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Abstract

This study proposed a matched field source localization method based on tensor decomposition. By considering the advantages

of tensors in multidimensional data processing, a three-dimensional tensor signal model of space-time-frequency is constructed,

and the signal subspace is estimated using high-order singular value decomposition (HOSVD). The source position is estimated

by matching the measured data tensor signal subspace with the replica field tensor signal subspace. The S5 event data of

SWellEx-96 is processed by the proposed tensor-based matched-field processing (TMFP). The comparison with the results of

conventional matched field processing (MFP) shows that TMFP has a better suppression effect on ambient noise under low

SNR and better source localization performance.

Tensor-based matched-field processing applied to the SWellEx-96 data

Fangwei Zhu1,2, Guangying Zheng1,2,3, Xiaowei Guo1,2,3, Fangyong Wang1,2,3, Shuanping Du1,2,3, and Lin-
lang Bai1,2,3

1 Science and Technology on Sonar Laboratory, Hangzhou, 310023, China

2 Hangzhou Applied Acoustics Research Institute, Hangzhou, 310023, China

3 Hanjiang National Laboratory, Wuhan, 430000, China

Email: 276454158@qq.com.

This study proposed a matched field source localization method based on tensor decomposition. By consid-
ering the advantages of tensors in multidimensional data processing, a three-dimensional tensor signal model
of space-time-frequency is constructed, and the signal subspace is estimated using high-order singular value
decomposition (HOSVD). The source position is estimated by matching the measured data tensor signal
subspace with the replica field tensor signal subspace. The S5 event data of SWellEx-96 is processed by the
proposed tensor-based matched-field processing (TMFP). The comparison with the results of conventional
matched field processing (MFP) shows that TMFP has a better suppression effect on ambient noise under
low SNR and better source localization performance.

Introduction : Acoustic source localization in an ocean waveguide is a subject of great interest. Localizing
an underwater source target can serve several applications, from marine biology to anti-submarine warfare
[1]. Matched field processing (MFP) [2-3] is the earliest and the most famous method for localizing the
underwater source target. MFP is based on matching the measured acoustic data with the dictionary of the
replica to estimate the source position. Given that MFP uses the prior information of the acoustic field,
MFP performs better than the traditional geometry locating methods. MFP is sensitive to the mismatch of
sound speed profile and geoacoustic parameters [4-6].
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Recently, tensor signal processing has been a subject of great interest. Tensor algebra, also known as
multilinear algebra, is a natural extension of classical linear algebra to high dimensions. It is a mathematical
theory that characterizes the linear relationship between multiple variables and multidimensional data. It
has been deeply studied and widely used in many fields, such as image processing, chemistry, and artificial
intelligence [7-10]. Tensor is a way of data representation and provides it with rich theoretical connotation.
The most crucial connotation is to develop effective tensor decomposition methods under multilinear theory,
such as Tucker decomposition and higher-order singular value decomposition (HOSVD) [9]. As the name
suggests, this decomposition is the expansion of singular value decomposition (SVD) under multilinear
algebra theory. Compared with SVD, HOSVD can suppress the noise in multidimensional data samples,
reducing the subspace estimation bias. Given this advantage, the HOSVD of tensor has been widely used
in array signal processing in the last decade [11-13], especially in applying polarization sensor array and
acoustic vector sensor array.

In a broad sense, matched field processing (MFP) can also be considered a beamformer. Thus, this study
uses the beamformer based on tensor decomposition for reference, and it uses the HOSVD of tensor for
matched field processing to improve the source localization performance.

Construction of the tensor signal model: A vertical line array with elements is used to receive the broadband
sound field; the element dimension, frequency dimension, and snapshot dimension can be expanded into a
third-order tensor (a snapshot is a sampling of all the elements in the time domain). The third-order tensor
received data can be expressed as the sum of the three-mode product of the array Green’s function tensor ,
the multi-snapshot source model , and the ambient noise tensor, as shown in Fig.1.

Fig. 1 The diagram of the tensor signal model.

, (1)

where denotes the number of array elements, denotes the number of frequency points, denotes the number
of sources, and denotes the number of snapshots. The elements in the array Green’s function tensor denote
the sound field Green’s function from the n-th element to the k-th source at the m-th frequency point.

Derivation for tensor-based matched field processing (TMFP) : The multidimensional space-time-frequency
signals received by the array are reconstructed into tensor signals. HOSVD decomposes the tensor signals to
solve the tensor signal subspace, and the position of the sound source is estimated by utilizing the matching
estimator. Since the matrix’s singular value decomposition (SVD) expanded in each tensor dimension can
further suppress the noise to obtain a more accurate signal subspace, the source localization accuracy is
improved.

Applying HOSVD [9] to the third-order tensor, as follows:

, (2)

Where is the kernel tensor of tensor, and are the tensor products of three dimensions, respectively.

Then, SVD is applied to the 3-mode expansion matrix of the tensor:

, (3)

, (4)

, (5)

where is the left singular matrix of the 1-mode expansion of the tensor, is the singular value matrix of the
1-mode expansion of the tensor, is the right singular matrix of the 1-mode expansion of the tensor, is the left
singular matrix of the 2-mode expansion of the tensor, is the singular value matrix of the 2-mode expansion
of the tensor, is the right singular matrix of the 2-mode expansion of the tensor, is the left singular matrix
of the 3-mode expansion of the tensor, is the singular value matrix of the 3-mode expansion of the tensor,
and is the right singular matrix of the 3-mode expansion of the tensor.

2
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By truncating the left singular matrix of the n-mode expansion of the tensor, the signal correlation matrix
is composed of the column vectors of the left singular matrices corresponding to the top M largest singular
values, that is, , , and . The noise correlation matrix is composed of the column vectors of the left singular
matrices corresponding to the remaining smaller singular values, that is, , , and .

Considering that the kernel tensor can be denoted as follows:

. (6)

The truncated kernel tensor can be expressed as follows:

, (7)

where is the kernel tensor of the truncated signal.

The third-order tensor output data can be approximately expressed as follows:

. (8)

Thus, the tensor signal subspace of the third-order tensor output data can be obtained, as follows:

. (9)

The ambiguity surface for source localization can be defined based on higher-order singular value decompo-
sition and inner tensor product. For the hypothesized source range and depth , the ambiguity surface for
source localization is defined as follows:

, (10)

where represents the inner product of the tensor in the third dimension, represents the normalized Green’s
function matrix, and represents the inner product of tensor and Green’s function matrix in the first and
second dimensions.

To compare the performance of TMFP and MFP, the normalized broadband MFP I [15] (based on sum-
mation) output of the Bartlett processor and broadband MFP II [16] resulting from maximum likehood
estimation, given by,

, (11)

, (12)

where is the Green’s function vector of the receiving array corresponding to the -th frequency point under
the hypothesized source range and depth ; is the number of frequency points; is the trace operation; is the
cross-spectral density matrices corresponding to the -th frequency point, which is expressed as follows:

, (13)

where is the -th snapshot data corresponding to the -th frequency point.

SWellEx-96 data results: The SWellEx96 experiment was conducted near San Diego, CA in the spring of
1996. A vertical line array (VLA) was used to record the acoustic field. The VLA contained 21 hydrophones
spanning a depth from 94 m to 212 m of the water column, spaced at 5.6 m.

In this section, we analyze the first 55 min of data recorded by the vertical line array after the start of
event S5, in which the two towed sources travelled along an isobath of a mildly sloping environment toward
the VLA at a distance from 8.6 km to 1.0 km. The depth corresponding to the shallow source was 9 m,
and the depth corresponding to the deep source was 54 m. The data corresponding to the shallow source
analyzed here involved three tonal signals at 109, 127, and 145 Hz. The data corresponding to the deep
source analyzed here applied three tonal signals at 112, 130, and 148 Hz.

In event S5, the data sampling frequency is 1500Hz, and the data analysis starts from the first minute
and is processed every 3 minutes. The duration of data intercepted in each processing is 54.6 s, and the

3
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intercepted data is divided into 9 snapshots. The adjacent snapshots overlapped by 50%, and the duration
of each snapshots was 10.9 s. According to the tensor construction method in Section 2.1, the data tensors
for shallow and deep sources are constructed with dimensions of 21×3×9.

For the replica field generation, the input water depth is approximately 216 m, the sound speed profile is
a typical downward refracting sound speed profile, and the marine environment parameters are available
online in Ref. 14. The normal mode program KRAKEN [17] was used to generate the acoustic field (or
Green functions) for the 21-element VLA with frequencies of 109, 112, 127, 130, 145, and 148Hz. Then, the
tensor-based MFP and conventional MFP I and MFP II are used to locate the shallow source and deep
source.

The comparisons of localization results for the SwellEx-96 towed sources with MFP I, MFP II and TMFP
are shown in Fig. 2.

Fig. 2a gives the variation in the range estimation errors of the shallow source versus time. The range
estimation errors are small for TMFP, MFP I and MFP II. Figure 2b shows the variation in the depth
estimation errors of the shallow source versus time. The depth estimation results by TMFP are similar to
that by MFP I and MFP II, and the depth estimation errors are less than 10m.

Fig. 2c gives the variation in the range estimation errors of the deep source versus time. TMFP can accurately
estimate the source range throughout the tow period studied, where as MFP I and MFP II has large errors
in range estimation at 1 and 13mins. Fig. 2d shows the variation in the depth estimation errors of the deep
source versus time. As the time changes, the range from source to VLA decreases, the depth estimation
results of TMFP, MFP I and MFP II show a gradual deepening trend, and the maximum depth estimation
error is up to 15m.

The reason is that the generation of replica field does not incorporate the bathymetry of real marine envi-
ronment, which leads to the depth estimate offset.

Comparing the processing results of Figs.2b and 2d, the processing results of TMFP, MFP I and MFP II
can accurately distinguish whether the source is a surface source or a submerged source.

By comparing the results of Fig. 2(a–d), the processing performance of TMFP is slightly better than that
of MFP I and MFP II for the VLA data in event S5.

Fig. 2 Comparison of localization results for the SwellEx96 towed sources with MFP I, MFP II and TMFP.
(a) Range estimation error and (b) depth estimation error for the shallow source; (c) Range estimation error
and (d) depth estimation error for the deep source.
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To illustrate the advantages of TMFP compared with MFP I and MFP II, we give the variation in range
and depth estimation ambiguity surface versus processing time of TMFP, MFP I and MFP II, respectively.
The data processing procedure is as follows:

(1) For segment data , the ambiguity surfaces , and can be obtained by applying TMFP, MFP I and MFP
II.

(2) The peak position of the ambiguity surfaces is found. The depth dimension ambiguity function and range
dimension ambiguity function corresponding to the peak position are extracted. and are for TMFP, and are
for MFP I, and are for MFP II.

(3) Based on the results of 19 times of processing, the ambiguity surfaces in depth and range for MFP I,
MFP II and TMFP are shown in Figs. 3 and 4, Fig. 3 shows the ambiguity surface for shallow source with
a depth of 9 m, Fig. 4 shows the ambiguity surface for deep source with a depth of 54 m.

Fig. 3 Variation in the ambiguity surface versus time for shallow source. The depth and range ambiguity
surfaces are shown for TMFP in (a) and (d) respectively, for MFP I in (b) and (e), and for MFP II in (c)
and (f), where the solid black line denotes the real source range and depth.

Fig. 4 Variation in the ambiguity surface versus time for deep source. The depth and range ambiguity

5
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surfaces are shown for TMFP in (a) and (d) respectively, for MFP I in (b) and (e), and for MFP II in (c)
and (f), where the solid black line denotes the real source range and depth.

Observing Figs. 3 and 4, comparing the depth estimation ambiguity surface of TMFP, MFP I and MFP II,
the main lobe width of depth estimation ambiguity surface for MFP II is the narrowest, but the background
interference of the ambiguity surface for TMFP is lower than for MFP I and MFP II, especially under
the condition of low signal-to-noise ratio (the range from source to VLA in the first 30min is large). The
suppression performance of TMFP on ambient noise is better than that of MFP I and MFP II.

Summary and conclusions: Comparing the range estimation ambiguity surface obtained by TMFP with the
range estimation ambiguity surface obtained by MFP I and MFP II, the main lobe width of range estimation
ambiguity surface for MFP II is the narrowest, but the background interference of the ambiguity surface
obtained by TMFP is lower than that obtained by MFP I and MFP II, and the suppression performance
of the ambient noise under a low signal-to-noise ratio is better. The reason is that the singular value
decomposition of the matrix expanded in each dimension of the tensor can obtain a more accurate tensor
signal subspace and then realize the suppression of the ambient noise.

This study draws on the advantages of tensors in multidimensional data processing and applies tensor
decomposition to broadband matched field sound source localization processing for the first time. A space-
time-frequency three-dimensional tensor signal model is constructed, and then a matched field sound source
localization method based on tensor decomposition is proposed. The performance of TMFP with MFP I
and MFP II is compared by processing the VLA data recorded in event S5 of SWellEx-96. The results show
that TMFP has a better suppression effect on ambient noise than MFP I and MFP II. Especially under
a low signal-to-noise ratio, given the advantage of tensor decomposition in signal subspace estimation, the
advantage of TMFP is more evident than that of MFP I and MFP II. Therefore, the TMFP processors could
be used in real applications because of better performance. Finally, it needs to be mentioned that one can
develop an adaptive TMFP with higher resolution (similar to MVDR beamformer) [18].
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