear optical performance of the hybrid device. However, the 

complicated device fabrication process and resulting relatively low efficiency make this 

method unsuitable for rapid material characterization which is required for future 

industrial applications. Second, 2D materials are a large family which include thousands 

of different materials. For applications of the third-order optical nonlinearity in the 

telecommunications band, only a very small fraction of them have been investigated. 

Many newer materials, such as perovskites, MOFs, and graphdiyne, still need more 

research, which hinders the full exploitation of 2D materials in the fabrication of next-

generation nonlinear optical devices. Finally, tuning or engineering the properties of 

materials is important for both optimizing the device performance and enabling new 

functionalities, as well as the fundamental study of 2D materials. Nevertheless, current 

advances in the study of third-order optical nonlinearities of 2D materials focus mainly 

on their fundamental properties. The relative lack of effective methods of tuning the 

material properties poses another obstacle for 2D materials to move forward to practical 

device fabrication. While challenges remain and more work is needed, there is no doubt 

that 2D materials will underpin key breakthroughs and greatly accelerate the 

developments of next-generation nonlinear optical devices for many applications, 

particularly high bandwidth optical communications systems. 

5. Conclusions 

In conclusion, we review recent progress in the study of the third-order optical non-

linearities of 2D materials in the telecommunications wavelength band. We introduce the 

representative 2D materials, together with their basic material properties followed by a 

discussion of the main methods for characterizing the third-order optical nonlinearity, 

reviewing recent achievements in the field. These advances highlight the significant po-

tential of 2D materials in enabling high-performance nonlinear optical devices for all-op-

tical processing functions in optical communications systems.     
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