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Abstract

Previously presented method of calculating local average gradients for solving partial differential equations (PDEs) is enhanced

by using interpolating grid-points and triangular grids. The interpolating mesh provides finer computational grid, which is then

used for solving the PDE. The combined use of the finer interpolating grid together with the original sparser grid is a two-grid

method. By comparing the previous application of rectilinear grid for diffusion from initial point concentration to the new

triangular two grid method, it was found that the application of triangular two-grid method improves stability of the solution

and it provides more rapid convergence to the correct analytical solution.
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1 Abstract

Previously presented method of calculating local average gradients for solving
partial differential equations (PDEs) is enhanced by using interpolating grid-
points and triangular grids. The interpolating mesh provides finer computa-
tional grid, which is then used for solving the PDE. The combined use of the
finer interpolating grid together with the original sparser grid is a two-grid
method. By comparing the previous application of rectilinear grid for diffusion
from initial point concentration to the new triangular two grid method, it was
found that the application of triangular two-grid method improves stability of
the solution and it provides more rapid convergence to the correct analytical
solution.

2 Introduction

The material microstructure is in many case decisively responsible for the macroscale
properties of the material. For this reason, it is very important to obtain the ca-
pability of modelling the microstructure evolution in detail. Although the mean
field models, such as the ones used in [1, 2, 3, 4], are useful in rapid modelling
and optimization of the relative quantities related to the microstructure, they
lack the capability of including local effects, which can play important role in
the microstructure evolution. For example in [2], it was recently observed that
in order to understand and to model stabilization of austenite regions in steel
processing, it is necessary to consider local carbon enrichment and the effect
of local mechanical strains. Such effects can be considered by using full field
models that explicitly simulate the microstructure evolution.

In the physical science based numerical full field modelling of mesoscale
phenomena, it is often necessary to solve partial differential equations describing
the physical phenomena such as phase transformations [5, 6, 7], deformation
[8, 7], diffusion [5, 7], fluid flow [9, 10], recrystallization [11, 12] etc. During
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processing of materials, deformation of the material is often necessary in order
to obtain desired shape. In addition, the deformation can have several beneficial
effects to the material properties by affecting the internal microstructure and
its development. Also, microscopic phenomena, such as phase transformations,
can introduce deformations to the material microstructure [13, 8, 7] due to the
strains caused by the transformations. For these reasons, it is desirable to apply
numerical solvers that can handle both regular and deformed numerical grids
so that the physical phenomena can be simulated during and after the material
deformation.

The perhaphs simplest and easiest method to apply for solving PDEs is
the finite difference method. Unfortunately, it is difficult to handle complex
deformation in the finite difference methods, since the numerical grid in the
standard formulation cannot change arbitrarily. To solve the problem in ar-
bitrary geometries, several sophisticated numerical methods for solving partial
differential equations exist: the finite element, finite volume, spectral methods,
etc. Also, it is worth mentioning in this connection, that I recently [14] used
another kind of method for calculating the movement of iso-contours of the field,
which can be used for obtaining a solution to a PDE.

However, the sophisticated numerical methods usually are also more com-
plex, which requires more effort and time for their implementation. For this
reason, it is worthwhile to obtain a method, that is as simple to implement as
the standard finite difference method, and which is capable of performing the
solution procedure in deformed computational grids, where the gridpoints fol-
low the deformation. These goals were achieved and presented in the previous
study [15], where rectilinear grid was used for obtaining the solution by approx-
imating the average local gradients with a plane equation. Unfortunately, it was
found that numerical instabilities were introduced to the solution near maximas
and minimas of the field. While this could be corrected by using interpolation
points near the maximas and minimas, the correction procedure introduced
unnecessary complication, which turned out to be difficult to implement in a
stable way in the case of more complex differentiation. Particularly, difficulties
were encountered in simulating the plastic deformation of a two-phase region
where the elastic constants of the phases were different. For these reasons, in
the current study, a two-grid interpolation of triangular grid was tested. The
triangular grid was chosen, since it allows for a unique linear interpolation be-
tween all neighbouring gridpoints in the mesh. It was found that the presented
method avoided the numerical instabilities shown in the previous study, and it
provided a better and more rapid convergence to an analytical solution for a
diffusion from a initial concentration point than the previous study with single
quadrilateral numerical grid.

3 Theory

The fundamental idea of approximating the average local gradient with a plane
was presented in the previous article [15]. In the current study the method is
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enhanced by using triangular grid and interpolating points that essentially make
the method more stable.

The plane equation is fitted to the neighbouring gridpoints shown in Fig. 1
(ordered grid) and Fig. 2 (disordered grid). The local average gradient is then
calculated as the weighted average of the gradients of the neigbouring regions
Ri, where the areas Ai of the regions are used as the weights.
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Figure 1: The points of a local regular triangular grid surrounding a gridpoint
located in the middle.

Previously this procedure was applied using a rectilinear numerical grid. In
the current study, triangular grid is applied, which makes it possible to con-
struct a finer interpolating grid by line interpolation between each neighbouring
gridpoint, as shown in Fig. 3. The triangular grid enables the unique linear in-
terpolation point between each pair of neighbouring gridpoints. Once the finer
numerical grid is obtained, it is used for solving the PDE for the next time step.
After the solution is obtained, it contains also the values in the original sparse
grid.

For completeness, the theory is presented from the first principles, although
the original idea of approximating the gradient with a plane equation is the
same as in the previous study [15].

As described in the previous study [15], the plane Eq. (1) is used to ap-
proximate the local average gradient, where u(x, y) is the function value at
point (x, y), (x0, y0) is the local origin of the plane, where the function value
u0 = u(x0, y0).

u(x, y) = u0 + a(x− x0) + b(y − y0) (1)

When the function obtains values u0 = u(x0, y0), u1 = u(x1, y1) and u2 =
u(x2, y2), the linear coefficients a and b can be obtained from Eq. (2).
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Figure 2: The points of a local triangular deformed grid surrounding a gridpoint
located in the middle.
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Figure 3: The original sparse grid (black circles) and the denser grid (red crosses)
which incorporates the original gridpoints as well as the interpolated grid points.
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a =
(u1 − u0)y2 + (u0 − u2)y1 + (u2 − u1)y0
(x1 − x0)y2 + (x0 − x2)y1 + (x2 − x1)y0

b = − (u1 − u0)x2 + (u0 − u2)x1 + (u2 − u1)x0

(x1 − x0)y2 + (x0 − x2)y1 + (x2 − x1)y0

(2)

The linear coefficients then approximate the average local partial derivatives
in each region Ri (see Figs. 1 and 2), as described by Eq. (3).

∂xu = a, ∂yu = b (3)

The local average gradient at (x0, y0) is evaluated as a weighted average
of the gradients of the regions Ri, where the area of the region is used as the
weight, as described by Eq. (4).

∂xu|p0
=

∑i=6
i=1 Aiai∑i=6
i=1 Ai

∂yu|p0 =

∑i=6
i=1 Aibi∑i=6
i=1 Ai

(4)

The areas Ai can be obtained using the cross product of the of the vectors
originating from p0 = (x0, y0) and directed to the neighbouring gridpoints pi =
(xi, yi) and pi+1 = (xi+1, yi+1), as described by Eq. (5).

Ai =

∣∣∣∣ (p⃗i − p⃗0)× (p⃗i+1 − p⃗o)

2

∣∣∣∣ (5)

Once the first order partial derivatives of the functions are calculated, the
second order partial derivatives can be obtained by differentiating the functions
∂xu and ∂yu, as described by Eq. (6).

∇∂xu = (∂xxu, ∂yxu)

∇∂yu = (∂xyu, ∂yyu)
(6)

The numerical solution was tested in a similar way as in the previous study
[15]. For a test case the diffusion equation (7) was solved. Since there exist an
analytical solution for a diffusion from an initial point concentration [16], Eq.
(8), the numerical solution was compared to it. The values M = 0.1 and D = 1
were used.

∂u

∂t
= D

(
∂2u

∂x2
+

∂2u

∂y2

)
(7)

u(x, y, t) =
M

4πtD
exp

(
− (x− xc)

2 + (y − yc)
2

4Dt

)
(8)
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Similar tests for ordered and disordered grids were made as in the previous
study to see the enhancement the triangular two-grid method provided. In the
tests, a regular initial grid shown in Fig. 4 and a deformed grid shown in Fig.
5 were used. The number of initial gridpoints was 42 in the x- and y-directions
in both cases.

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

Figure 4: Regular triangular grid which was used in the diffusion calculation.

4 Results and Discussion

It was found that the current approach provided the correct solution to the
diffusion from a point source. A surface plot of a two dimensional diffusion
simulation is shown in Fig. 6. Especially for sparse grids it was evident that the
current triangular two-grid method provided better solution than the previous
use of single rectilinear grid. Also, the method provided accurate solution, even
if the initial field included a sudden jump at a local maxima. This finding is
depicted in Fig. 7, where a) shows the initial field and b) shows the calculated
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Figure 5: Disordered triangular grid, which was used in the diffusion calcula-
tions.
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field at time t = 25 compared to the analytical solution provided by Eq. (8).
The solution is plotted along the line which is oriented along the x direction
and passes the origin

Figure 6: Surface plot of the calculated field, regular grid. t = 25, D = 1,
M = 0.1.

To confirm that the current method provides correct solution also for de-
formed grids, the similar checks were made as in the previous study. It was
found that the solution was capable of providing correct solution also for the
deformed grids. The results for defomed grids are shown in Figs. 8 and 9.

5 Conclusions and outlook

A triangular two grid method was implemented. The method provides unique
interpolation points between two neighbouring initial gridpoints. The solution
procedure is performed using the finer grid and then projected back to the
original grid. It was found that the tested method provided better stability
than the previous use of the single rectilinear grid. The method can be used
effectively in regular and undeformed grids.
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(a) (b)

Figure 7: a) Initial condition of the field, line plot along x direction passing
through origin. b) Field at time instant t = 25 of the diffusion calculation, line
plot along x direction. Regular grid. D = 1, M = 0.1.

Figure 8: Surface plot of the calculated field, deformed grid. D = 1, M = 0.1.
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(a) (b)

Figure 9: a) Initial condition of the field, line plot along x direction passing
through origin. b) Field at time instant t=25 of the diffusion calculation, line
plot along x direction. Deformed grid. D = 1, M = 0.1.
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