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Abstract

The physical phenomena with uncontrollable singularities pose challenges in solving related differential equations. In this work,
we intend to investigate the quantitative and qualitative aspects of a multi-singular integro-differential equation with the help
of quantum fractional operators by presenting numerical algorithms. Quantum calculus enables us to use numerical algorithms
and software. The a- i-contraction, a new technique of fixed point theory, plays a significant role in proving the existence of
the solution. To interpret tables with quantum values quickly and easily, we use heatmaps. We also presented three numerical

examples to illustrate the accuracy and efficiency of our main results.
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Abstract

The physical phenomena with uncontrollable singularities pose challenges in solving
related differential equations. In this work, we intend to investigate the quantitative
and qualitative aspects of a multi-singular integro-differential equation with the help
of quantum fractional operators by presenting numerical algorithms. Quantum calcu-
lus enables us to use numerical algorithms and software. The a-t-contraction, a new
technique of fixed point theory, plays a significant role in proving the existence of the
solution. To interpret tables with quantum values quickly and easily, we use heatmaps.
We also presented three numerical examples to illustrate the accuracy and efficiency of
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1 Introduction

Scientists in natural and mathematical fields constantly seek new approaches to model com-
plex phenomena. Fractional operators are a prime example of this. Researchers in biological,
physical, and engineering sciences are giving special attention to fractional differential equa-
tions ([I1, 21 B], 4, B 6, [7, [§]), as new laboratory data confirm their greater efficiency [9]. Over
time, as fractional calculus has advanced, various new operators have been introduced and
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generalized. For example, we can mention Caputo, 1-Caputo, Caputo-Fabrizio, Hadamard,
Hilfer, Riemann-Liouville and Atangana-Baleanu. Some of the contributions made with the
mentioned operators are: ([10, [1T], T2, 13| 14 15, 16, 17, 18]). Ongoing research on these op-
erators presents new findings daily. George et. al. [19] recently demonstrated that the choice
of the 1 function affects the boundedness of the solution set of the pantograph equation with
the 1-Caputo fractional operator.

Modeling natural phenomena often requires solving differential equations with singular
points, which can be complicated and challenging. Therefore, the study of such equations to
find analytical and numerical solutions has recently gained attention. In 2010, Agarwal et. al.
[20] investigated positive solution for the following singular dirichlet problem

D'v(k) +h(k,v(k),Dv(k) =0, ke (0,1),
v(0) =v(1) =0,

where v € (1,2), 0 < 7 <y — 1, D7 denotes Riemann-Liouville deivative of fractional order
and h(k,u,v) is singular at t = 0. In 2011, Feng et. al [2I] studied the existence of solution
for the following singular system using the krasnoselskii’s and Leray-Schauder theorem

(D7v(x) + h( )
“u(k) +t(k, v(k) =0, K€ (0,1),
v(0) =v(0) =v(1) =
(u(0) = u'(0) = u(1)

such that v, £ € (2,3], ©7,D* are fractional Riemann-Liouville derivatives and h,t are
realvalued continouos functions on [0,00) x R . In 2013, Vong [22] examined the posetive
solution for the following singular problem:

k,u(k)) =0, ke (0,1),

(C’DVV(/{) +h(k,v(k)) =0, ke€][0,1],
v(1) = [, v(p)dp,
v/(0) = - = v 1(0) =0,

\fol dp < 1,

using upper and lower solutions method with Schauder fixed point, wheren > 2, n—1 <y <n
and h have singularity at k = 1. In 2014, Nyamoradi et. al. [23] reviewed the existence and
uniqueness for the following singular BVP:

—D7v(k) + Mh(k,v(K)) + > NiT%t(k, v(K)), &€ (0,1),

D7v(0) =0,

D7v(1) =D T (D7V(K))|wes, £ € (0,1,



where 1 < v < 2, 1 € (0,1), b € [0,00), furthere M, N; are real constant and D7 is the
fractional Riemann-Liouville derivative. In 2022, Malekpour et. al. [24] studied a new class
of singular equation namely multi-singular pointwised defined system as follows:

(C’D“v(l-ﬂ) + hl(I{,V(H‘,),u(/{)),V( ), W(K), D™ v(K),

‘@mu(k), [; (A v(A)dA, [ g2(A)v(A)dA) =0,

C@”V(KJ)+h2(/<,v(/1),u(/£),v’(n) ( ),c D v(kK),
(k)

| “D™u(k ,fon g A\)v(\) dA, f()"i ga(N) d)\) 0,

under boundary conditions:
C©01V(W1) = 61, CQJQV(WQ) = 62,
v(1) =vP(0) =0, u(l)=u?(0)=0, j=2

where v; > 2, w;, 07 € (0,1), £; > 0, h;, g; € L' such that h; is a singular at some points in
[0,1] for i = 1,2. The reader can refer to [25, 26], 27] to learn about the rest of the research
done in this field.

Computers have always struggled with finding numerical solutions and computational al-
gorithms for singular equations. In this case, we are seeking a numerical method to solve
the multi-singular integrodifferential equation. We are using quantum operators to provide
the necessary space for software packages. In 1910, Frank Hilton Jackson introduced the
quantum derivative operator [28, 29]. In his definition of derivative, namely (D,v)(k) =
v(k) — v(gr)/(1 — q)k, he removed the concept of limit, and this caused a discrete space to
be prepared for the analysis of problems. In his quantum calculus for every real number s

defined the g-analogue of k as: [k], = % =1+q+---+ ¢ L. Moreover, g-analogue of the

power function (k — p)" for n > 1 defined as: (k — p)E,”) = [1;- (% —pg?) and (k — p)éo) =1,
where k,p € R. In addition, Let K € R —{0,—1,—2,...}, then the quantum gamma function
formulated as: I'y(k) = %. Also, it is worth mentioning that I'y(k + 1) = [k],[',(k)
holds true. In the preliminaries section, we present an algorithm for calculating the quantum
gamma function. The characteristics of quantum operators have been investigated in detail
by Kac and Cheung in [30]. Later in 2007, the properties of fractional operator in g-calculus
was developed in works [31] and [32]. In 2011, Ferreira [33] investigated positive solution for

the following g-fractional BVP:
D)v(k) = —h(k,v(k)), € (0,1),
v(0) =Dyv(0) =0,
D,v(l) =c>0,

where v € (2,3], ¢ € R, D] denotes the g-Riemann-Liouville derivative of fractional order
and h : [0,1] x R — R is nonnegative continuous function . In 2015, Xinhui Li et.al. [34]



studied BVP of fractional ¢-difference Schringer equation:

Div(k) + %(E —u(k))v(k) =0, ke (0,1),

v(0) =9,v(0) =D,v(1) =0,

where 7 € (2,3), m, E are the mass and energy particle respectively, and p is the Plank
constant . Many articles have been published in the field of quantum differential problems in
recent years, for information about which you can refer to [35] 36}, 37, [38] [39], 40].

Here, by getting motivation from works [20], 22| 24, 33] and also filling the gap in numerical
methods for studing singular equations, we are going to examine the following uncontrolled
multi-singular pointwise defined equation in g-calculus:

“D)v(k) +h(k,v(k),v'(k), Div(k),T7v(k) =0, ke =1[0,1] (1.1)

under the following boundary conditions:

v'(0) = v(w),
v(1) = J; v(p)dp, (12)
vOO) =+ =v(0) =0, n=[]+1,

where y > 3,0 > 1, 7w, £ € (0,1), ve C0,1], h : KxR* — R is function where h(x, ., ., .,.)

singular at some point x € [0, 1] and “®] denote the ¢g-Caputo derivative of fractional order 7.
The function h is multi-singular when it is singular at more than one point. Note that we will
continue to do all our calculations on the time scale, namely T'S,, = {ro, koq, Koq?, ...} U {0},
where k¢ € R, and ¢ € (0, 1).

2 Preliminaries

Notation 2.1. [t should be noted that throughout this work: |.|| is the sup norm of CI0, 1],
.1 is the norm of L'[0,1] and ||v|. = max {||v|, ||v'||} is the norm of Y = C'[0, 1].

Notation 2.2. Assume that the function i : [0,00) — [0,00) for all K > 0 be such that
Y Y"(k) < co. Then we denote the family of nondecreasing functions ¢ by ¥. Notice that
n=1

Vi > 0 we have (k) < K (see [41]).

Definition 2.3. [22] consider the follwing equation
“D)v(k) +h(k) =0, ~el01] (2.1)

If there exiset s set such as P C [0,1] such that u(P€) = 0 and Eq. (2.1) hold on P, then we
call Eq. (2.1) pointwise defined equation where p is the measure function.



Definition 2.4. [29] Let k € R—{0,—1,—2,...}, then the quantum gamma function formu-
lated as follows

(1-g"
T(k)= oD
q(’i) (1 . Q)nil )
also, it is worth mentioning that U'y(k + 1) = [k],I'y(k) holds true. we present an algorithm

for calculating the quantum gamma function. Moreover, we computed for some values of q in
Tables (1) and |3, also their heatmaps presented in Figuers [ and[J

Algorithm 1 The proposed procedure To calculate I'; (k).

function quantum gamma = ¢G(q,k,r)

t=1;

forj=0:r

t=tx(1- q(j+1))/(1 _ q(n+j));
end

G =t/(1—q)" Y

end

r =008 ¢=017 ¢=033 ¢=049 ¢=066 ¢=0.381
v=3.75
1 1.1498 1.3475 1.8340 2.7443 5.4843 18.2050
2 1.1492 1.3410 1.7711 2.4622 4.3021 12.1461
3 1.1492 1.3398 1.7511 2.3392 3.7104 9.1158
4 1.1492 1.3397 1.7445 2.2822 3.3808 7.3785
5 1.1492 1.3396 1.7424 2.2550 3.1853 6.2897
6 1.1492 1.3396 1.7417 2.2418 3.0649 5.5639
7 1.1492 1.3396 1.7414 2.2354 2.9888 5.0579
8 1.1492 1.3396 1.7414 2.2323 2.9401 4.6934
9 1.1492 1.3396 1.7413 2.2307 2.9085 4.4241

13 1.1492 1.3396 1.7413 2.2294 2.8599 3.8528
14 1.1492 1.3396 1.7413 2.2293 2.8560 3.7792

26 1.1492 1.3396 1.7413 2.2293 2.8487 3.5085
27 1.1492 1.3396 1.7413 2.2293 2.8486 3.5042

39 1.1492 1.3396 1.7413 2.2293 2.8486 3.4877
40 1.1492 1.3396 1.7413 2.2293 2.8486 3.4874

52 1.1492 1.3396 1.7413 2.2293 2.8486 3.4864
53 1.1492 1.3396 1.7413 2.2293 2.8486 3.4863

Table 1: Numerical results for I';(3.75) for different value of ¢
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q=008 ¢g=017 ¢=033 ¢=049 ¢=066 ¢= 081

S © 00 ~JO T W+

—_

15
25
26
34
35
40
41

v=1.6
0.9796 0.9672 0.9686 1.0111 1.1428 1.4660
0.9792 0.9641 0.9513 0.9662 1.0494 1.2920
0.9792 0.9636 0.9458 0.9461 0.9978 1.1855
0.9792 0.9635 0.9440 0.9366 0.9673 1.1147
0.9792 0.9635 0.9434 0.9321 0.9484 1.0649
0.9792 0.9635 0.9432 0.9298 0.9365 1.0287
0.9792 0.9635 0.9432 0.9288 0.9288 1.0016
0.9792 0.9635 0.9432 0.9282 0.9239 0.9810
0.9792 0.9635 0.9432 0.9280 0.9206 0.9652
0.9792 0.9635 0.9431 0.9279 0.9185 0.9528
0.9792 0.9635 0.9431 0.9277 0.9152 0.9245
0.9792 0.9635 0.9431 0.9277 0.9150 0.9206
0.9792 0.9635 0.9431 0.9277 0.9145 0.9064
0.9792 0.9635 0.9431 0.9277 0.9144 0.9060
0.9792 0.9635 0.9431 0.9277 0.9144 0.9048
0.9792 0.9635 0.9431 0.9277 0.9144 0.9047
0.9792 0.9635 0.9431 0.9277 0.9144 0.9046
0.9792 0.9635 0.9431 0.9277 0.9144 0.9045

Table 2: Numerical results for I';(1.6) for different value of ¢
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Definition 2.5. [/2] Suppose that v(k) : [0,00] — R, be a continuous function, then its
fractional Riemann-Liouville quantum integral and its fractional Caputo quantum derivative
are expressed respectively by

and

“DIv(k) = ﬁ /OH(H - qp)”_”_li)f}v(p) dgp, n=[]+1

Lemma 2.6. [/3] assume that n = [y] + 1, then the following relation holds true

—_

n—

(032 C@ZV)(I{) =v(k) —

VI

LG+ 1) (D}v)(0),

<
Il
o

which is deduced from it, the general solution for C@ZV(H) = 0, expressed by

2 —1
Vv(k) =rg+ 1K+ rek 4+ +rp kKN

where ro, ..., r—1 € R.

Definition 2.7. [//] Consider the two maps o : Y xY — [0,00) and T : Y — Y. The
function T is called a-admissible if a(v,u) > 1 yelids that a(Tv,Tu) > 1. Moreover, let
VeV, T:Y =Y, and (Y,dy) be a complete metric space. If for every v,u € Y we have
a(v,u)dy(7v,Tu) < ¢(dy(v,u)), then the map T is called ac-1p-contraction.

Lemma 2.8. [/]] Suppose that o : Y xY — [0,00), ¥ € ¥, (Y,dy) be a complete metric
space and T 'Y — Y is an a--contraction. If T be continuous and Ivy € Y where
a(vy,Tvg) >0, then T has a fixed point.

In the following, we present two key lemmas about the quantum Green’s function and its
properties.

Lemma 2.9. Consider the following fractional quantum pointwise defined problem
‘Div(k) +uy =0 (2.2)

with boundary conditions

= Jy v(p) dp, (2.3)
0) Jor ]:2a7[7]7

such thatuy € L'[0,1], 0 < {,w < 1 and~y € [2,3). Then the function v(k) = fol Gy (K, p)ug(p) dgp
is a solution for problem mentioned in (2.2))-(2.3)) such that

(1)
6)(

v
Vv

1 ¢
G,5.0) = La(w.p) + 1 [ La(p)dp
0



and 1 1 1 1
(W—aqp) +(1—qp)" —k(w—qp)™" — (k—qp)"~

Lq(’f’p) = Fq('Y) )

where 0 < qp < k<1 and qgp < w

(1—gp)™' = (s —gp)"

ﬁq(/ﬁl,p) B Fq(’y) ’

where 0 <w < gp <k <1

(W=gp) '+ (1 —gp)" —K(w—qp)"

L,(k,p) = )
q(K, D) T,
where 0 < k <gp<w <1
(1—gp)!
L,(k,p) = ,
Q( ) Fq(’}/)

where 0 < kK < qgp <1 and w < gp.

Proof. Let the equation “D)v(k) + ug(x) = 0 satisfy for all x € P such that P C [0,1] and
measure of P¢ is zero. Now, we take u € L'[0,1] N C'[0, 1] where u = uy on P. If v, be a
solution for Eq. (2.2)-(2.3), then for all x € [0,1] put u(x) = —“D]vo(x). Moreover, we can

write

T (o) = rqtv) /OR(H —qp)""up(p) dgp
1

= ey (/[Omg(ﬁ —qp)" tue(p) dgp + /W]mgc(n — qp)""ug(p) dqp>

1 / .
= Kk —qp)’ u(p)dgp
Ly(7) [O,H]ﬁ5< ) (p)d,

- thw (/[On}ms(ﬁ ~ap) ) dp + /[On]mgc(/i — )" ulp) dqp>

1 ' 7-1 —
— ey /0 (k —qp)"u(p)dgp = 37 (u(ﬁ))

Now, let k € P¢\ {0}. Take {k,} in P where k,, — k~, so

1" -
m/o (k —qp)"" ug(p) dgp

33 (uo(r)) =

1
= lim

' K — qp)? tug(p) dgp = lim 37 (ug(kp
i s [ = a0 o) dp = T 3 )

= lim J](u(k,)) = lim !

kn — qp)? Mu(p) dgp
Jim erwwl (on — gp)" 0 (p) d,
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If kK =0 € P, then J7(ug(k)) = JJ(u(x)) = 0, hence for all x € [0, 1] we have 7 (ug(k)) =

J)(u(k)) = 0. Therefore, for all x € [0, 1] we get
T3 (Dgv(r)) = T3 (—uo(k)),

such that “D)v(x) 4+ ug(x) = 0 for all x € P. Thus on [0, 1] we have
33(Dgv(r)) = 33 (—u(x)),

In view of Lemma 1.1 we have

I o
V() =~ [ = ) o i

which from boundary condition (2.3) deduced that

=g - e
SO ) - . ) y .
V) =~ | ) = 2 [ )

But on the other hand, we have

-1
Fq(’Y)

l 1 w
/O v(p)dp=v(1) = / (1~ qp) " u(p) dgp + 1o+ — / (- qp) " u(p) dp

1
Le(7)
which yelids that

l 1 1 y—1 1 v ~—1
o = /0 v(p)dp + m/o (1 —gp)" u(p)dep + m/o (w—qp)" u(p) dgp.

Therefore,

-1
Le(v)
1

a

v (k) /Oﬁ(f€ —qp)”Mu(p) dgp + /O v(p)dp + /01(1 —qp)”'u(p) dgp

Ty(7)

+ F—V)/o (w— Qp)771U(p) dgp — m/O (w— qp)%lu(p) dp.

Now, for simplicity set

p(k) = Pq_(}y) /OK(FJ qp)”Ma(p) dgp Fqlz >/Ow(w—qp)“u(p) dgp
1 ' 7-1 1 ? v-1
i [ G ) e s [ ),
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then, it is clear that v( )+ fo p) dp. Now, if w < k then, we get
S / / (k—qp)" ' —/w(w —qp)""Mu(p) dgp
Fq<7 Lq(v) Jo
1 qp)”Mu(p)dgp + =—— ! /w(w —qp)""Mu(p) dgp
7 r (7) 0
) / O o
0 Fq('Y)
"A-p = (k—p ! PA—pp!
+ / u(p)dep+ | —=~—u(p)dp.
o Ty(v) o) Ty) !

But, if w > & then, we obtain

olr) = F‘f) JACETO

///ww

(w —qp)”tu(p) dgp

«(7)

N /: (w—gp) '+ (1 _FZ%_ — A 2y dyp +/w %U(p) dgp.
Hence,

S0,

1 ¢
v(k) = / L,(k,p)u(p)dgp +/ v(p)dp. (2.4)
0 0
By rewrite the Eq.(2.4)), we have

/Ozv(f-s:)d/-g:/oé/olgq(m,p qu/<;+// p) dp s
:/01</0€£q(ﬁ p)dli) ()dqp+g/0 v(p) dp,

(1—5)/0€V(/<;)dfi:/01</0££q(/<;,p)d/£>u(p)dp

which implies that
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and so

/oﬁv(ﬁ) i = /01 ﬁ(/j Lq(#,p) d“)u(p) dgp.

v(k) = /01 L,(k,p)u(p)dyp + /01 ﬁ(/oz L,(k,p) dm)u(p) dp

Thus,

4

- /01 (g (k,p) + 1#_6 Ly(k,p) dm)U(p) dgp

:/o G, (., p)u(p) dyp = / Gy (5, p)o(p) dgp,

and with this our proof is complete. Il

Lemma 2.10. Assume that G,(k,p) be the one defined in Lemma. Then for all k,p € [0, 1],
the following statments are satisfy

I- gq(’iap> Z O
3
— -1 = T A N
II. G,(k,p) < Ay(7,0)(1 —gqp)"~" such that Ay(v,¥) = 0T,(v)
. | %, p>‘ < By(7, (1 = qp)~" such that By(v, ) = -
ok P = P U (1=0r(y -1

(1—gp)tr2—79°
V. i) 2 (5 %) 20

Proof. 1. If 0 < ¢gp < k <1 and ¢p < w, then

(W—gp) ' > k(w—gp)" and (1—gp)' > —(k—qp)’~

hence,

(w=ap)" ™'+ (L —gp)"™ = w(w—gp)"™ = (5 —qp)"~" >0,
and ao L,(k,p) > 0. Thus G,(k,p) > 0. The proof in other case is easy and we skip
writing it.

3(1 —gp)

IT. One can see that for all x,p € [0, 1] we have L,(x,p) < Ty
q\v

, and so

31—qpt 1 /E 3(1—ap) ™
Fq('V)

)
30 —gp)t 0 30 —gp)t_ 3(1-—gp)! l
o) T T T e
)

= A7, 0)(1 = gp)"!
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ITI. Since
_ y—1 _ y—1
(k —qp) (w —qp) , 0<p<k<l, p<uw,
Fq(')’_l)
—(k — gp) L
o (K —qp) 7 0<w<p<r<l,
5 (Rp) = Loy =1)
KR
—(w — gp)1!
(w—qp) ’ 0<rk<p<w<l,
Fq(7_1)
0, 0<k<p<lI, w<p

Therefore, we have

0Ly _ (h—aqp) '+ (w—gp)™" _2(1—gp)™"
Ok Fo(v—1) T Dy=1)
hence
Gy _ 2(1—qp)! e 20 —qp)~t 21 —qp)H( R )
Ik Fy(y=1) 1t L(y=1)  Tyvy-1) 1t
2(1 - qp)”*1

IV If 0 < gp < k <1 and ¢p < w, then

k(1 —¢gp) >0 and k(1 —qp) —qp+ Kk > 0.

Thus, £ —p < k(1 — ¢p) andigg> . Since £ > 1 and 7 > 2, so we have

1— -1 1 1
=w) >G)>%
K —qp K K

and

1 1 -1

(W=—agp)" '+ (A —gp) ' = K(w—qp)"" = (k—qp)”

1 -1

w—qp) '+ (1—gp)"" — (kK —qp)?

>(1—r)w—qp) '+ (L —gp) " — k(1 —qp)"

—~
—
|
X
~—
—

(1—r) +(w - qp)”*l)

> (1—r)(1—qp)!

which implies that
Ly(k,p) > (1= k)1 —qp)"™
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If0<gp<w<k<1then
(I—gp) " = (k—qp) ' > (1 —gqp)" " — (1 —gp)""

=(1-r)(1—gqp)"

and
) > £ K)F(ql<;>qp)
Thusly we obtain
V4
Galrp) 2 rqiw (=m0 -y + (=)0 ) ]
_ b1, (L=gpy! 4
o o (L e ]
(L—gp) '/ 2-7°
IRYICH <2(1 ) 5) 20

3 Main Results

Theorem 3.1. Let h : K x (C[0,1])* — R be a singular function at some point k € K = [0, 1]
such that for all vy,...,vy4,uq,...,uy €Y the following inequality hold

4

<D silm)lve —

=1

’h<’€7 Vi, Vo, Vs, V4> - h("{ﬂ Ui, Uy, Us, U.4)

where s1,...,54 € LY[0,1] are nonnegative realvalued maps. Moreover, let 3ty € N such that
there exists Zy, ..., 2, € L'[0,1] and Xy,...,X;, : R* — [0,00) where Z; are nonnegative
and X; are nondecreasing and nonnegative functions for all i = 1,...,ty. Also, let 3, =
min {1,T4(2—7),T4(0+1)}, Cy(7,€) = max {Ay(7, ), By(7,0)} and assume that the following
are holds true

e Forall (vy,...,v4) € Y* and almost x € [0, 1]
to

’h(K7V1>V27V3,V4)‘ < Z Zi(k)Xi(V1, ..., Va).
i=1

Xi(y,v,9,v)

e lim = p where p € R™ and for some v >0

Yy—oo

B
(7, 0) 320 124 + v

0<p<
_,O_Cq
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A N S3 S4
C ,e(
ERA R WOTE I WEY

Then, the quantum multi-singular integrodifferential problem mentioned in (1.1)-(1.2) has a
solution.

) < 1 where s; = fol(l — qp)?ts; dgp.

Proof. At first, we define the operator 7 : Y — Y as follows:

7 (k) :/o Go(k, p)(k, v(K), V' (k). D]v(K), TTV(K)).

Now in three steps, we show that this operator has a fixed point which is the same solution
to the desired problem.

stepl. we shall show that 7 is continuous. Suppose that vi, vy € Y and x € [0,1].
Afterwards, we can write

T () = Tel)] < [ G Bva (), (1) D51 0), 951 0)
—h(p, va(p), vo(p),” D;va(p), Igva(p)) ‘ dgp
< [ A0 00 - 7 (5@l = val + 52V = vl

T s3PIIDyv1 = Dpvall + 5a(p) 13571 = Igval| ) dyp.

But,
L vl 1 0 v
Jv(kr)| < k—qp)’|v(p)|dp < X —|(k—qp)°’| | = =———=kK°,
v < s | e vl < s el =
which implies that [|J7v|| < ﬂ Therefore,
0 T Ty(o+1)
~o ~o ~o [vi — vo]
13gv1 = Tgvall = |37 (vi = v2)[| < T,(o+1)

Also, similar to the above processes for all vi, v, € C!0, 1], we deduce that

[vi — va|

Divi =Dy < .
H q 1 q 2” Fq<2_7_)

Hence,

[T, (k) = To ()]

1
< A0 [ (50 = vell + sV = Vil
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[vi — va|
Ly(o+1)

[vi —va|

r,2-n) )0 e dop

+ s3(p) + s4(p)

— Aq(’}/,g)/o |:(81(p) + %)(1 — qp)7—1||vl — Vg“

s3(p)

o Y1~/ _ <
T ) eIV = Vil dap

+ (s2(p) +

= A Ol = VQ“*A [Sl(p) +5(p) + Fqiz<€)7> " quz(]f 1)] (1- qp)’yil dgp

SO S3 54
A‘I(W ) 51+ s2+ Fq(2_7—) + Fq(0+1) ||V1 V2H

As well as, we have

1
7,00 - T < [ |25
0

D) (1, v, (). ¥4 (0 D (), )

—h(p, va(p), v4(p), D va(p), I va(p)) | dgp

1
< [ 000 = a7 (s0)lvi -~ vall + @)V~ Vi
0

+ s (PIIDyv1 = Dpvall + 51(p) [35v1 = Tgva| ) dyp

1
<B,0.0 [ (50 = vall + s2(0)vi = i)

[vi — Vs [vi — Vs -1
L) I "M\ —gp) 14
+s) gyt ) (- )
A N S3 S4
= 14 — Vo|4-
B O($i+ 5+ o + 1 ) IV v

It follows from above inequalities

7o, = T, |l = max {|| T, () — T, | | T, — T, |1}

SA3 4 §4
L,2-7) T o+1)

<10 (51 + 5+ )livi = val..

Accordingly || 7y, — 7y, ||« — 0 as ||vy — va|[x — 0, thus 7 is continuous.

step2. We claim that 7 is a-admisable. At first, since

to )
% Cq(%g) Zi:l 1Z; ] <1,
By
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then, we can choose A where

Cq(%e) Zfozl ”ZZH <1
By

According to w — p as y — 00, then 3¢ = v, > 0 such that for all y > ( = v, we have

(p+A)

X
(Y, 9,9, y) oA (3.1)

Now, let W = {v € Y : [|v[|. < (} and define the map a : Y? — [0, c0)as follows:
1, vue W
a(v,u) =
0, v,u¢ W.

If a(v,u) > 1; then, ||v||. < and ||ul|. < ¢. suppose that x € [0, 1], then we get

T < [ Gol) [l V). ). D). Ty () o

< Ay (7, 5)/0 (1—gp) Z Zi(p)Xi(v(p),v'(p),c D;v(p), Igv(p)) dgp

hd vl

<AG03 [a-wr > 2N (M IV 5= T o)

< Ay(7,0) :ZOOXi (Ca ¢, Fq(QC— 7’ Fq(lg—I— a)) (/01 Zi(p)sup(1 — gp)* qu)

<A0Y X555 52
i—0 q Mg Pg Pq

¢
It follows from (3.1)) and 3 > ( that Xz(ﬁ%, ﬁ%, 5%, ﬂ%) <(p+ )‘)B% and so

Z(8)] < Ag(7,0) 2 - (p + VI Zi]

S

ACORLIELY

—(p+)( 7

<G,

therefore, ||7y|| < ¢. In addition, we can write

o)< [ |2l
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<B(0) [ = Y 2K () (). D) Ty ()

< B0 03X ) ([ Ao - o )

_ (p_i_/\)(Aq(%g)%:ioo HZZH)C <<

and so

7]l = max {| T ||, | TSI} < .

Therefore, we draw conclusions that 7, € W and 7,, € W, which implies that a(7,,7,) > 1.
hence, 7 is a-admissible.

Step3. In view of W # (), afterwards Fvy € W such that 7,, € W. Thus, a(vy, Zy,) > 1.
For convenience, set

S3 + 54
Iy2-7) Tylo+1)

VACRORSS [51 + 52 + Cy(v,0) < 1,

and for all K> 0 put ¢(k) = J,(7,¢)k. Since

= n _ - n _ ‘7(1(776)
;%ﬁ (k) = ;Jq (v, Ok = TMR < 00,

and v : [0, 00) — [0, 00) is nondecreasing, we have ¢ € U. Now, we obtain
1
T = Talo) < [ Gul.p) bl ). () D5 v(0). 5 v(0)

—h(p,u(p), u'(p). Dju(p), Fu(p))

S
< 0ls + s —ul.,
<A O[5+ 9+ s+ ) v
which yelids

~ ~

N N 53
T, - T4 < L —ull..
ITe=Tall < 4 O]si+ 52+ 5 + 1y ) IV vl

Also, in a similar way

110G, (

7o)~ Tl < [ | 2L I vi), v ). 0w ), 3 0)

v

0
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r,(2—r7) + Ly(oc+1)

which yelids

T —T!|| < NGER: i —ul..
I~ Tl < B O+ e+ 5 + 1y ) IV v

Thus for all v,u € W we obtain
SA3 §4
+ } vV — ullx
r,2—7) T, (c+1) | |

17 = Tall. < Co(r 0|51+ 52 +

= J4(7; Ollv —ull. = ¥(||lv —ull,).
Hence for all v,u € Y we get
a(v,u)||7, = Tyl < ¢(d(v,u)).

In view of Lemma [2.8] the operator 7 has a fixed point which is the solution to the problem

mentioned in ((1.1))-(|1.2)). [

Theorem 3.2. Assume that the function h: K x (C[0,1])* — R defined for all vy,...,v4 €
C[0,1] and almost all k € [0,1]. In addition, let 3t; € N and there ezists nondecreasing maps
Xy, ..., Xy, 0 RY = R such that X;(y,y,y,y) > 0 and lim W = p; for all y > 0,

y—0+
1 =1,...,t; and some 0 < p; < 1. Moreover, for all vy,...,v4,uy,...,uy € Y there exists
S1y..., 8 ¢ [0,1] = [0,00) s.t.

’h(K/7 Vi, V2,Vs, V4) - h(’%a ug, U, Us, U4)

< Z $i(K)X;(Vy —ug, vy — U, V3 — U3, V4 — Uy)
i=1

where v; > u; > 0. If t
1

Co(v. ) II(L—gp) il < 1.

i=0
Then, the quantum multi-singular integrodifferential problem mentioned in (1.1)-(1.2) has a
solution.

Proof. we present our proof in three steps.

Stepl. Assume that A > 0 be given and put

t1
ar = Cy(7,0) Y 11— k) sl + 1.
=0
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Moreover, acording to Xl(%, %) — 0 as y — 07 then for each i = 1,...,t; there exists
G > 0 such that X;(§,..., %) < % Where 0<y<¢ If¢=min{¢:1<i<t}, then for
allO<y<CwegetX( ,...,ﬁ) <& . If v, — v then dng € N such that Vn > ny we have

Vi, — V||« < C. Afterwards for all & e [O 1] and n > ny we have

T, (k) = Tu ()|

< /0 Qq(/w)‘h(p, Vi (P), Vi (),° D7 v (p), TV (p))

—h(p,v(p),v'(p),cD;v(p), I7v(p))

1 t1
< /0 Gy(k:p) D 5i()Xs (I[Ve = VI 1 (v = )l 1D (Vi = V)1, 135 (v = V)I[) dgp
=0

A7, £) tZX (C, ¢, Fq(;_ 7y Fq<f+ U)) (/01 si(p)(1 — qp)"™! dqp>

A &
f)g ; (1= k) FsilliC < A,
so for n > ng we obtain || 7, — Ty|| < A. Also, similary Vk € [0,1] and n > ny we get

7,0 - Tl < [ [ 2B v, (), v ). D ). 90, 0)

0

—h(p,v(p),v'(p),"D7v(p), 37v(p))

and so || 7, — 77| < A. Thus
17, — Tl = max {|| T, — Tl |17y, = I} < A,

which implies that 7, — 7, as v,, — v. Therefotre, 7 is continuous.

Step2. Notice that, for all 7 = 1,...,#; we have lim Xi(y’yy’y’y) = p; < 1; So V\; > 0,

y—07t
3¢ := ¢(\;) > 0 where 0 < 4 < G and it follows that
Y Y Y
XZ'—,...,_ S l+)‘z_
(5 ﬁ) (p )B
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where 8 = min {I'y(2 — 7),T((1 + ¢)}. Now assume that A{ be such that p; + A} < 1 and
¢? = ¢(\Y). Put:

C:min{g),...,gol}, p=max{py,...,py,} and )\Ozmin{)\?,...,)\?l},

which for all 0 < % < (; imlies that

Y ) )
+ X <1l and X;(=,...,5) < (p+ N)=.
Moreover,
X, ) < (04 MG < o+ M) <+ Ao
Define the map o : Y? — [0, 00) as follows:

0, otherwise.

{1, v —ull. <¢
a(v,u) =

Now, let a(v,u) > 1 then

Tul) ~ Tul)
< [ Gurn|novio) Vo) D). 35v(0)

—h(p, u(p), ' (p)," D7u(p), 3u(p))

dgp

S/o Qq(/‘é,p)zsi(p)‘xi((v—u)y(V—u)/acgg(V—u)JS(V—u))|dqp

= Aq(%ﬁ)/o (1—aqp)™ A si(p)[Xi([lv =l [|(v =)', D7 (v = ), 37 (v = w)ll) | dgp

<AL X6 Fq(2c_ ) Fq<1c+ a)> </01 (1 =) )
< Ay(7,0) ZX<£ £, §7 §> (/01 si(p)(1—qp)™" dqp>
< Ay(7,0) t_zl (1= qp)" 'silli(p+ )¢

< A (1,03 11— gp) il ¢ < ¢
=0
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50, || 7y — Tu|| < ¢ which yelids that a(7,,7,) = 1. Now, put

t1
@ = Cy(7,0) Y (1= k) silla(p + No)
=0

then follows from assumption that qs < 1. If ¢(k) = qok then ¢ € W. If |[v — u|| < ¢, then
we have

t1

170 = Tall < A7, ) Y (1= 5) silli(p + Ao [v = ull < qoflv — ul.

=0

and
t1

170 = Tall < By(7.0) Y (1 = 5)"silla(p + 20) v —ull. < q2llv — ..

1=0

Hence, |7y — Zull« < q2||v — ulls = ¢(||v — u]|+) and so for all v,u € Y we get
a(v,u)|T, - Tull. < ¢(|lv —ull).

step3. Now, we claim that Ivy € Y such that a(vy, 7y,) = 1. To achieve this goal we
shall show that || 7y, — vo| < ¢ for some vy € Y. According to X;(y,vy,y,y) — 0 as y — 07,
then V£ > 0 there exists n = n(\) where 0 < y < % which implies that X;(y,y,y,y) < A for
all 1 <i <t;. Therefore, X;(£, %, £ ) < X. Put

‘m'n?

= max {1’ rq(11+ ) rq(;— 7) } - e { rq(11+ )’ rq(zl— 7) }
and take A, such that t
1
D =) siliAnCy(7,6) < €.
i=0
Put b; = n(\,;,) and take by € N where

1

t1
DN =R silliAnCy(1,0) < ¢ = —.
i=0 b,

Now, if b, = max{by, by} then for all 1 <i < t; we have Xi(b%, b%, b%, b%) < \,,. Define the
map Vv as follows:

(O, Kk < ﬁ,
6b? K3 2b, +1 K 1 1 1
Vo(K) = 4 6b2 + 5b, +2<§ b+ )" Thub + 1)) Th.r2 B SF SRS
1 1
b e
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It is clear that vo € C[0,1] and for all & € [0,1] we have 0 < vy < g~ and v( =0. In

addition, we get

1

0, K< 5
/ 6b? ( ) 2b, + 1 N 1 ) <<
— K- K e <K<
Vo(K) =4 6b2 1 5b, + 2 bb 0 T hm. ) e
i K>
\b*7 — bs
Hence, v, € C[0,1] and v{(5=5) = vo(g) = 0, which implies that vo € C'[0,1]. Moreover,
we obtain
Vi(5) < 6b? ( 1 2b, +1 N 1 )
O = 6n245b, +2\b2  2b,(b, +1)2 ' bi(b, +1)
<1x 1 y ( 1 2b, N 1 ) < 1
= b, T 112 Bt 1)/ T by

1 .
< b So, we can write

*

which yields ||vp,
|Tvo (K) = vo(x)]

= | [ Gt v 0. Vi) D 0. T 1) = o)

1
S/O Go(k, p) (P, Vi (), Vi (), D Va(p), ITva(p)) dgp| + —

to |

< a0 [ = S s (vl vl e voll 2y L
< i T,(2—7) Ty(1+0) b.

1=0

to

<A1 0) [(/01(1 —qp)"'si(p) dqp>X¢

=0

1
g(7, € ZHl_"f Sz‘>\1+b—<g

*

and so |7y, — vo|| < ¢. In a same way

1T, ) — vi(w)] < / 298D (v () ¥ () D), Fa) | + -

1
77 ZH ’Y Sz|)‘1+b_<c

*
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It follows ||(7y, — vo)'|| < ¢. Thus,

||7:/o - VO”* = maX{|’7:10 - VOH? H(,]:/o - VO)/H} < >"

which implies that a(vg,7Zy,) = 1. Thanks to Lemma , the multi-singular problem men-
tioned in ({1.1))-(1.2) has a solution. O

Theorem 3.3. Let E¢ be a null subset of [0,1], namely its measure is zero, and for all
Vi,...,v4 €Y and k € E the functionh : [0, 1]xY* — [0, 00) be such that h(k, vy, v, Vs, vy) <
oo and continuous with respect to vi,vo, vy, vy. Moreover, let 3t € N such that there exists
maps s; : [0,1] — [0,00), s1,...,8 € L0,1] and Xy,..., Xy, : R? — [0,00), S: R* — [0, 00)
such that )
11 = _sup [ S(v(9. v, (0, v(0)) s < 0
veco,1] Jo
and
HXzHoo ‘= sup {Xl(ya Y Y, y)} < 00,
yeR
also
t1
|h<l€7 Vi, Vo, Vg, V4)’ < Z Si(’i)Xi(Vh V2, V3, V4) + S(V17 V2, V3, V4)'
i=1
In addition, let there exists maps ¢ : R — [0,00), s.t ||¢]|* := min{e(vy,...,v4)} and
z:10,1] — [0, 00) where

1
el = [ (1= e d
0
and for all vy,...,v4 €Y and slomst r € [0, 1]
h(liv Vi,Vo, Vg, V4) Z Z(H)¢(V17 Vo,V3, V4)-

Also, let there exists g1, g2, g3, 92 € L0, 1] where

4
S llgilh < o
i=1 CQ<77€)

and = : [0,00) — [0,00), Eg € ¥ such that for all X > 0 we set Zx(v) := Z(3) and
4

=0

with ||v;]], |[wil| € [C1, Ca] where

Foll= (4 — 42 — 2)
@SR

t1
and G = C(3,0)| Y IXillclisill + 1S5
=1

Then, the quantum pointwise multi-singular integrodifferential problem mentioned in (|1.1])-

(1.2) has a solution.
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Proof. Assume that {v,} be s sequence in Y such that ||v,, — v||. — 0, which implies that
v, — v and v/, — Vv’. in view of the following inequalities:

‘D (v, — < d in 70
|| q(v V)H — Fq 2 7_) an || ( )H — (1 O')
we obtain “Dv, —°D;v and J7v,, — J7v. It follows from the continuity of h(k,vy,...,vy)

that h(k,v,, v, ° @Tvn, Jgvn) — h(k, v, v/ cD7v,J7v). suppose that v — Y and k € K =
[0, 1] then, we can write

t1

7001 < A0 0)| [0 )™ (3 s @I ¥ 0 D). ()

i=1

F SV () Dyv(p), TV 0))

Put, v.(p) := max {v(p),v'(p),*D;v(p),IJv(p)}, then v, € C[0,1] and afterwards for all
k € [0,1] we have

L) < Ayl [Zx(nvu Wi M s
+ /01 S(v.(p), vi(p), vi(p), v+(p) dgp

t1
< A3 O (3 IXileellsill + 118117
=1

In a same way, we get

T ()| < Byl (Z||X||oo||sz|1+||8||)

Hence, for all v € Y we obtain

1Tl < G0 (ZHX lacllsll + 11811) < o0 (32)
In view of the Lebesgue dominated convergence theorem, for all k € [0, 1] we deduce that

To. (k) = / Gl PR (p, Vo (9), V1 (0) S DTV (), TV, (p)) dyp

(=]
<
=
=
~—
jol
<
S
Il
A
—
2

_>/0 Ga(r, p)h(p, v(p), v'(p), DV (p), 37
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Thus 7 is continuous.
Define the map a : Y? — [0, 00) as follows:
Lo vl falle €16, &)
a(v,u) =
0, otherwise.

Assume that a(v,u) > 1, then ||v|., ||ull« € [¢1,¢2] and afterwards for all x € [0, 1] we can
write

1061 = | [ G (v ) v 0) D). Ty ()
1 1

Vv

2=
0,0 [ @ ()=
x ¥ (p,v(p), v'(p),c D]v(p),T7v(p)) dygp

—K

Pq(V)

> ol [ 5 [0

> WH*HZH?(F;w + 2?1_—£€)>
4 — 02—
W>’

= el =% (

which implies that
[l Nl=07(4 — ¢ —20)

="

and

[ ll2l¥ (4 — & — 20)
20, (7)1 =)

1Tl = {17 TN > > G-

It follows from Eq. (3.2)
t1
ITell < € O (3 IXKellsils + 1S15) < Ga
i=1

therefore, a(7y,7,) > 1. On the other hands, if vy € [(1, (o] it is obviously a(vo, Zy,) > 1.
Now, let v,u € [(1, (2], then we have

(v, u)| T (k) — Tu(k))|
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(1) 0= ]

(11

+ g3(p)

< Eg(llv —ull,)
which for all v,u €Y implies that
a(v,u)|T, — Tull < Zs(|lv —ull,).
Moreover, for all v,u € Y we get
a(v,u)||7; - Til| < Zs(]lv — ull.),
Hence for all v,u € Y we have
a(v,u)|T, — Tulls < Zs(llv —ull,).

Thanks to Lemma the operator 7 has a fixed point which is a solution for our quantum

multi-singular problem mentioned in ([1.1])-(|1.2)). [
4 Examples

Example 4.1. Regard the following quantum multi-singular fractional problem

15 4 3
Dy v(k) + VIl IV + 1Dé vl + ||3q8V||> =0, (4.1)

1
S
75V (£(r))
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under boundary conditions

1
v(1) = 7 v(p)dp, (4.2)
V//(O) — ’
such taht
0, kel[0,1]NQ,
f(r) =
kK, k€ (0,1)NQ°
In this case put: v =2, 71 =3, 0 =2, w=2, (=1 Also, s1(k) = s2(k) = s3(k) = sa(k) =
1 1
Z1(k) = Zo(k) = Z3(k) = Zy(r) = s which implies that ||s|y = ||Z|, = 07 and for
i=1,...,4 we set X;(v1,Va,v3,vy) = ||vi|]|. Then we have
RN ;

Af(3,0) = Al 5) = =

and

hence

1 15 1 15 1 3 2
Cq(’%g) - Cq(Za 5) - maX{AlI(Z? 5)7611(27 5)} - max{%rq(%)’ %Fq<%) }7

which their numerical values are presented in Table[3. Also, the heatmap of Table[3 is presented
in Figure[3,

| q=10.08]¢=0.17|¢=033]¢=049 | ¢=0.66 | ¢ =0.81
A (2, 0) | 52212 | 44789 | 3.4456 | 2.6915 | 2.1063 | 1.7210

Bq(%, %) 3.7799 3.5700 3.2659 3.0235 2.8126 2.6559

C,(2,%) | 52212 | 4.4789 | 3.4456 | 3.0235 | 2.8126 | 2.6559

Table 3: Numerical resual for Aq(%, %), Bq(%, %) and Cq(%, %)



Euclidean distance

uj
By
- r
Gq
—r—r
: ' w ® ¥ 3 + [ 2

Eucidean distance

Moreover,
5y = min (T2 = 7). Ty(1+ 0)} = min {I,(5). To(5)

and its numerical values are given in Table [])

| q=0.08]¢=017][¢=033]¢=049 | ¢=0.66 | ¢ =0.81

Fq(g) 0.9802 0.9679 0.9529 0.9419 0.9326 0.9257

() | 0.9754 0.9587 0.9379 0.9225 0.9094 0.8996

B, ] 09802 | 0.9679 | 0.9529 | 0.9419 | 0.9326 | 0.9257

Table 4: Numerical resual for T'y(2), I'y(%) and £,

Consider the map h as follows:

1

29

4 3
b1, v(), /() D (), 3y¥ () i= ——— + (vl + V]| + i v + 351

! 75/ (E(K))*

then we can write

[Vall = [l + - - + [[vall = [Jua]

’h(KJ? Vi,Va, Vg, V4> - h(ﬁ) ug, U, Us, u4>‘ =

75/ (£(r))
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||V1 —wyf|+ -+ ||V4 —uy|

75f((>)

75\/_/152”VZ ul

=1

4
251 v — g,
=1

and

[vall + -+ vl
757 (f(k))°

_ vl - A vall

75\/TK5

4
E V17V27V37V4)

|h(K7V17V27V37V4)‘ —

X
In addition, we have lim M =1=p and
y—00 Yy
A, = & = b > 1

GO OTNZ ClR5) X s

where the establishment of inequality (4.3)) is shown in Table @

q H A, > 1
0.08 || 1.5888
0.17 || 1.8288
0.33 || 2.3382
0.49 || 2.6364
0.66 || 2.8061
0.81 || 2.9497

Table 5: Numerical resual for 2.
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Now, take v > 0 such that

On other hands,

1 1
15 1
§ = 1—qp)4‘18(p)dp§/ s(p)dgp = ||s]l1 = —=,
/o( P J, W=l =g

which implies that

~ ~

. A N S3 Sq
%, =Cy(. (51 + 5+ T,2—7)  T.0+ 1))

15 1
472

= Cq(

and the data related to the correctness of this inequality are given in Table[6, By using Theorem

our problem which formulated in (4.1))-(4.2)) has a solution.

q H 2, <1
0.08 || 0.6240
0.17 || 0.5393
0.33 || 0.4189
0.49 || 0.3703
0.66 || 0.3466
0.81 || 0.3289

Table 6: Numerical resual for 2[;.

Example 4.2. Regard the following quantum multi-singular fractional problem

13 0.06 4 2 1 e 30y ynT
‘Df v(k) + —11(1 - (—)5(V+v i QIOVHZV)) =0, (4.4)
K3 (k— )0 5

W=

under boundary conditions
v'(0) = v(3),
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In this case put: v = %, T= %, o= ‘—;, w = %, (= % and ty = 1. Then we have
13 1 3 3
"4<77€>:A(_7_): = ;
! U578 (1-gl(5)  §L(P)
and 13 1 2 2
8(776):8(_7_): = )
! U578 (-3 -1)  gh(3)
hence

13 1 13 1 13 1 3 2
Cy(7,0) =Cy(—, =) =max{ A,(—, =), B,(—, =) p = max , ,
0 =G5 5) {53853 {grq(%) grq(g)}

which their numerical values are presented in Table[7. Also, the heatmap of Table[7 is presented
in Figure [§)

| ¢q=0.08]¢q=017|¢=033|¢q=049 | ¢=0.66 | ¢ =0.81
A (2.5) | 32791 | 31378 | 29333 | 27692 | 2.6250 | 2.5165

B,(2,5) | 23344 | 23724 | 24235 | 24638 | 24996 | 2.5271

Co(2,5) | 32791 | 3.1378 | 29333 | 27692 | 2.6250 | 2.5271

Table 7: Numerical resual for Ay (£, 1), B,(3, §) and C,(£, §) in Example .

07
08
03
04
02
02
0
00

Euclidean distance

Eucidean distance

Figure 4: The heatmap of Table [7] in Example [4.2]
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Consider the map h as follows:

0.06 A
h(l-ﬂ, Vi,... ,V4) = — (1 _ (_)%(v1+...+v4)>’
K3 (k— )5 5
further,
0.06 4
s(k) = ————= and X(vy,...,vy)=1-— (_)%(v1+...+V4).
k3 (k — %)6 5

It is obvious that for all y > 0 we have X(y,y,y,y) > 0 and the function X is nondecreasing.

Now, assume that for i =1,...,4 we have 0 < w; < v; such that (vq,...,vy), (ay,...,uy) €
Y. Since A A

Y« (ZY\Vi
then

which implies that
4 4 4 4 4
_\u \wi (Ve < g _ (Z\Vi—u; .
(-G <@ (-Er)
Hence,

(1-dr) -y 1

4 4
From the placement of v; and u; with % > v and % >y, follows that:
i=1 i=1

(S]]
(S]]

4
Do vi—u;
=1

(-5 57 - (- <1

Thus,
X<V17--->V4)_X<1117~-7114) SX(Vl—ll17~-7V4—U4)

as well as

h(’%?Vl’ B 7V4) - h(KZ?ula s 7u4) < S(’%)X(Vl —Uy,..., V4 — U.4)-
and A

1 ()
X 2 4
i XY YY) o T 20 s <
y—0+ Y y—0+ Y 5 5

Now all the assumptions of Theorem|[3.9 are satisfied, so our problem, namely (4.4)-(4.5), has

a solution.

Example 4.3. Regard the following quantum multi-singular fractional problem

D V() + %X(V(ﬁ) +V(R) D V() + jq%v(’f)) +2=0, (4.6)
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under boundary conditions

) (4.7)

such that
0, k€0,1]NQ,
f(r) =
Ve, k€ (0,1)NnQ°.
In this case put: v = %, T= %, o= %, w = %, (= % and ty = 1. Then we obtain

17 2 3 3

69" (1-2Ty(F) (%)
and 17 2 2 2
B('Y’E):B(_7_): = )
! T679 (1= -1  T.(%)
hence

17 2 17 2 17 2 3 2
Cy(7,0) =Cy(—, =) = max A, (—, =), B,(—, =) p = max :
q q 6 9 { q 6 9 q 6 9 } {g 17 7 11)}

which their numerical values are presented in Table[8. Also, the heatmap of Table[§ is presented
in Figure [3,

| ¢=0.08]¢=017][¢=033][¢=049 ] ¢=0.66 | ¢ =0.81
A, (7, 2) ] 3.6204 [ 3.3937 | 3.0657 | 2.8053 | 2.5803 | 2.4142

Bq(%, %) 2.5979 2.6201 2.6508 2.6754 2.6975 2.7145

C,(%F.3) | 3.6204 | 3.3937 | 3.0657 | 2.8053 | 2.6975 | 2.7145

Table 8: Numerical resual for A, (%, 2), By(X, 2) and Cy(%, 2) in Example .

Consider the map X : R* — [0,00) as follows:

(1 & vl

LI e 1 Vi,...,v4 € [0,23],
P T+ il 1o 0.2

X(vy,...,vq) = Isin(vi+ -+ Vi), vi,..., vy € (—00,0],

4
_ﬁ(}l;\,l_zél)a Vi,..., V4 € [23,24]

\
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Euclidean distance

— f—‘;%

Eucidean distance

Figure 5: The heatmap of Table [§ in Example [£.3]

which implies that | X||sc = 1. Moreover, define ¥(vy,...,vy) = X(vy,...,vy), also put
g(k) = z(k) = s(k) = 0'—\/%2 and Z(k) = 5. If we set S(vy,...,vy) =2 and

0.02
h(k,vy,...,vy) = %X(Vl, ceyVy) 2,
further, we take (; = 0 and (y = 23. Then for all vi,..., v, €Y and k € Q°N [0, 1] we get
h(li,Vl,. .. ,V4) < 00
and h(k,vy,...,vy) is continuous respect to its components. Therefore, we have
1
h(li,Vl,. . .,V4) = mX(Vl, R ,V4) + 2

> 2(K)Y(ve, ..., Vy)

and

i~

1 0.02
|h(l{,V1,...,V4)—h(l{,,ul,...,U4)| S 5 \/—”Vz llz||

4
= > 9(R)=(llvi — ).
i=1
It 1s worth noting that Z3 € ¥ and

Z|Ig||1—4x002_008<—_

=1
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In addition
[l 2)1F (4 — 7% —2y)  1x0.02x (432 — )

20,(N(A =) 20 (- F)

~0.0969
1.83330,(3)

Z 0= Cl?
and

t1
. 17 2
Co, O] D Xl llsill + ISI1| = Cal )11 x 0.02+ 2]
=1

17 2
= CQ(Fa

§) X 202<23 =0

Now, all the assumptions of Theorem are satisfied, so our problem, namely (4.6])-(4.7),
has a solution.

5 Conclusion

Today, computer capabilities and software packages are essential for solving complex problems.
Therefore, physical phenomenon models must be comprehensible to computers, particularly if
they have certain complications like singularity. Our study presents numerical algorithms that
investigate the quantitative and qualitative aspects of a pointwise defined multisingular differ-
ential equation using quantum fractional operators. We ensured the existence of the solution
in three different conditions by using the a-1)-contraction theorem. Other researchers can also
use our method to examine well-known equations with singularities and strong singularities.
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