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Abstract

Predicting precipitation 8 80 accurately is crucial for understanding water cycles, paleoclimates, and hydrological applica-
tions. Yet, forecasting its spatio-temporal distribution remains challenging due to complex climate interactions and extreme
events. We developed a method combining spatio-temporal clustering and deep learning neural networks to improve multi-
site, multi-year precipitation & 180 predictions. Using a comprehensive dataset from 33 German sites (1978-2021), our model
considers precipitation 8 80 and its controlling factors, including precipitation and temperature distribution. We applied the
K-means++ method for classification and divided data into training and prediction sets. The CNN[1](#fn-0002) model ex-
tracted spatial features, while the Bi-LSTM model focused on temporal features. Spatio-temporal clustering using K-means++
improved forecast accuracy and reduced errors. This study highlights the potential of deep learning and clustering techniques

for forecasting complex spatio-temporal data and offers insights for future research on isotope distributions.
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(a) Structure of Convolutional Neural Network.
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(b) The memory cell of LSTM.
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(c) Schematic diagram of CNN-Bi-LSTM forecasting model.

Fig. 1 The internal structure of the prediction model.
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Fig. 2 Isotope data volume statistics for major countries in all regions of the world.
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Fig. 3 Location of the study site.
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Fig. 4 Temporal distribution characteristics of the precipitation 8*20.
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Fig. 5 Spatiotemporal distribution characteristics of the precipitation 50 (Blue represents the

first cluster, red represents the second cluster).
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Fig. 6 Overall precipitation 520 forecasting.
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Fig. 7 Seasonal 580 forecasting.
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Fig. 8 K-means ++ clustering-based 50 forecasting.
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Fig. 9 Comparison of precipitation 880 forecasting models for station STUTTGART.
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(a) Spatiotemporal distribution characteristics of the precipitation §*¢0.
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(b) K-means ++ clustering-based §'20 forecasting.
Fig. 10 Joint forecasting results of K-means ++ clustering and CNN, Bi-LSTM and CNN- Bi-

LSTM models.



