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Abstract

Metabarcoding is an increasingly popular and accessible method for assessing bacterial communities across a wide range of

environments, and as the sequence data archives grow, sequence data reuse will likely become an important source of novel

insights into the ecology of microbes. While literature on the benefits of longer read lengths for the study of microbial

communities, little is known about the (re)usability of shorter (<200 bp) read lengths, but this information is essential to

improve the reuse and comparability of metabarcoding data across studies. This study reanalyzed three 16S rRNA datasets

targeting aquatic, animal-associated, and soil microbiomes, and evaluated how processing the sequence data across a range of

read lengths affected the resulting taxonomic assignments, biodiversity metrics, and differential (i.e., before-after treatment)

analyses. Short read lengths successfully recovered ecological patterns, and limited increases in resolution were observed

beyond 100 bp reads across environments. Furthermore, abundance-weighted diversity metrics (e.g., Inverse Simpson index or

Bray-Curtis dissimilarities) were more robust to variation in read lengths. Importantly, the total number of ASVs detected

increased with read length, highlighting the need to consider metabarcoding-derived diversity estimates within the context of

the bioinformatics parameters selected. This study provides evidence-based guidelines for the processing of short reads.

Introduction

The 16S rRNA gene is about 1,550 bp long and encodes the small subunit ribosomal RNA molecules of
ribosomes. Originally used by Woese and Fox to examine the phylogeny of prokaryotes, (Woese & Fox, 1977),
the 16S rRNA gene currently serves as a molecular clock (Woese, 1987) and as a means for differentiating
prokaryotic taxa (Benjamin J Callahan, McMurdie, & Holmes, 2017; Clarridge, 2004). Sequencing this gene
has revolutionized microbial ecology, allowing for the identification of microbes that cannot be studied in
isolation, or exist in complex mixtures, and revealing the astounding complexity and ubiquity of microbes
globally (Thompson et al., 2017).

The structure of the 16S rRNA transcript and its essential function in protein synthesis have limited the
rate of evolutionary change in the gene, resulting in highly conserved regions that can be leveraged as primer
targets that contain variable regions for sequencing (Clarridge, 2004). Initial sequence-based assessments of
prokaryotic diversity relied on Sanger sequencing, which could sequence the entirety of the 16S rRNA gene
of few reads at a high cost and effort. The advent of next generation sequencing technologies (e.g., Illumina
HiSeq, IonTorrent), heretofore amplicon sequencing, allowed for the sequencing of a much greater number
of sequences, but at a length of <600 base pairs (Caporaso et al., 2011).

Despite the development of third-generation sequencing techniques that allow the sequencing of the full-
length of 16S rRNA genes and provide a higher taxonomic resolution (Johnson et al., 2019; Matsuo et al.,
2021), amplicon sequencing of shorter segments remains the most accessible method for the identification
of microbial communities. Amplicon sequencing data continues to grow exponentially in sequence archives
(Jurburg, Konzack, Eisenhauer, & Heintz-Buschart, 2020), representing an important data resource for
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future research, and has already provided important insights into the abundance of prokaryotes (e.g., (Louca,
Mazel, Doebeli, & Parfrey, 2019)). A wealth of literature describes the limitations and biases of amplicon
sequencing, including the impact of amplification (Brooks et al., 2015; Schloss, Gevers, & Westcott, 2011),
bioinformatics processing (Kang, Deng, Crielaard, & Brandt, 2021; Marizzoni et al., 2020; Prodan et al.,
2020), and hypervariable region (Bukin et al., 2019; Tremblay et al., 2015; Yang, Wang, & Qian, 2016; Yu,
Garćıa-González, Schanbacher, & Morrison, 2008) on the resulting microbial diversity data.

Critically, while the positive impact of full 16S rRNA gene sequences on taxonomic assignment has been
well documented (Curry et al., 2022; Johnson et al., 2019), the extent to which short read lengths (i.e.,
<200 base pairs) are able to recover higher-level taxonomic assignments and ecological patterns has received
little attention. Understanding the opportunities and limitations of shorter 16S rRNA gene read lengths is
essential, especially for the reuse of rapidly growing sequence data archives (Jurburg et al., 2020). Read
truncation is a common practice that removes lower-quality read ends (e.g., (Ben J Callahan, Sankaran,
Fukuyama, McMurdie, & Holmes, 2016)). Most bioinformatics workflows aim to maximize read length,
however, allowing shorter read lengths can improve the comparability of sequences across datasets, allowing
for re-analyses that target the identical 16S rRNA gene region and avoid biases that emerge from sequencing
different, but overlapping target regions (Bukin et al., 2019; Tremblay et al., 2015; Yang et al., 2016; Yu
et al., 2008), or from differential read lengths. Characterizing the impact of shorter read lengths on 16S
rRNA gene-based ecological assessments may also serve for the integration of data from diverse platforms
that produce a range of sequence lengths (e.g., from full gene sequencing with Nanopore to 150 bp with
single-ended sequencing in HiSeq).

To examine the effect of sequence length on microbial diversity estimates, three datasets from disturbed
soil, water, and animal microbiomes sequenced using the same primer set and sequencing platform across
a gradient of read lengths were reprocessed. It was hypothesized that 1) shorter reads would result in a
higher percentage of unclassified ASVs and 2) lower richness estimates, but that 3) the relationship between
disturbed and undisturbed samples in each environment would still be detectable.

Materials and Methods

Reused data

To examine the effect of read length on diversity estimates, publicly available data from three experimental
datasets were selected. These targeted the soil, water, and animal microbiomes before and 4 days after a
single, strong disturbance. Each dataset had at least 5 replicates per time point, had sampled the system
before, one day after, and 4 days after disturbance, and had sequenced the resulting DNA by targeting the
515-806 region using an Illumina MiSeq. This 16S rRNA region was selected due to its popularity (Jurburg
et al., 2020), standardization (Thompson et al., 2017), and sensitivity (Zhang et al., 2023).

Soil microbiome data was obtained from a microcosm experiment (Jurburg et al., 2017), in which soils were
exposed to microwave radiation, and destructively sampled over time. DNA was extracted using the MoBio
PowerSoil DNA Extraction Kit (MoBio Laboratories, Carlsbad, CA, U.S.A.), and the resulting data are
publicly available in NCBI’s SRA under accession number PRJNA329541. Five replicate samples per time
point for the treatment exposed to a single microwave disturbance, with samples taken before, one day after,
and 4 days after the disturbance were selected. Where more replicates were available, the five largest files
for each dataset x time combination were selected.

Aquatic microbiome data was obtained from a marine microcosm experiment exposing aquatic microbiota
to cadmium and phenanthrene (Qian, Ding, Guo, Zhang, & Wang, 2017). Sampling was repeated within
each microcosm over time. Water was filtered and DNA was extracted using the MoBio PowerSoil DNA
Extraction Kit (MoBio Laboratories, Carlsbad, CA, U.S.A.), and the resulting data are publicly available
in NCBI’s SRA under accession number PRJDB4992. Samples simultaneously exposed to phenanthrene and
cadmium, taken before, one day after, and 4 days after disturbance were selected, and all five replicates per
time point were included.
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Finally, animal microbiome data was obtained from an animal experiment in which experimental pigs were
exposed to antibiotic treatments and their fecal microbiome was monitored daily (Jurburg, Cornelissen, de
Boer, Smits, & Rebel, 2019). Fecal samples were snap-frozen, and DNA was extracted using the AGOWA
mag Mini DNA Isolation Kit (AGOWA, Berlin, Germany), and the resulting data are publicly available in
NCBI’s SRA under accession number PRJNA528235. Animals exposed to clindamycin, and sampled before,
one day after, and 4 days after disturbance were selected, and all five replicates per time point were included.

Sequence processing and data analysis

Sequence data and metadata were downloaded from NCBI and processed using the popular dada2 pipeline
(B J Callahan et al., 2016) and standard parameters (maxN=0; maxEE=2, truncQ=2). As our goal was to
explore the impact of shorter read lengths on the taxonomic assignment of prokaryotes, and its impact on
the ecological conclusions derived from the data, only forward read lengths from each dataset were selected.
Importantly for sequence data reuse, reverse reads are often not available in archived sequence data (Jurburg
et al., 2020), either because pair-ended sequencing was not performed or the reverse reads are not archived.
Indeed, one of the datasets used (Qian et al., 2017) had merged paired ends prior to archiving. For each
sample, read length was varied from 50-200 bp in intervals of 10 bp. This range of read lengths was selected
as it represents the minimum output of all next generation sequencing technologies. Taxonomy was assigned
using SILVA v138 (Quast et al., 2013). For all samples, the number of unassigned reads at each taxonomic
level, and the percentage of original reads included in the final ASV table was recorded.

ASV tables were analyzed using phyloseq (McMurdie & Holmes, 2013) and vegan (Oksanen et al., 2007) . To
compare diversity estimates, all versions of each dataset were rarefied to the lowest number of reads (23,354
reads for the water dataset, 28,105 reads for the soil dataset, and 12,481 reads for the animal dataset). Unless
otherwise noted, all analyses were performed on chimera-checked data. To explore the impact of read length
on the detection of microbial alpha diversity, the 5 control samples of each dataset were selected to measure
richness and inverse Simpson diversity (Chao, Chiu, & Jost, 2014), which are more heavily weighted by the
rare and dominant taxa, respectively. Similarly, to explore the effects of read length on beta diversity, Bray-
Curtis and Sorensen dissimilarities between samples were examined. To assess the extent to which read length
affected the ecological conclusions derived from the data, samples from before and (1 day) after disturbance
for each dataset were compared. For alpha diversity, control and disturbed samples were compared using a
Wilcoxon test, and for beta diversity, control and disturbed samples were compared using a PERMANOVA
(adonis2) for each read length. Finally, to examine the loss of ecological information with read length, a
mantel test of the dissimilarities (Bray-Curtis and Sorensen) between the longest read length (200 bp) and
all shorter reads was performed for each dataset.

Results

The sequence data recovered from INSDC databases ranged in average read length, between 200 bp (animal
microbiome) to 300 bp (aquatic microbiome) of average read lengths and pre-processing steps (Figure 1).
Notably, the aquatic microbiome data was archived with merged paired ends, for a total average length
of 600 bp. On average across datasets, read qualities remained high until 200 bp, but were lowest for the
soil microbiome data (Figure 1). Among the 15 samples included for each dataset, the number of reads per
sample varied between 14,088 and 97,218 reads per sample animal, between 73,058 and 31,237 reads per
sample for aquatic, and between 196,518 and 51,092 reads per sample for soil microbiomes.

Processing sequence data across a gradient of read lengths had consistent effects across datasets, with the
average number of reads conserved per sample decreasing gradually with read length in data processed
without chimera checking (Figure 2, top), consistent with the quality profile (Figure 1). Importantly, for
lower quality sequences, trimming reads below 100 bp resulted in the removal of a large proportion of the
original reads during chimera checking, but this was dependent on sequence quality (Figure 2, bottom). In
the soil data, chimera checking removed over 25% of the original reads when trimming resulted in reads of
50-80 bp in length, but removed only 11.9 ± 8% if the reads were trimmed to 100 bp. In the higher quality
animal microbiome dataset, chimera checking reads that were trimmed below 60 bp in length resulted in a
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loss of 10.9±2%, while chimera checking reads that were 70 bp or longer only resulted in a loss of 5.1% of
the original reads.

The percentage of taxonomically unclassified reads decreased sharply with read length. As expected, this
effect was most pronounced at the lower taxonomic levels, but depended on the diversity and/or prior
characterization of the system (Figure 3). For the less diverse and more well characterized animal microbiome,
read lengths beyond 70 bp achieved minimal improvements in taxonomic classification, while aquatic and soil
microbiomes achieved minimal improvements in taxonomic classification beyond 90 and 110 bp respectively.
Genus-level classification followed a similar pattern, but required longer reads to reach saturation: in the
animal microbiome, 87.1% of the community was classified on average when reads were 120 bp or longer,
while in aquatic and soil microbiomes, trimming to 200 bp achieved a classification of 78.8% and 69.3% of
the community, respectively.

The number of ASVs detected across the 5 control samples in each dataset was assessed given the same
read depth and increasing read length (Figure S1). With increasing read depth, all datasets detected higher
numbers of ASVs. Trimming reads to 50 bp resulted in the detection of 180 animal, 228 aquatic, and 367
soil ASVs, which increased to 1029, 1833, and 5105 ASVs, respectively, when trimming to 200 bp.

To determine how trimming affected the detection of diversity, the richness and inverse Simpson index in
the 5 control samples of each dataset were assessed. Within each dataset, alpha diversity increased with read
depth, but saturated more rapidly in less diverse environments (Figure 4). Richness estimates exhibited a
hump with increasing read length in soil samples, decreasing after 160 reads in line with the decrease in
read quality (Figure 1). Importantly, while similar patterns were observed for both alpha diversity estimates,
Inverse Simpson’s index was more robust to read lengths, saturating with 70, 100, and 160 bp in the animal,
water, and soil samples.

The extent to which shorter read lengths affected the variance in compositional metrics (i.e., beta diversity)
was assessed by measuring the pairwise Sorensen and Bray-Curtis dissimilarities between the five control
samples in each dataset. For all datasets, increasing read lengths resulted in gradual, but saturating increases
in dissimilarity. The point of saturation depended on the expected diversity in each system: animal and soil
microbiomes approached saturation with 60 and 90 bp reads, respectively (Figure 5). Bray-Curtis dissimila-
rities were less variable (standard deviation of 0.03, 0.04, and 0.03 for animal, aquatic, and soil microbiomes,
respectively) across read lengths than Sorensen dissimilarities (standard deviation of 0.03, 0.09, and 0.05 for
animal, aquatic, and soil microbiomes, respectively). To further examine information loss from shorter read
lengths, Mantel tests between the communities resulting from each read length and the dataset trimmed to
200 bp (i.e., the most information-rich version, Figure 6) were performed using Sorensen and Bray-Curtis
dissimilarities. While the strength of Sorensen-based correlations increased with read length, Bray-Curtis
dissimilarities were more robust, and exhibited little deviation from the 200 bp dataset. Importantly, this
pattern was consistent regardless of whether a chimera-checking step was included (Figure S2).

Finally, the extent to which shorter read lengths recovered differences in alpha and beta diversity between
the control and disturbed samples (1 day after disturbance) was evaluated for each dataset (Figure 7) using
Wilcoxon rank sum tests and PERMANOVAs. In general, longer read lengths were able to better discriminate
between the alpha diversity of control and disturbed samples, both in terms of richness and Inverse Simpson
diversity (Figure 7, top). Above 100 bp, only marginal differences in discrimination between the richness
in the control and disturbed treatments were detected with increasing read length for both metrics, with
p-values ranging between 0.095-0.055, 0.012-0.010, and 0.151-0.309 for aquatic, animal, and soil microbiomes.
respectively. Inverse Simpson diversity was more robust to decreasing lengths, and discrimination did not
change with reads greater than 90 bp (p=0.008 all the comparison between control and disturbed in all
microbiomes). The discrimination of beta diversity between control and disturbed samples exhibited similar
patterns, with the exception of the water dataset evaluated with Sorensen dissimilarities, which indicated
that samples became more similar with longer reads (Figure 7, bottom). Sorensen dissimilarity between the
treatments in the aquatic communities decreased linearly with read length and discrimination decreased, from
p=0.074 with 50 bp data to p=0.456 with 200 bp data). The abundance-weighted Bray-Curtis dissimilarities
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were more robust to read lengths, exhibiting low variation in general.

Discussion

Amplicon sequencing remains the most common method for identifying microbial communities, largely due
to its low price and high throughput relative to more novel techniques (e.g., long-read sequencing, shotgun
metagenomics). As the popularity of amplicon sequencing continues to grow, so does the wealth of archived
16S rRNA sequences, and understanding how bioinformatics choices affect the definition of species, and
how this in turn affects the detection of microbial diversity and changes in this diversity is essential for the
interpretation and reuse of these data (Jurburg et al., 2022). This work evaluated how shorter read lengths
affect the detection of microbial taxa, their taxonomic assignments, and biodiversity estimates derived from
these data. Its findings indicate that short read lengths recover biodiversity patterns, but special caution
should be taken in the selection of biodiversity metrics to examine these data.

As expected, shorter read lengths resulted in more unclassified ASVs, but this was dependent on the target
taxonomic level and varied across read lengths. Classification was best in the animal dataset, which was
the least diverse and most-well characterized system. Importantly, only marginal improvements in taxono-
mic assignments were obtained by read lengths greater than 100 bp at the family level and above for all
the datasets used, suggesting that, if only forward reads are available, little information is lost by 100 bp
reads relative to the full forward read. Our results also highlight that genus-level taxonomic assignments
greatly depend on how well-characterized the microbiota of the target environment are, and suggest that
interpretations of genus-level assignments are not recommended for shorter reads (Thompson et al., 2017).

Further analyses highlighted the robustness of alpha and beta diversity metrics, especially abundance-
weighted metrics (i.e., Inverse-Simpson index and Bray-Curtis dissimilarities, to shorter read lengths. Reads
of 90 bp could recover the majority of the alpha diversity observed with 200 bp, as well as the dissimilarity
between communities belonging to both biological replicates (i.e., variance or dispersion) and different treat-
ments. Importantly, the similarity between the 200 bp datasets and their shorter versions increased with
read length when assessed with incidence-based Sorensen dissimilarities, but remained high for abundance-
weighted Bray-Curtis dissimilarities, even for the shortest reads. As these two dissimilarity metrics differ only
in their abundance weighing, the differences observed when using each suggest that rare taxa are the ones
most affected by shorter read lengths, highlighting the dependence of rare taxa on bioinformatics parameters.

Similarly, the detection of ASVs increased linearly with read length until a saturation point that aligned
with the expected diversity in each environment explored (i.e., from least to most diverse, the animal,
aquatic, and soil microbiomes), emphasizing the importance of defining diversity estimates relative to the
trimming parameters. These results highlight the importance of considering diversity estimates, particularly
incidence-based alpha diversity metrics (i.e., richness) as a function of read length. In the case of data reuse
and comparison among datasets, this study demonstrates the importance of applying a uniform read length
across datasets in order to have comparable diversity estimates.

With second generation sequence data (i.e., Illumina MiSeq), sequence quality decreases with read length
(Ben J Callahan et al., 2016). Consequently, less reads pass quality checking, resulting in less reads (or
observations) in the final, processed dataset. Short read lengths may therefore increase the number of ob-
servations per sample, particularly in low-quality sequences. Furthermore, different studies employ different
sequencing platforms, which produce reads of variable lengths, the shortest of which is Illumina HiSeq, fea-
turing a maximum read length of 150 bp, including barcodes and primers (Di Bella, Bao, Gloor, Burton,
& Reid, 2013). In the case of pair-ended sequence data, only forward or merged reads are often archived
(Jurburg et al., 2020). This work demonstrates how one aspect of sequence processing (i.e., trimming) affects
the detection and taxonomic assignment of microbial diversity. While several studies have examined how
technical choices (i.e., primer choice (Fouhy, Clooney, Stanton, Claesson, & Cotter, 2016; Mart́ınez-Porchas,
Villalpando-Canchola, & Vargas-Albores, 2016; Tremblay et al., 2015), pipeline selection (Marizzoni et al.,
2020), and rarefaction (McKnight et al., 2018; Weiss et al., 2017)) affect the detection of diversity, systematic
assessments of how other technical choices (particularly bioinformatics parameters e.g., chimera checking)
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affect the microbial diversity estimates are lacking, but urgently needed. Importantly, short reads enable the
reuse of sequence data in their rawest form, allowing for complete and unified reprocessing of the sequence
data from different studies, which may in turn improve comparability among them (Kang et al., 2021).

Processing metabarcoding data requires making a series of choices that affect the final dataset and its
interpretation (Abellan-Schneyder et al., 2021). Sequence trimming is a critical part of processing, but its
effect on the resulting diversity estimates are often overlooked. The analyses presented focused on the effect
of sequence trimming in the popular dada2 pipeline, which detects amplicon sequence variants (ASVs) rather
than grouping sequences into clusters of 97% sequence similarity. Dada2 has been extensively validated, and
exhibits high sensitivity to ASVs (Prodan et al., 2020). While the findings in this study may guide the
general processing of amplicon sequencing data, it is important to note that the findings are specific to the
dada2 pipeline.

This study lays the groundwork for the analysis and reanalysis of metabarcoding data using short read lengt-
hs, and results in several recommendations. First, when comparing data with different technical backgrounds
(i.e., from different studies), trimming to the same read length is important, especially for the analysis of
alpha diversity. Second, when using short read lengths, caution should be taken with the interpretation of
genus-level classifications. Third, abundance-weighted diversity metrics (i.e., inverse Simpson index, Bray-
Curtis dissimilarity) are more robust to read length than incidence-based metrics (i.e., richness and Sorensen
dissimilarity). Finally, the detection of microbial diversity from sequence data is far from absolute, and should
instead be considered relative to the read length employed.
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Figure captions

Figure 1. Quality profiles for selected samples in each study. Each panel shows the quality profile for the
sample with the highest (top) and lowest (bottom) number of reads for each study. The gray scale indicates
the frequency of each quality score at each base position (darkness indicates a higher frequency). Green and
orange lines indicate the mean and quartile quality score at each position, respectively.

Figure 2. Percentage of reads preserved after standard processing with dada2 (Ben J Callahan et al., 2016)
without (top) and with (bottom) chimera checking. Control samples (n=5) are shown for each study, as a
percent of the original reads recovered from INSDC databases.

Figure 3. Relationship between taxonomic classification and read length, for the control samples (n=5) of
each dataset. Color indicates taxonomic level.

Figure 4. Relationship between alpha diversity and read length. Richness (q=0, top) was calculated as the
number of ASVs per sample. Inverse Simpson’s index (q=2, bottom) was calculated according to (Chao et
al., 2014). The diversity in control samples (n=5) was assessed for each read length.

Figure 5. Variance in community composition with increasing read lengths. The mean pairwise dissimilarity
between the 5 control samples in each study was assessed using Sorensen (a) and Bray-Curtis (b) dissimila-
rities.

Figure 6. Information loss from shorter read lengths. For each dataset, Mantel tests between the Sorensen
(a) and Bray-Curtis (b) dissimilarities 200-bp reads and each shorter read length evaluated the correlation
in microbial communities between shorter read lengths and the most information-rich version of the dataset
(200 bpp).

Figure 7. Outcome of statistical tests comparing control and disturbed communities for each dataset, across
read lengths. Kruskall-Wallis tests (top) evaluated differences in richness and inverse Simpson’s index between
the control and recently-disturbed (1 day, n=5 for each time point) for each study. Similarly, PERMANOVA
tests (bottom) evaluated differences in the community composition between control and recently-disturbed
samples using Sorensen and Bray-Curtis dissimilarities.
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