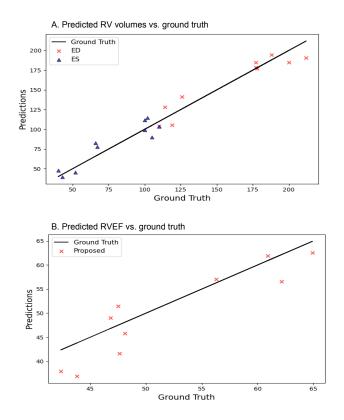
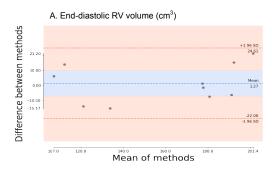
An attention-based deep learning method for right ventricular quantification using 2D echocardiography: feasibility and accuracy

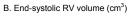
Polydoros Kampaktsis¹, Tuan A. Bohoran², Laura McLaughlin¹, Jay Leb S³, Zhonghua Liu⁴, Serafeim Moustakidis⁵, Athanasios Siouras⁵, Anvesha Singh⁶, Rebecca Hahn⁷, Gerry P. McCann⁶, and Archontis Giannakidis²

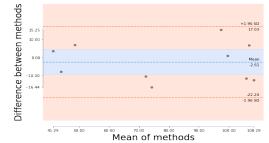
¹Columbia University Irving Medical Center
²Nottingham Trent University
³Columbia University Department of Radiology
⁴Columbia University Department of Biostatistics
⁵Panepistemio Thessalias Tmema Iatrikes
⁶University of Leicester Department of Cardiovascular Sciences
⁷Columbia University Division of Cardiology

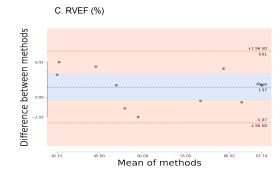
August 9, 2023


Abstract


Aim: To test the feasibility and accuracy of a new attention-based deep learning (DL) method for right ventricular (RV) quantification using 2D echocardiography (2DE) with cardiac magnetic resonance imaging (CMR) as reference. Methods and results: We retrospectively analyzed images from 50 adult patients (median age 51, interquartile range 32-62 42% women) who had undergone CMR within 1 month of 2DE. RV planimetry of the myocardial border was performed in end-diastole (ED) and end-systole (ES) for 8 standardized 2DE RV views with calculation of areas. The DL model comprised a Feature Tokenizer module and a stack of Transformer layers. Age, gender and calculated areas were used as inputs, and the output was RV volume in ED/ES. The dataset was randomly split into training, validation and testing subsets (35, 5 and 10 patients respectively). Mean RVEDV, RVESV and RV ejection fraction (EF) were 163 ± 70 ml, 82 ± 42 ml and $51\pm8\%$ respectively without differences among the subsets. The proposed method achieved good prediction of RV volumes (R ²=0.953, absolute percentage error [APE]=9.75\pm6.23\%) and RVEF (APE=7.24\pm4.55\%). Per CMR, there was 1 patient with RV dilatation and 3 with RV dysfunction in the testing dataset. The DL model detected RV dilatation in 1/1 case and RV dysfunction in 4/3 cases. Conclusions: An attention-based DL method for 2DE RV quantification showed feasibility and promising accuracy. The method requires validation in larger cohorts with wider range of RV size and function. Further research will focus on the reduction of the number of required 2DE to make the method clinically applicable.


Hosted file


Echocardiography.docx available at https://authorea.com/users/650724/articles/659083-anattention-based-deep-learning-method-for-right-ventricular-quantification-using-2dechocardiography-feasibility-and-accuracy


			4						
		Feature-Tokenizer					Toke	en	
X _{feature}		X(num	1)	W(num)	B (n)	um)	(7)		
ES/ED		-> cat	×		+	1	Cat tok		
Gender		> cat	×		+		cat toke	en	
Age		→ num	×		+	1	num tok	en	
Four C		→ num	×		+		num tok	en	
PLAX		→ num	×		+		num tok	en	-
PSAX AV		-> num	×		+		num tok	en	
PSAX Base		-> num	×		+		num tok	ten	
PSAX Distal		-> num	×		+		num tok	ten	
PSAX Mid		> num	×		+		num tok	ten	
RV Inflow		> num	×		+		num tok	en	
Sub C		-> num	×		+		num tok	ten	
		X(cat))	W(cat)	B(c	at)			
		Toke	n					Token	
		(TL		_				(T_0)	
Predicti									
	ion 🖌	ICI SI		([CLS]	
Fredicti	ion 🗲	[CLS]	i	(Norma	alise	(T;)	[CLS]	
Fredicti	ion 🗲	[CLS]		(Norm:	alise	(т _і)	[CLS]	
Fredicti	ion 🗲	[CLS]	i		Norm:	,	<u>(т_і)</u>	[CLS]	
Fredicti	i <mark>on</mark>		i		+	Head	<u>(т_і)</u>	[CLS]	
			i		Multi-I	Head		[CL ³]	
		[CLS]			Multi-I	Head	(T _i) →Add	[CLS]	h
		(cl.s)	i		Multi-I	Head		[CL ^S]	h
		(cl.s)			Multi-I	Head ention		[CL ^S]	_h
					Multi-H Self-Att	Head ention		[CLŠ]	_h
					Multi-F Self-Attu	Head ention alise			_h
		(cl.s)			Multi-H Self-Att	Head ention alise		(CLŠ)	h
					Multi-F Self-Attu	Head ention alise) h
					Multi-F Self-Attu Self-Attu Norma Feed Fo	Head ention alise	Add	[CLŠ]	_h
) <u>Tran</u> :	Multi-F Self-Attu	Head ention alise	Add		_h
				i)Tran:	Multi-F Self-Attu Self-Attu Norma Feed Fo	Head ention alise	Add	[CLS]) h

