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Abstract

This paper deals with the unique solvability of some inverse problems for nonlinear Navier-Stokes-Voigt (Kelvin-Voigt) system

with memory that governs the flow of incompressible viscoelastic non-Newtonian fluids. The inverse problems that study here,

consist of determining a time dependent intensity of the density of external forces, along with a velocity and a pressure of

fluids. As an additional information, two types of integral overdetermination conditions over space domain are considered.

The system supplemented also with an initial and one of the boundary conditions: stick and slip boundary conditions. For all

inverse problems, under suitable assumptions on the data, the global and local in time existence and uniqueness of weak and
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1. Introduction

The study of inverse problems of Newtonian hydrodynamics, in particular, for the Navier-
Stokes equations, as well as the related with them systems of heat convection and mag-
netohydrodynamics, have been studied by many authors who have proposed their various
approaches and methodologies. One of the main work is the monograph [39] of Prilepko and
et al., that included their previous works on the theory of the Navier-Stokes equations since
1989. By this approach, at first the original inverse problems reduce to an equivalent oper-
ator equations of second kind, and then use the fixed point principle. As another approach
to solving inverse problems of hydrodynamics one can refer to the works of Abylkairov [1]-
[2], who used the method of successive approximations. Other approaches which were used
the methods such as Carleman estimates and et al for solving inverse problems of hydro-
dynamics and PDE have been proposed by many authors, for example, we refer readers
to [8], [9]- [13], [17], [18], [19], [20], [21], [24], [29] and the references therein. However, all
above approaches are applicable only in the case when the corresponding direct problems are
unique solvable and their solutions have additional extra smoothness. But, inverse problems

E-mail address: konat−k@mail.ru, ajdossakir@gmail.com, kabasem@mail.ru.
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for non-Newtonian hydrodynamics are not sufficiently studied from a mathematical point of
view, see for instance [2,5,6,15,25,26], and in although they have important applications in
physical point of view. Thus, in this paper, we study the unique solvability of some inverse
source problems for a system of integro-differential Navier-Stokes-Voigt system (or so called
Kelvin-Voigt system) describing the motion of incompressible non-Newtonian fluids, which
taken into account viscoelastic properties. Due to this proposed approach, in this work, we
establish the unique solvability of the above inverse problems without using any information
about the solvability of the corresponding direct problems.

The statement of problems. Let Ω be a bounded domain in Rd, d ≥ 2, with a smooth
boundary ∂Ω, and QT = Ω×(0, T ), T is a fixed positive constant, and ΓT = ∂Ω×[0, T ]. This
paper devoted to recover an intensity of the external forces f(t) addition to a velocity u(x, t)
and a pressure p(x, t), from the system of nonlinear Navier-Stokes-Voigt equations with
memory governing the flows of incompressible viscoelastic fluids. More precisely, we study
the following inverse problems of determining the functions (u(x, t), p(x, t), f(t)), satisfying
the equations

ut − κ∆ut − ν∆u + (u · ∇)u−
tˆ

0

K(t− s)∆u(x, s)ds−∇p = f(t)g(x, t) in QT , (1.1)

divu(x, t) = 0 in QT , (1.2)
the initial condition

u(x, 0) = u0(x) in Ω, (1.3)
and one of the boundary conditions: the stick boundary condition

u(x, t) = 0 on ΓT (1.4)
or the slip boundary condition [28,36,37]:

un(x, t) = u · n = 0, curl u× n = 0, (x, t) ∈ ΓT (1.5)
and the overdetermination conditionˆ

Ω
uωdx = e(t), t ∈ [0, T ]. (1.6)

where un is the normal component of u(x, t) on ∂Ω, and n denotes the unit outward
normal vector to ∂Ω. Here the bold letters denote vector-valued functions and u(x, t) =
(u1, u2, ..., ud) and p(x, t) is a velocity field and a pressure, respectively, and ν and κ > 0 are
coefficients of the kinematic viscosity and relaxation of the fluids, respectively. The vector-
function F(x, t) := f(t)g(x, t) is the density of external force with unknown intensity f(t),
and u0(x), g(x, t) and K(t) are given functions.

Moreover, instead of the overdetermination condition (1.6) we will also consider the conditionˆ
Ω

uσ(x)dx = e(t), with σ(x) = ω − κ∆ω, t ∈ [0,T], (1.7)

It is obvious that (1.7) can be written asˆ
Ω

(uω + κ∇u∇ω)dx = e(t), t ∈ [0, T ], in the case (1.4) (1.8)
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and ˆ
Ω

(uω + κcurl u curlω)dx = e(t), t ∈ [0, T ], in the case (1.5). (1.9)

and we will use (1.8) and (1.9) instead of (1.7). Thus, the inverse problems that we inves-
tigate in this paper are: (1.1)-(1.4), (1.6) (Inverse problem I); and (1.1)-(1.3), (1.5), (1.6)
(Inverse problem II); (1.1)-(1.4), (1.7) (Inverse problem III); (1.1)-(1.3), (1.5), (1.7) (Inverse
problem IV).
The system of equations (1.1)-(1.2) is called Navier-Stokes-Voigt system with memory or
Kelvin-Voigt system with memory [23], [41], [40], [42], and it describes the flows of an
incompressible non-Newtonian fluids with viscoelastic and relaxation properties. For the
physical justifications of this models and derivation of the mathematical equation we refer
to the works of Oskolkov [34]- [35], Barnes [7], Joseph [22] and Zvyagin, Turbin [42] and the
references therein.
The direct problems for the system (1.1)-(1.2) and for their modifications in the various
cases of the memory term, have been studied in many papers as [34], [23], [42], [41], and
et al., where the existence and uniqueness results for weak and strong solutions were estab-
lished. The study of direct problems is important and they model the process under known
information on physical parameters affecting to the processes. However, in the real, there
is might a situation, that one or some of such parameters are unknown or unacceptable for
direct measurement during the process, for instance, they located underground or in a high
temperature media, and et al [39]. The problems determining such unknown parameters
under additional information on solutions are called inverse problems, therefore to investi-
gation of them is also important in both of mathematical and physical point, and they have
many applications in the various of branches of sciences and technology. Some inverse prob-
lems recovering time depended source for the system (1.1) without the memory term have
been studied in [5], [15], [27], [30]. An inverse problem recovering a source f(x) depending
on space variable for the linear system (1.1) (without convective term) recently has been
investigated in [26]. An inverse problem for the linear Navier-Stokes-Voigt system (1.1),
i.e. neglecting the convective term (u · ∇)u, recently has been studied by authors in [27],
and due to the overdetermination condition (1.6), the uniqueness and existence of solutions
were locally established even for linear case. The main goal of this paper is to establish the
questions of global and local in time existence and uniqueness of weak and strong solutions
to the inverse problems I-IV.

2. Preliminaries

In this section, we introduce the main functional spaces and some useful inequalities related
to the boundary conditions (1.4) and (1.5) from [28]. We distinguish vectors from scalars
by using boldface letters. For functions and function spaces we will use this distinction as
well. The symbol C will denote a generic constant - generally a positive one, whose value
will not be specified; it can change from one inequality to another. We denote by L2(Ω) the
usual Lebesgue space of square integrable vector-valued functions on Ω, and by Wm,2(Ω) the
Sobolev space of functions in L2(Ω) whose weak derivatives of order not greater than m are
in L2(Ω). The norm and inner product in L2(Ω) denoted by ‖ · ‖2,Ω and (·, ·)2,Ω, respectively.
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Let us introduce the function spaces regarding to the slip and stick boundary conditions
(1.4) and (1.5), respectively (see [32]:
H(Ω) ≡ {v ∈ L2(Ω) : div v = 0, v|∂Ω = 0}; Hn(Ω) ≡ {v ∈ L2(Ω) : div v = 0, vn|∂Ω = 0};
H1(Ω) ≡ {v ∈W1

2(Ω) : div v = 0, v|∂Ω = 0}; H1
n(Ω) ≡ {v ∈W1

2(Ω) : div v = 0, vn|∂Ω = 0};
H2(Ω) ≡ {v ∈ H1(Ω) ∩W2,2(Ω)}; H2

n(Ω) ≡ {v ∈ H1
n(Ω) ∩W2,2(Ω) : (curl v× n)|∂Ω = 0}.

and for the simplicity, we use the following common notation for both cases

V :=
{

H(Ω), in the case (1.4);
Hn(Ω), in the case (1.5), Vi :=

{
Hi(Ω), in the case (1.4);
Hi

n(Ω), in the case (1.5), i = 1, 2. (2.1)

The inner product and the norm in H1
n(Ω) is (rot v, rot u)2,Ω and ‖v‖H1

n(Ω) := ‖curl v‖2,Ω,
respectively. According to [28, 32] and the references cited in them (see for example [16]),
for any function u ∈ H1

n(Ω) (for H(Ω) is well known from Navier-Stokes theory), the usual
Ladyzhenskaya and Poincare inequalities and following inequalities are hold:
Poincare inequality

‖u‖2,Ω ≤ C1(Ω) ‖∇u‖2,Ω , u ∈ H1
n(Ω); (2.2)

N1(Ω) ‖u‖W1,2(Ω) ≤ ‖curl u‖2,Ω ≤ N2(Ω) ‖u‖W1,2(Ω) , ∀u ∈ Hn(Ω); (2.3)
N3(Ω) ‖u‖W2,2(Ω) ≤ ‖∆u‖2,Ω = ‖curl curl u‖2,Ω ≤ N4(Ω) ‖u‖W2,2(Ω) , ∀u ∈ H2

n(Ω); (2.4)
Ladyzhenskaya’s inequalities [31,32]

‖u‖4
4,Ω ≤ 2 ‖u‖2

2,Ω ‖∇u‖2
2,Ω ; (2.5)

in case d = 2, and
‖u‖4

4,Ω ≤ (4/3)
3
2 ‖u‖2,Ω ‖∇u‖3

2,Ω ; (2.6)
in case d = 3, and

‖u‖6,Ω ≤ (48)
1
6 ‖∇u‖2,Ω , d = 3. (2.7)

Let us introduce now the bilinear and continuous form a on H1, associated with the operator
−∆:

a(v,u) =
{

(∇v,∇u)2,Ω , ∀v,u ∈ H1(Ω), in the case (1.4)
(curl v, curl u)2,Ω , ∀v,u ∈ H1

n(Ω), in the case (1.5) (2.8)

It is clear that a(u,u) = ‖∇u‖2,Ω = ‖u‖H1(Ω) is a norm on H1(Ω), which is equivalent
to W1,2(Ω)-norm. In particular, due to Fridrichs inequality and (2.3), in H1

n the norm
‖u‖H1

n(Ω) = ‖curl u‖2,Ω is equivalent to the norm ‖u‖W1,2(Ω), and therefore equivalent to the
norm ‖∇u‖2,Ω.

Thus, a defines an isomorphism A from H1(Ω) to H−1(Ω),
〈Av,u〉 ≡ a(v,u), ∀v,u ∈ H1(Ω), (2.9)

where 〈·, ·〉 denotes the pairing of H1 and H−1. There hold the following continuous inclusions
H1(Ω) ↪→ L2(Ω) ↪→ H−1(Ω), (2.10)

where each of the first two spaces is dense in the next one.

It follows from (2.4) also that in H2
n the norm ‖∆u‖2,Ω = ‖curl curl u‖2,Ω is equivalent to

the norm ‖u‖W2,2(Ω).
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Regarding to the sliding condition (1.5), we have the following Green formulas (see [28,32]):

(−∆v,u)2,Ω = − (∇div v,u)2,Ω +
(
curl2 v,u

)
2,Ω

= −
ˆ
∂Ω

div v · un dS+

(div v,div u)2,Ω +
ˆ
∂Ω

u · (curl v× n) dS + (curl v, curl u)2,Ω = (curl v, curl u)2,Ω

(2.11)
in the case d = 3, and

(−∆v,u)2,Ω = (div v,div u)2,Ω +
(
curl (curl v),u

)
2,Ω

=ˆ
∂Ω

(curl v× n) u dS + (curl v, curl u)2,Ω = (curl v, curl u)2,Ω ,
(2.12)

in the case d = 2, where curlϕ is the vector (ϕx2 ,−ϕx1)2,Ω for the scalar function ϕ.

The following nonlinear Gronwall’s inequality will be used to establish the first and second
estimates below.

Lemma 1. If y : R+ −→ [0,∞) is a continuous function such that

y(t) ≤ C1

ˆ t

0
yµ(s)ds+ C2, t ∈ R+, µ > 1

for some positive constants C1 and C2, then

y(t) ≤ C2
(
1− (µ− 1)C1C

µ−1
2 t

)− 1
µ−1 for 0 ≤ t < tmax := 1

(µ− 1)C1C
µ−1
2

.

Proof. See e.g. [4]. �

3. Inverse problems I-II

In this section we work with the inverse problems I and II: define a weak and a strong
solutions; reduce them to the corresponding an equivalent nonlocal problems which we will
study in the next sections.

Definition 1. The pair of functions (u(x, t), f(t)) is a weak solution to the inverse problem
(1.1)-(1.4), (1.6) and (1.1)-(1.3), (1.5), (1.6), if:

(1) u ∈ L∞(0, T ; V1(Ω)) ∩ L2(0, T ; V1(Ω)), ut ∈ L2(0, T ; V1(Ω)), f(t) ∈ L2[0, T ];
(2) u(0) = u0 a.e. in Ω;
(3) For every ϕϕϕ ∈ V1(Ω) and for a.a. t ∈ (0, T ) holds

d

dt

(
(u(t), ϕ)2,Ω + κa (u(t), ϕ)

)
+ νa (u(t), ϕ) + ((u(t) · ∇)u(t), ϕ)2,Ω =

f(t) (g(t), ϕ)2,Ω −
tˆ

0

K(t− s)a (u(s), ϕ) ds.
(3.1)

Definition 2. The pair of functions (u(x, t), f(t)) is called a strong solution to the inverse
problems (1.1)-(1.4), (1.6) and (1.1)-(1.3), (1.5), (1.6), if:
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(1) u ∈ L∞(0, T ; V1(Ω)∩V2(Ω))∩L2(0, T ; V1(Ω)∩V2(Ω)), ut ∈ L2(0, T ; V2(Ω)), f(t) ∈
L2[0, T ];

(2) Each equation holds in the distribution sense in the their corresponding domain.

Remark 1. The pressure p, as usual, was not included in the definition of a weak solution.
It can be uniquely recovered from equation (1.2) by using de Rhaam’s lemma, after existence
of u, f as in [3].

3.1. Reformulation of problem: an equivalent nonlocal problems. Assume that data
of the problem satisfy the following conditions

u0(x) ∈ V1(Ω); (3.2)
∃k0 ∈ R : 0 < k0 <∞, such that |g0(t)| =

∣∣∣(g(t), ω)2,Ω

∣∣∣ ≥ k0 > 0, ∀t ≥ 0; (3.3)
g(x, t) ∈ L∞(0, T ; L2(Ω)); (3.4)

ω(x) ∈ V1(Ω), e(t) ∈ W 1
2 ([0, T ]); (3.5)

(u0, ω)2,Ω = e(0); (3.6)
K(t) ∈ L2([0, T ]) : ‖K(t)‖L2([0,T ]) ≡ K0 <∞. (3.7)

Let us now multiply (1.1) by ω(x) and integrate over Ω. Integrating by parts and using (1.6)
and the assumption (3.3), we define f(t)

f(t) = 1
g0(t) (e′(t) + κa (ut, ω) +

νa (u, ω)− ((u · ∇)ω,u)2,Ω +
tˆ

0

K(t− s)a (u, ω) ds

 := F (u, t).
(3.8)

Hence, substituting (3.8) into (1.1), we reformulate the problem: Find u and p from the
nonlocal direct problem for the system

ut − κ∆ut − ν∆u + (u · ∇)u−
tˆ

0

K(t− s)∆u(s)ds−∇p = F (u, t)g(x, t),

divu(x, t) = 0, (x, t) ∈ QT ,

(3.9)

supplemented with the initial and boundary conditions (1.3) and (1.4) or (1.5), where
F (u, t) = f(t) given by (3.8). The following lemma is valid.

Lemma 2. Assume that the conditions (3.3)-(3.6) are fulfilled. Then the solvability of the
inverse problem (1.1)-(1.4), (1.6) ((1.1)-(1.3), (1.5), (1.6)) is equivalent to the nonlocal
direct problem (3.9), (1.3)-(1.4) ((3.9), (1.3), (1.5)), i.e. if (u, p, f) is a solution of the
inverse problem (1.1)-(1.4), (1.6) ((1.1)-(1.3), 1.5), (1.6)), then the pair (u, p) is the solution
of the nonlocal direct problem (3.9), (1.3)-(1.4) ((3.9), (1.3), (1.5)), and vise versa, if the
pair (u, p) is a solution of the nonlocal direct problem (3.9), (1.3)-(1.4) ((3.9), (1.3), (1.5)),
then this pair (u, p) together with the function f(t) defined by (3.8) gives a solution of the
inverse problem (1.1)-(1.4), (1.6) ((1.1)-(1.3), (1.5), (1.6)) .

Remark 2. A weak and strong solution to the problem (1.1)-(1.4), (3.8) ((1.1)-(1.3), (1.5),
(3.8)) can be defined analogically as in Definition 1 and 2.
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Proof. In fact, the first part of the proof has been done when we derived (3.9) from (1.1)-
(1.2) and (1.6). Let us prove the second part, i.e. let (u, p) be a solution of the nonlocal
direct problem (3.9), (1.3)-(1.4) ((3.9), (1.3), (1.5)) with F (u, t) = f(t) defined by (3.8). It
means that (v, f) satisfies the equations (1.1)-(1.4) ((1.1)-(1.3), (1.5)). In order to complete
the proof, it is enough to prove that u satisfies the overdetermination condition (1.6).

Let us assume that for contradiction, i.e. the overdetermination condition (1.6) doesn’t hold.
Suppose that

(u,ω)2,Ω = e1(t), t ≥ 0. (3.10)
where e1(t) , e(t) for all t ≥ 0. Thus, by the conditions (3.5), (3.6) and the definition of
solution, we have e1(t) ∈ W 1

2 ([0, T ]) and
e1(0) = (u0,ω)2,Ω = e(0). (3.11)

Multiply (3.9) by ω and integrating by parts and using (3.10) and (3.8), we get

e′1(t)+κa (ut, ω)+νa (u, ω)− ((u ·∇)ω,u)2,Ω +
tˆ

0

K(t−s)a (u, ω) ds = F (t,u)g0(t), (3.12)

where F (t,v) is defined in (3.8). Plugging (3.8) into (3.12) we obtain

e′1(t) = e′(t). (3.13)

It follows from the Cauchy problem (3.13) and (3.11) that e1(t) ≡ e(t) for all t > 0, which
contradicts to above assumption. �

4. Existence of weak solutions of the nonlocal problems
(3.9), (1.3)-(1.4) and (3.9), (1.3), (1.5)

By Lemma 2, we will study the nonlocal problems (3.9), (1.3)-(1.4) and (3.9), (1.3), (1.5)
instead of original inverse problems I: (1.1)-(1.4), (1.6) and II: (1.1)-(1.3), (1.5), (1.6), re-
spectively.

Theorem 1. Assume that the conditions (3.2)-(3.7) are fulfilled and there exists a positive
constant m such that

κ

k2
0

sup
t∈[0,T ]

‖g(t)‖2
2,Ω ‖ω‖

2
V1(Ω) ≤ m < 2. (4.1)

Then there exist T1 ∈ (0, T ] and at least one weak solution to the nonlocal direct problems
(3.9), (1.3)-(1.4) and (3.9), (1.3), (1.5) in QT1, where T1 is defined at (4.19) below. More-
over, weak solutions satisfy the estimate

‖u‖2
L∞(0,T1;L2(Ω)∩V1(Ω)) + ‖u‖2

L2(0,T1;V1(Ω)) + ‖ut‖2
L2(0,T1;L2(Ω)∩V1(Ω)) ≤ C, (4.2)

where C is a constant depending on data of the problem.

Remark 3. The assumption (4.1) has been appeared due to the obtaining a priory estimates
regarding to the overdetermination condition (1.6) with a general form. It can be removed if
consider the overdetermination condition (1.7) with a special testing function σ(x) = ω−κ∆ω
instead of (1.6) or with the special RHS g(x, t) = σ(x), see Theorem 4 and 8, below.
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Proof. We use Galerkin’s method, i.e. first construct approximate solutions, establish some
a priori estimates, and passage to the limit.

4.1. Galerkin’s approximations. Let {ϕk}k∈N be an orthonormal family in L2(Ω) formed
by functions of V whose linear combinations are dense in V1(Ω). Given n ∈ N, let us
consider the n-dimensional space Xn spanned by ϕk, k = 1, . . . , n, respectively. For each
n ∈ N, we search for approximate solutions to the problem (1.1)-(1.4), (3.8) in the form

un(x, t) =
n∑
j=1

cnj (t)ϕj(x), ϕj ∈ Xn, (4.3)

where unknown coefficient cnj (t), j = 1, ..., n are defined as solutions of the following system
of ordinary differential equations (ODE) derived from

d

dt

(
(un, ϕk)2,Ω + κa (un, ϕk)

)
+ νa (un, ϕk)− ((un · ∇)ϕk,un)2,Ω =

−
tˆ

0

K(t− s)a (un, ϕk) ds+ F (un, t) (g(x, t), ϕk)2,Ω , k = 1, 2, . . . , n,
(4.4)

where

F1(un, t) = 1
g0

e′ + κa (unt , ω) + νa (un, ω)− ((un · ∇)ω,un)2,Ω +
tˆ

0

K(t− s)a (un, ω) ds

 .
(4.5)

The system (4.4) is supplemented with the following Cauchy data
un(0) = un0 in Ω, (4.6)

where
un0 =

n∑
j=1

(u0, ϕj)2,Ω ϕj

is sequence in L2(Ω) ∩V1(Ω) respectively such that
un0 → u0(x) strong as n→∞ in L2(Ω) ∩V1(Ω). (4.7)

According to a general theory of ordinary differential equations, the system (4.4)-(4.6) has
a solution cnj (t) in [0, t0]. By a priori estimates which we shall establish below, the solution
can be extended to [0, T0] ⊂ [0, T ], where [0, T0] is a maximal time interval, such that a priori
estimates are hold.

4.2. A priori estimates. Multiply the k−th equation of (4.4) by cnk(t) and d cnk (t)
d t

and sum
up by k from 1 to n. The we have

1
2
d

dt

(
‖un‖2

2,Ω + κ ‖un‖2
V1(Ω)

)
+ ν ‖un‖2

V1(Ω) =

−
tˆ

0

K(t− s)a (un(s),un(t)) ds+ F1(un, t) (g,un)2,Ω

(4.8)
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ν

2
d

dt
‖un‖2

V1(Ω) + ‖unt (t)‖2
2,Ω + κ ‖unt (t)‖2

V1(Ω) =

−
tˆ

0

K(t− s)a (un(s),unt (t)) ds+ F1(un, t) (g,unt )2,Ω + ((un · ∇) unt ,un)2,Ω ,
(4.9)

respectively. Adding (4.8) and (4.9), we obtain

1
2
d

dt

(
‖un‖2

2,Ω + (ν + κ) ‖un‖2
V1(Ω)

)
+ ν ‖un‖2

V1(Ω) + ‖unt (t)‖2
2,Ω + κ ‖unt (t)‖2

V1(Ω) =

−
tˆ

0

K(t− s)a (un(s),un(t)) ds−
tˆ

0

K(t− s)a (un(s),unt (t)) ds+

F1(un, t) (g,unt )2,Ω + F1(un, t) (g,un)2,Ω + ((un · ∇) unt ,un)2,Ω :=
5∑
i=1

Ii.

(4.10)

Next, using Hölder and Young inequalities with suitable powers, we estimate terms on the
right hade side of (4.10).

|I1| ≤
ν

2 ‖u
n‖2

V1(Ω) + K2
0

2ν

tˆ

0

‖un(s)‖2
V1(Ω) ds; (4.11)

|I2| ≤
ε1

4 ‖u
n
t ‖

2
V1(Ω) + K2

0
ε1

tˆ

0

‖un(s)‖2
V1(Ω) ds; (4.12)

|I3| ≤ |F1| ‖g‖2,Ω ‖u
n‖2,Ω ≤

‖g‖2,Ω ‖un‖2,Ω

k0

[
|e′(t)|+ κ ‖unt ‖V1(Ω) ‖ω‖V1(Ω) +

ν ‖un‖V1(Ω) ‖ω‖V1(Ω) + ‖un‖2
4,Ω ‖ω‖V1(Ω) + ‖ω‖V1(Ω)K0


tˆ

0

‖un(s)‖2
V1(Ω) ds


1
2
 ≤

(
ε2

2 + ε3

2

)
‖un‖2

2,Ω + κ2

2ε2k2
0
‖g‖2

2,Ω ‖ω‖
2
V1(Ω) ‖u

n
t ‖

2
V1(Ω) + 1

2ε3k2
0
‖g‖2

2,Ω×|e′(t)|2 + ‖ω‖2
V1(Ω)

ν2 ‖un‖2
V1(Ω) + C2 ‖un‖4

V1(Ω) +K2
0

tˆ

0

‖un(s)‖2
V1(Ω) ds


 ,

(4.13)

|I4| ≤
(
ε2

2 + ε3

2

)
‖unt ‖

2
2,Ω + κ2

2ε2k2
0
‖g‖2

2,Ω ‖ω‖
2
V1(Ω) ‖u

n
t ‖

2
V1(Ω) +

‖g‖2
2,Ω

2ε3k2
0
×|e′(t)|2 + ‖ω‖2

V1(Ω)

C2 ‖un‖4
V1(Ω) + ν2 ‖un‖2

V1(Ω) +K2
0

tˆ

0

‖un(τ)‖2
V1(Ω) dτ


 , (4.14)

|I5| ≤ ‖unt ‖V1(Ω) ‖u
n‖2

4,Ω ≤
ε1

4 ‖u
n
t ‖

2
V1(Ω) + C2(Ω)

ε1
‖un‖4

V1(Ω) . (4.15)
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Plugging (4.11)-(4.15) into (4.10), we get
d

dt

(
1 + ‖un‖2

2,Ω + (ν + κ) ‖un‖2
V1(Ω)

)
+ ν ‖un‖2

V1(Ω) + α ‖unt (t)‖2
2,Ω + β ‖unt (t)‖2

V1(Ω) ≤

C1

tˆ

0

(
1 + ‖un‖2

2,Ω + (ν + κ) ‖un‖2
V1(Ω)

)
ds+ C2

(
1 + ‖un‖2

2,Ω + (ν + κ) ‖un‖2
V1(Ω)

)2
+

(C3 + C4(t))
(
1 + ‖un‖2

2,Ω + (ν + κ) ‖un‖2
V1(Ω)

)
+ C5(t),

(4.16)

where α := 2
(
1− ε2+ε3

2

)
; β := 2

(
κ− ε1

2 −
κ3

ε2k2
0

sup
t∈[0,T ]

‖g‖2
2,Ω ‖ω‖

2
V1(Ω)

)
;

C1 := 1
ν + κ

(
K2

0
ν

+ 2K2
0

ε1
+ 2K2

0
ε3k2

0
sup
t∈[0,T ]

‖g‖2
2,Ω ‖ω‖

2
V1(Ω)

)
;

C2 := 2C2

(ν + κ)2

(
1
ε1

+ 1
ε3k2

0
sup
t∈[0,T ]

‖g‖2
2,Ω ‖ω‖

2
V1(Ω)

)
;

C3 := 1
ν + κ

(
ε3 + ε2 + 2ν2

ε3k2
0

sup
t∈[0,T ]

‖g‖2
2,Ω ‖ω‖

2
V1(Ω)

)
;

C4(t) := 2
ε3k2

0
sup
t∈[0,T ]

‖g‖2
2,Ω |e

′(t)|2 .

Now we choose εi, i = 1, 2, 3 such that α, β > 0, and Ci to be finite. It is possible because
(4.1):

κ

k2
0

sup
t∈[0,T ]

‖g(t)‖2
2,Ω ‖ω‖

2
V1(Ω) ≤ m < 2,

but ε1, ε2 cannot be chosen such that m > 2, because ε2 < 2 due to α > 0. Thus, choosing
εi, i = 1, 2, 3 with suitable values, and integrating (4.16) by s from 0 to t, and using (4.7),
we obtain the following integral inequality

z(t) + ν ‖un‖2
L2(0,T ;V1(Ω)) + α ‖unt (t)‖2

L2(QT ) + β ‖unt (t)‖2
L2(0,T ;V1(Ω)) ≤

C5

tˆ

0

z2(s)ds+ C6,
(4.17)

where z(t) := 1 + ‖un‖2
2,Ω + (ν + κ) ‖un‖2

V1(Ω) and

C5 = max {C1T + C3;C2} ; C6 = ‖u0‖2
2,Ω + (κ+ ν) ‖u0‖2

V1(Ω) +
T̂

0

|C4(t)|dt.

Then, applying the Lemma 1 for the function z(t), we obtain from (4.17)

z(t) ≤ C6

1− C5C6t
≡ K1 <∞ (4.18)

for
0 ≤ t ≤ T1 < T? := 1

C5C6
. (4.19)
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Thus, for all t ≤ T1 < T?, (4.18) yields

‖un‖2
2,Ω + (ν + κ) ‖un‖2

V1(Ω) ≤ K1. (4.20)

Applying the estimate (4.20) to the right hand side of (4.17) and taking the supremum by
t ∈ [0, T1], we obtain the following estimate

sup
t∈[0,T1]

(
‖un‖2

2,Ω + ‖un‖2
V1(Ω)

)
+ ‖un‖2

L2(0,T1;V1(Ω)) + ‖unt (t)‖2
L2(QT1 ) +

‖unt (t)‖2
L2(0,T1;V1(Ω)) ≤ C := C(ν, κ, α, β, T1, K1, C5, C6).

(4.21)

4.3. Passage to the limit. By means of reflexivity and up to some subsequences, the
estimate (4.2) implies that

un ⇀ u weakly in L2(0, T1; V1(Ω)), as n→∞, (4.22)
un ⇀ u weak-∗ in L∞(0, T1; V1(Ω)), as n→∞, (4.23)
unt ⇀ ut weakly in L2(0, T1; V1(Ω)), as n→∞. (4.24)

On the other hand, from the estimate (4.2), we have
un is uniformly bounded in L2(0, T1; W1,2

0 (Ω)), (4.25)
unt is uniformly bounded in L2(QT1). (4.26)

Then, due to the compact embedding W1,2
0 (Ω) ↪→↪→ L2(Ω), we can use the Aubin-Lions

compactness lemma so that
un −→ u strongly in L2(0, T1; L2(Ω)), as n→∞. (4.27)

Let be ζ(t) ∈ C∞0 ([0, T1]). Multiplying the equation of (4.4) by ζ(t), integrating the resulting
equations between 0 and T1, we obtainˆ

QT1

unt · ϕkζ dxdt+ κ
ˆ T1

0
a (unt , ϕkζ) dt+

ˆ
QT1

(un · ∇)un · ϕkζ dxdt+

ν

ˆ T1

0
a (un, ϕkζ) dt =

T1ˆ

0

τˆ

0

K(τ − s)a (un, ϕkζ) dsdτ +
ˆ T1

0
F (un, t)

ˆ
Ω

gϕkζ dx dt
(4.28)

for k ∈ {1, . . . , n}. Then, fixing k, we can pass in equation (4.28) to the limit n → ∞, by
using the convergence results (4.22)-(4.27). Then, we obtainˆ

QT1

ut · ϕkζ dxdt+ κ
ˆ T1

0
a (ut, ϕkζ) dt+

ˆ
QT1

(u · ∇)u · ϕkζ dxdt+

ν

ˆ T1

0
a (u, ϕkζ) dt =

T1ˆ

0

τˆ

0

K(τ − s)a (u, ϕkζ) dsdτ +
ˆ T1

0
F (u, t)

ˆ
Ω

gϕkζ dx dt
(4.29)

for k ∈ {1, . . . , n}.

Here, for the convective term we have
(un · ∇)un ⇀ (u · ∇)u weakly in L2(QT1), as n→∞. (4.30)
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In fact, writing the corresponding integrals in (4.30) asˆ
QT1

[(un · ∇)un − (u · ∇)u] dxdt =
ˆ
QT1

[(un − u) · ∇] un dxdt−
ˆ
QT1

(u · ∇)(un − u) dxdt,

we see that the first right-hand side integral converges to zero by application of Hölder’s
inequality together with (4.2) and (4.27):ˆ

QT1

[(un − u) · ∇] un dxdt ≤‖un − u‖L2(QT1 )‖un‖L2(0,T1;V1(Ω)) ≤
√
C‖un − u‖L2(QT1 ) −→ 0, as n→∞,

The second integral converges to zero, due to (4.22) and because u ∈ L2(QT1). Likewise, the
nonlocal term

T1ˆ

0

F (u, t)
ˆ

Ω

gϕkζ dx =
T1ˆ

0

1
g0(t)

[
e′(t) + κa(unt , ω) + νa(un, ω)− ((un · ∇)ω,un)2,Ω +

tˆ

0

K(t− s)a (un(s), ω)
ˆ

Ω

gϕkζ dxds

⇀
T1ˆ

0

F (u, t)
ˆ

Ω
gϕkζ dxdt in L2([0, T1]) as n→∞.

It is obvious that the second, third and fifth terms due to the (4.24), and (4.22), and (4.23),
respectively. The fourth term converges due to (4.30), and the first term is trivial. By
linearity, the equation (4.29) holds for any finite linear combination of ϕ1, . . . , ϕn and by a
continuity argument, they are still true for any ϕζ ∈ L2(0, T1; V1(Ω)) with ζ ∈ C∞0 ([0, T1]).
Moreover, all terms in the equation (4.29) is absolutely continuous as functions of t defined
by integrals over [0, T1]. So we obtain the following equalities which hold for a.e. t ∈ [0, T1]
and for any ϕ ∈ V , respectivelyˆ

Ω

[
ut(t) +

(
u(t) · ∇

)
u(t)

]
· ϕdx + νa (u(t), ϕ) + κa (ut(t), ϕ) =

tˆ

0

K(t− s)a (u(s), ϕ) ds+ F (u(t), t)
ˆ

Ω

g(t)ϕdx.
(4.31)

Therefore, the proof of Theorem 1 is completed. �

5. Existence of strong solutions of inverse problems I and II

Theorem 2. Let all conditions of Theorem 1 be fulfilled. In addition, assume that
u0(x) ∈ V1(Ω) ∩V2(Ω). (5.1)

Then the nonlocal direct problems (3.9), (1.3)-(1.4) and (3.9), (1.3), (1.5) have at least one
strong solution (u(x, t), p(x, t)) in QT1. Therefore, corresponding inverse problems (1.1)-
(1.4), (1.6) and (1.1)-(1.3), (1.5), (1.6) have at least one strong solution and the estimate
is hold

‖u‖2
L∞(0,T1;V1∩V2(Ω)) + ‖ut‖2

L2(0,T1;V1∩V2(Ω)) ≤ C <∞. (5.2)
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where T1 defined by (4.19) and C is positive constant depending on data of the problem.

Proof. We prove the existence of a strong solutions to these problems by using the special
basis, associated to the eigenfunctions of the spectral problem for Stokes operator

Aϕk := −P∆ϕk = λk ϕk, ϕk(x) ∈ H1(Ω) ∩H2(Ω), (5.3)

in the case (1.4), i.e. for problem (3.9), (1.3)-(1.4), where P : L2(Ω) → H(Ω) is the Leray
projector, and

Aϕk := −∆ϕk = −curl curlϕk = λk ϕk, ϕk ∈ H1
n(Ω) ∩H2

n(Ω) (5.4)

in the case (1.5), for problem (3.9), (1.3), (1.5). The latter is due to the fact (see [32])

(∆ϕ,∇p)2,Ω = 0 for any ϕ ∈ H1
n ∩H2

n(Ω), p ∈ W 1,2(Ω), and L2(Ω) = Hn(Ω)⊕G(Ω).

It is known from [31] and [32], that the system {ϕk}k∈∞ of eigenfunctions are orthogonal in
V and an orthonormal basis in V1(Ω) ∩V2(Ω).

Let us first consider the (1.1)-(1.4), (1.6) (Inverse problem I), the problem (1.1)-(1.3), (1.5),
(1.6) (Inverse problem II) is similar. In this case, all first and second estimates are true for
strong solution. Thus, in order to complete the proof this theorem, it is sufficient to get
more strong estimates, i.e. estimate ∆un and ∆unt .

Thus, multiplying both sides of (4.4) by λk d c
n
k (t)
d t

and sum up by k from 1 to n, we obtain

ν

2
d

dt
‖Aun‖2

2,Ω + κ ‖Aunt ‖
2
2,Ω + ‖unt ‖

2
V1(Ω) = − ((un · ∇) un,Aunt )−

−
tˆ

0

K(t− s) (Aun(s),Aunt (t))2,Ω ds+ F1(un, t) (g,−Aunt )2,Ω ≡ I4,
(5.5)

where F (un, t) given by (4.5) and it can be estimated as follow

|F1|2 ≤
5
k2

0

[
|e′(t)|2 +

‖ω‖2
V1(Ω)

κ2 ‖unt ‖
2
V1(Ω) + ν2 ‖un‖2

V1(Ω) + C4(Ω) ‖un‖4
V1(Ω) +K2

0

tˆ

0

‖un(s)‖2
V1(Ω) ds


 .
(5.6)

Using Hölder and Young inequalities and (5.6), estimate I4

|I4| ≤
κ

2 ‖Aunt ‖
2
2,Ω + 3

2κ

C ‖un‖2
V1(Ω) ‖Aun‖2

2,Ω +K2
0

tˆ

0

‖Aun(s)‖2
2,Ω ds+ |F1|2 ‖g‖2

2,Ω

 .
(5.7)
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Plugging (5.7) into (5.5), we get

ν
d

dt
‖Aun‖2

2,Ω + κ ‖Aunt ‖
2
2,Ω + ‖unt ‖

2
V1(Ω) ≤

3
κ

C ‖un‖2
V1(Ω) ‖Aun‖2

2,Ω +K2
0

tˆ

0

‖Aun(s)‖2
2,Ω ds+ |F1|2 ‖g‖2

2,Ω

 . (5.8)

Integrating (5.8) by s from 0 to t, and applying already obtained estimates, we get

ν ‖Aun‖2
2,Ω + κ

tˆ

0

‖Aunt (s)‖2
2,Ω ds ≤ C8 + C9

tˆ

0

ν ‖Aun(s)‖2
2,Ω ds, (5.9)

where

C8 := ν ‖Au0‖2
2,Ω + 3

κ
‖g‖2

L∞(0,T ;L2(Ω))

T1ˆ

0

|F1(s)|2 ds <∞,

C9 := 3
νκ

(
C(Ω) sup

t∈[0,T1]
‖un‖2

V1(Ω) +K2
0T

)
<∞.

Thus, apply Grönwall’s lemma to (5.9) to obtain

‖Aun(t)‖2
2,Ω ≤

1
ν
C8e

C9T1 , ∀t ∈ (0, T1). (5.10)

Taking the suptemum both sides of (5.9) by t ∈ [0, T1] and using (5.10), we get
sup

t∈[0,T1]
‖Aun‖2

2,Ω + ‖Aunt ‖
2
L2(QT1 ) ≤ C := C(ν, κ, C8, C9, T1) <∞. (5.11)

�

6. Uniqueness of weak and strong solutions

Theorem 3. Let all conditions of Theorem 1 be fulfilled. Let u1 and u2 be two weak and
strong solutions of (1.1)-(1.4), (3.8) corresponding to same given data. Then u1 ≡ u2 for
all (x, t) ∈ QT ∗, i.e. weak and strong solutions is unique, where T ∗ is a maximal time such
that weak and strong solutions exist in (0, T ∗).

Proof. Subtracting the equation (3.9) for u2 to the equation for u1, and taking inner product
at (3.9) with u := u1 − u2 and ut in L2(Ω), we obtain

1
2
d

dt

(
‖u‖2

2,Ω + κ ‖u‖2
V1(Ω)

)
+ ν ‖u‖2

V1(Ω) = −((u ·∇)u1,u)2,Ω−
tˆ

0

K(t− τ)a (u(t),u(τ)) dτ+

1
g0(t)

[
κa (ut, ω)2,Ω + νa (u, ω) + ((u · ∇)ω,u1)2,Ω + ((u2 · ∇)ω,u) +

tˆ

0

K(t− τ)a (u(τ), ω) dτ

 (g,u)2,Ω , (6.1)
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ν

2
d

dt
‖u‖2

V1(Ω) + ‖ut(t)‖2
2,Ω + κ ‖ut(t)‖2

V1(Ω) = − ((u · ∇) u1,ut)2,Ω−

((u2 · ∇) u,ut)2,Ω −
tˆ

0

K(t− s)a (un(s),unt (t)) ds+ 1
g0(t) [κa (ut, ω) +

νa (u, ω) + ((u · ∇)ω,u1) + ((u2 · ∇)ω,u) +
tˆ

0

K(t− τ)a (u(τ), ω) dτ

 (g,ut)2,Ω

(6.2)

Adding results, we get

1
2
d

dt

(
‖u‖2

2,Ω + (ν + κ) ‖u‖2
V1(Ω)

)
+ ν ‖u‖2

V1(Ω) + ‖ut(t)‖2
2,Ω + κ ‖ut(t)‖2

V1(Ω) =

− ((u · ∇)u1,u)2,Ω + ((u · ∇) u1,ut)2,Ω + ((u2 · ∇) u,ut)2,Ω−
tˆ

0

K(t− s)a (u(t),u(s)) ds+ 1
g0(t)

[
κa (ut, ω)2,Ω + νa (u, ω) +

((u · ∇)ω,u1)2,Ω + ((u2 · ∇)ω,u) +
tˆ

0

K(t− s)a (u(s), ω) ds

 (g,u)2,Ω +

tˆ

0

K(t− s)a (un(s),unt (t)) ds− 1
g0(t) [κa (ut, ω) + νa (u, ω) +

((u · ∇)ω,u1) + ((u2 · ∇)ω,u) +
tˆ

0

K(t− s)a (u(s), ω) ds

 (g,ut)2,Ω =
7∑
i=1

Ri.

(6.3)

Using the Hölder and Young inequalities estimate the terms on the right hand side of (6.1),
we obtain

|R1| =
∣∣∣− ((u · ∇) u1, u)2,Ω

∣∣∣ ≤ ‖u1‖V1(Ω) ‖u‖
2
4,Ω ≤ C(Ω) ‖u1‖V1(Ω) ‖u‖

2
V1(Ω) , (6.4)

|R2| ≤ ‖u‖4,Ω ‖u1‖V1(Ω) ‖ut‖4,Ω ≤
ε0

8 ‖ut‖
2
V1(Ω) + 2C2

ε0
‖u1‖2

V1(Ω) ‖u‖
2
V1(Ω) , (6.5)

|R3| ≤ ‖u2‖4,Ω ‖u‖V1(Ω) ‖ut‖4,Ω ≤
ε0

8 ‖ut‖
2
V1(Ω) + 2C2

ε0
‖u2‖2

V1(Ω) ‖u‖
2
V1(Ω) , (6.6)

|R4| ≤ ‖u‖V1(Ω) K0


tˆ

0

‖u(s)‖2
V1(Ω) ds


1
2

≤ ν

2 ‖u(t)‖2
V1(Ω) + K2

0
2ν

tˆ

0

‖u(s)‖2
V1(Ω) ds, (6.7)
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|R5| ≤
‖g‖2,Ω ‖u‖2,Ω

k0

[
κ ‖ut‖V1(Ω) ‖ω‖V1(Ω) + ν ‖u‖V1(Ω) ‖ω‖V1(Ω) +

‖u‖V1(Ω) ‖ω‖V1(Ω) ‖u1‖V1(Ω) + ‖u2‖V1(Ω) ‖ω‖V1(Ω) ‖u‖V1(Ω) +

‖ω‖V1(Ω)K0


tˆ

0

‖un(τ)‖2
V1(Ω) dτ


1
2
 ≤ ‖g‖

2
2,Ω

2k2
0
‖u‖2

2,Ω +
‖ω‖2

V1(Ω)

2
[
ν ‖u‖2

V1(Ω) +

‖u‖2
V1(Ω) ‖u1‖2

V1(Ω) + ‖u‖2
V1(Ω) ‖u2‖2

V1(Ω) +K2
0

tˆ

0

‖u(τ)‖2
V1(Ω) dτ

+

ε0

8 ‖ut‖
2
V1(Ω) + 2κ2

ε0k2
0
‖g‖2

2,Ω ‖ω‖
2
V1(Ω) ‖u‖

2
2,Ω

(6.8)

|R6| ≤ ‖ut‖V1(Ω)K0


tˆ

0

‖u(s)‖2
V1(Ω) ds


1
2

≤ ε0

8 ‖ut(t)‖
2
V1(Ω) + 2K2

0
ε0

tˆ

0

‖u(s)‖2
V1(Ω) ds,

(6.9)

|R7| ≤
‖g‖2,Ω ‖ut‖2,Ω

k0

[
κ ‖ut‖V1(Ω) ‖ω‖V1(Ω) + ν ‖u‖V1(Ω) ‖ω‖V1(Ω) +

‖u‖V1(Ω) ‖ω‖V1(Ω) ‖u1‖V1(Ω) + ‖u2‖V1(Ω) ‖ω‖V1(Ω) ‖u‖V1(Ω) +

‖ω‖V1(Ω)K0


tˆ

0

‖un(τ)‖2
V1(Ω) dτ


1
2
 ≤ ε1

4 ‖ut‖
2
2,Ω +

‖g‖2
2,Ω ‖ω‖

2
V1(Ω)

ε1k2
0

[
ν ‖u‖2

V1(Ω) +

‖u‖2
V1(Ω) ‖u1‖2

V1(Ω) + ‖u‖2
V1(Ω) ‖u2‖2

V1(Ω) +K2
0

tˆ

0

‖u(τ)‖2
V1(Ω) dτ

+

ε1

4 ‖ut‖
2
2,Ω + κ2

ε1k2
0
‖g‖2

2,Ω ‖ω‖
2
V1(Ω) ‖ut‖

2
V1(Ω)

(6.10)

Plugging (6.4)-(6.10) into (6.3), we have
d

dt

(
‖u‖2

2,Ω + (κ+ ν) ‖u‖2
V1(Ω)

)
+ ν ‖u‖2

V1(Ω) + α ‖ut‖2
V1(Ω) + β ‖ut‖2

2,Ω ≤

a1 ‖u‖2
V1(Ω) + a2

tˆ

0

‖u‖2
V1(Ω) ds+ a3 ‖u‖2

2,Ω ,
(6.11)

where α := 2
(
κ− ε0

2 −
κ2

ε1k2
0

sup
t∈[0,T ]

‖g‖2
2,Ω ‖ω‖

2
V1(Ω)

)
, β := 2

(
1− ε1

2

)
;

a1 := 2C sup
t∈[0,T ∗]

‖u1‖2,Ω + 4C2

ε0
sup

t∈[0,T ∗]
‖u1‖2

2,Ω + 4C2

ε0
sup

t∈[0,T ∗]

∥∥∥u2
2

∥∥∥
2,Ω

+

+


2 sup
t∈[0,T ]

‖g‖2
2,Ω ‖ω‖

2
V1(Ω)

ε1k2
0

+ ‖ω‖2
V1(Ω)


(
ν2 + sup

t∈[0,T ∗]
‖u1‖2

2,Ω + sup
t∈[0,T ∗]

‖u2‖2
2,Ω

)
;
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a2 := K2
0
ν

+ ‖ω‖2
V1(Ω)K

2
0 +

2 sup
t∈[0,T ]

‖g‖2
2,Ω ‖ω‖

2
V1(Ω)

ε1k2
0

K2
0 + 4K2

0
ε0

;

a3 := 1
k2

0
sup
t∈[0,T ]

‖g‖2
2,Ω

(
1 + 4κ2

ε0
‖ω‖2

V1(Ω)

)
.

Using estimates for ui, i = 1, 2, and choosing εi, i = 0, 1 with suitable values as we did
as obtaining a priory estimates above, we can make α, β, a1, a2, a3 to be positive and finite
constants, and it is possible due to the assumption κ

k2
0

sup
t∈[0,T ]

‖g(t)‖2
2,Ω ‖ω‖

2
V1(Ω) ≤ m < 2.

Thus, integrating (6.11) by τ from 0 to t ∈ [0, T ∗] and simplifying, we derive

y(t) ≤ a

tˆ

0

y(τ)dτ, (6.12)

where y(t) := ‖u‖2
2,Ω+(κ+ν) ‖u‖2

V1(Ω) , a := max
{

1
κ+ν (a1 + Ta2), a3

}
.Due to the conditions

to the Theorem 3 and then by Grönwall’s lemma, it follows from (6.12) that y(t) ≡ 0 for all
t ∈ [0, T ∗], i.e. u1 ≡ u2. �

7. Inverse problems III and IV

In this section, we consider the inverse problems (1.1)-(1.4), (1.8) (Inverse problem III); and
(1.1)-(1.3), (1.5), (1.9) (Inverse problem IV), regarding to the overdetermination condition
(1.9). Due to notation (2.8), the conditions (1.8) and (1.9) can be written as following
common form for both problem IP3 and IP4.

(u(t), ω)2,Ω + a (u(t), ω) = e(t), t ∈ [0, T ]. (7.1)
For these inverse problems, the corresponding equivalent nonlocal direct problems have the
following form

divu(x, t) = 0,

ut − κ∆ut − ν∆u−
tˆ

0

K(t− s)∆u(x, s)ds+ (u · ∇)u−∇p = F2(u, t)g(x, t), QT .
(7.2)

with the initial condition (1.3), and boundary conditions (1.4) or (1.5), where

F2(u, t) ≡ 1
g0(t)

e′(t) + νa (u, ω)− ((u · ∇)ω,u)2,Ω +
tˆ

0

K(t− τ)a (u, ω) dτ

 = f(t).

(7.3)
Analogical as Lemma 2, one can prove the following the lemma.

Lemma 3. Let the assumptions (3.3)-(3.5) be fulfilled and
(u0, ω)2,Ω + a (u0, ω) = e(0). (7.4)

Then the solvability of the inverse problems (1.1)-(1.4), (1.8) and (1.1)-(1.3), (1.5), (1.9) is
equivalent to the solvability of the corresponding nonlocal direct problems (7.2), (1.3)-(1.4)
and (7.2), (1.3), (1.5), respectively.
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7.1. Existence and uniqueness of weak solutions of the inverse problems (1.1)-
(1.4), (1.8) and (1.1)-(1.3), (1.5), (1.9). By Lemma 3, below we study the nonlocal
direct problems (7.2), (1.3)-(1.4) and (7.2), (1.3), (1.5) instead of the corresponding inverse
problems (7.2), (1.3)-(1.4) and (7.2), (1.3), (1.5).

Theorem 4. Let the conditions (3.2)-(3.5), (3.7), (7.4) be fulfilled. Then there exists T2 ∈
(0, T ], such that the nonlocal direct problems (7.2), (1.3)-(1.4) and (7.2), (1.3), (1.5) have
unique weak solution in the QT2, where T2 is defined at (7.14) below. Moreover, the weak
solutions satisfy the estimate

‖u‖2
L∞(0,T2;L2(Ω)∩V1(Ω)) + ‖u‖2

L2(0,T2;V1(Ω)) + ‖ut‖2
L2(0,T2;L2(Ω)∩V1(Ω)) ≤ C, (7.5)

where C is a constant depending on data of the problem.

Proof. As we have note in Remark 3, in this case, above a priory estimates can be established
without the assumption (4.1). It is obvious that, the Galerkin’s approximations (4.3) with
unknown coefficients cnj (t), j = 1, ..., n will be defined from the system of equations

(unt , ϕk)2,Ω + κa (unt , ϕk) + νa (un, ϕk)− ((un · ∇)ϕk,un)2,Ω =

F2(un, t) (g(x, t), ϕk)2,Ω −
tˆ

0

K(t− s)a (un, ϕk) ds, k = 1, 2, . . . , n,
(7.6)

with the Cauchy data (4.6), where F2(un, t) given by (7.3). �

Lemma 1. Assume that the conditions (3.2)-(3.5), (3.7), (4.7) and (7.4) are fulfilled. Then
there exits a finite time T2 ∈ [0, T ] such that the following a priori estimate is valid for all
t ∈ (0, T2)

‖un‖2
L∞(0,T2;V1(Ω)) + ‖un‖2

L2(0,T2;V1(Ω)) ≤M0 <∞, (7.7)

where M0 is a positive constant depending on data of the problem.

Proof. Multiply (7.6) by cnk(t) and summing with respect to k, from 1 to n, and integrating
over Ω. We have

1
2
d

dt

(
‖un‖2

2,Ω + κ ‖un‖2
V1(Ω)

)
+ ν ‖un‖2

V1(Ω) = J1 + J2 (7.8)

where

J1 := −
tˆ

0

K(t− s)a (un(s),un(t)) ds and J2 := F2(un, t) (g(x, t),un)2,Ω .

Using the Hölder and Young inequalities we estimate each term on the right hand side of
(7.8)

|F2(un, t)| ≤ 1
k0

[
|e′(t)|+ ν ‖un‖V1(Ω) ‖ω‖V1(Ω) +

C2(Ω) ‖un‖2
V1(Ω) ‖ω‖V1(Ω) + ‖ω‖V1(Ω)K0


tˆ

0

‖un(s)‖2
V1(Ω) ds


1
2
 .

(7.9)
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|J1| ≤ ‖un(t)‖V1(Ω)K0


tˆ

0

‖un(s)‖2
V1(Ω) ds


1
2

≤ ν

2 ‖u
n(t)‖2

V1(Ω) + K2
0

2ν

tˆ

0

‖un(s)‖2
V1(Ω) ds,

(7.10)

|J2| ≤ ‖g‖2,Ω ‖u
n‖2,Ω |F2(un, t)| ≤ C3(Ω)

k0
‖g‖2,Ω ‖ω‖V1(Ω) ‖u

n‖3
V1(Ω) + 3

2
[
|e′(t)|2 +

‖ω‖2
V1(Ω)

ν2 ‖un‖2
V1(Ω) +K2

0

tˆ

0

‖un(s)‖2
V1(Ω) ds


+ 1

2k2
0
‖g‖2

2,Ω ‖u
n‖2

2,Ω .

(7.11)

Plugging the inequalities (7.10),(7.11) into (7.8) we have
d

dt

(
1 + ‖un‖2

2,Ω + κ ‖un‖2
V1(Ω)

)
+ ν ‖un‖2

V1(Ω) ≤ C1
(
1 + ‖un‖2

2,Ω + κ ‖un‖2
V1(Ω)

)
+

C2

tˆ

0

(
1 + ‖un‖2

2,Ω + κ ‖un‖2
V1(Ω)

)
ds+ C3

(
1 + ‖un‖2

2,Ω + κ ‖un‖2
V1(Ω)

) 3
2 + 3 |e′(t)|2 .

(7.12)

where C1 := 1
k2

0
sup
t∈[0,T ]

‖g‖2
2,Ω + 3ν2

κ
‖ω‖2

V1(Ω) ; C2 := K2
0
κ

(
1
ν

+ 3 ‖ω‖2
V1(Ω)

)
;

C3 := 2C3(Ω)
k0κ

3
2

sup
t∈[0,T ]

‖g‖2,Ω ‖ω‖V1(Ω) .

Let us denote y(t) := 1 + ‖un‖2
2,Ω + κ ‖un‖2

V1(Ω). After integrating (7.12) by s from 0 to t
and simplifying we get the following nonlinear integral inequality

y(t) ≤ C5 + C4

tˆ

0

y
3
2 (s)ds, (7.13)

which by Grönwall’s Lemma 1 yields

y(t) ≤ C1(
1− 1

2C4C
1
2
5 t
)2 ≡ K3 <∞ for all 0 ≤ t ≤ T2 < T? := 2

C4C
1
2
5

(7.14)

or according to the notation we have

sup
t∈(0,T2]

(
‖un‖2

2,Ω + κ ‖un‖2
V1(Ω)

)
≤ K3, (7.15)

where C4 := max {C3;C1 + C2T} and C5 := 3‖e′(t)‖2
L2[0,T ] + 1 + ‖u0‖2

2,Ω + κ ‖u0‖2
V1(Ω) .

Applying the estimate (7.15) to the right hand side of (7.12) and taking the supremum by
t ∈ [0, T2], we obtain the first enregy estimate

sup
t∈(0,T2]

(
‖un‖2

2,Ω + κ ‖un‖2
V1(Ω)

)
+ ν ‖un‖2

L2(0,T2;V1(Ω)) ≤M0 <∞, (7.16)

where M0 = M0(ν, κ, T2, K3). �
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Lemma 4. Assume that all conditions of the Lemma 1 are valid. Then the following a priori
estimate is valid for all t ∈ (0, T2]

sup
t∈[0,T2]

‖un‖2
V1(Ω) + ‖unt ‖

2
L2(QT2) + ‖unt ‖

2
L2(0,T2;V1(Ω)) ≤M1 <∞. (7.17)

where T2 is defined in (7.14) andM1 is a positive constant depending on data of the problem.

Proof. Multiply the both sides of (7.6) by d cnk
d t

and summing with respect to k, from 1 to n,
and integrating over Ω. Using formulas of integrating by parts, we obtain

ν

2
d

dt
‖un‖2

V1(Ω) + ‖unt (t)‖2
2,Ω + κ ‖unt (t)‖2

V1(Ω) =

−
tˆ

0

K(t− s)a (un(s),unt (t)) ds+ F (t) (g,unt )2,Ω + ((un · ∇) unt ,un)2,Ω .
(7.18)

Analogical way as we did in (7.10) and (7.11), using the Hölder and Young inequalities
together with the fist energy estimate (7.7), we obtain the following estimates for the terms
on right hand side of (7.18)∣∣∣∣∣∣∣−

tˆ

0

K(t− s)a (un(s),unt (t)) ds

∣∣∣∣∣∣∣ ≤
κ

4‖u
n
t ‖2

V1(Ω) + K2
0
κ

tˆ

0

‖un(s)‖2
V1(Ω)ds ≤

κ

4‖u
n
t ‖2

V1(Ω) + K2
0
κ

sup
t∈(0,T2]

‖un(s)‖2
V1(Ω)T2 ≤

κ

4‖u
n
t ‖2

V1(Ω) + K2
0
κ2 M0T2

(7.19)

∣∣∣F2(un, t) (g,unt )2,Ω

∣∣∣ ≤ 1
2 ‖u

n
t ‖

2
2,Ω + 2

k2
0
‖g‖2

2,Ω

[
|e′(t)|2 +

‖ω‖2
V1(Ω)

ν2 ‖un‖2
V1(Ω) + C4(Ω) ‖un‖4

V1(Ω) +K2
0

tˆ

0

‖un(s)‖2
V1(Ω)ds


 ≤

1
2 ‖u

n
t ‖

2
2,Ω + 2

k2
0
‖g‖2

2,Ω

[
|e′(t)|2 + ‖ω‖2

V1(Ω)

(
ν2M0 + C4(Ω)M2

0 +K2
0M0T2

)]
.

(7.20)

∣∣∣((un · ∇) unt ,un)2,Ω

∣∣∣ ≤ ‖unt ‖V1(Ω) ‖u
n‖2

4,Ω ≤ C(Ω) ‖unt ‖V1(Ω) ‖u
n‖2

V1(Ω) ≤

C(Ω)M0 ‖unt ‖V1(Ω) ≤
κ

4 ‖u
n
t ‖

2
V1(Ω) + 1

κ
C2(Ω)M2

0 .
(7.21)

Plugging (7.19)-(7.21) into (7.18) we have

ν
d

dt
‖un‖2

V1(Ω) + ‖unt (t)‖2
2,Ω + κ ‖unt (t)‖2

V1(Ω) ≤ K4(t), (7.22)

where
K4(t) = 4

k2
0
‖g‖2

2,Ω

[
|e′(t)|2 +K5

]
+K6.
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K5 = ‖ω‖2
V1(Ω) (ν2M0 + C4(Ω)M2

0 +K2
0M0T2) and K6 = 2K2

0
κ2 M0T2 + 2C2(Ω)M2

0
κ

. Integrating
(7.22) from 0 to t ∈ [0, T2] then taking the supremum, we get the second energy estimate

ν sup
t∈[0,T2]

‖un‖2
V1(Ω) +

T2ˆ

0

(
‖unt (t)‖2

2,Ω + κ ‖unt (t)‖2
V1(Ω)

)
ds ≤M1, (7.23)

where

M1 = K6T2 + 4
k2

0
sup

t∈[0,T2]
‖g‖2

2,Ω

[
‖e′(t)‖2

L2[0,T2] +K5T2
]
<∞.

�

7.2. Existence and uniqueness of strong solutions of the inverse problems (1.1)-
(1.4), (1.8) and (1.1)-(1.3), (1.5), (1.9). Analogical as Theorem 2, the following result
holds for strong solutions of (1.1)-(1.4), (1.8) and (1.1)-(1.3), (1.5), (1.9).

Theorem 5. Let the conditions (3.3)-(3.5), (3.7), (7.4) be fulfilled. Assume that also

u0(x) ∈ V1(Ω) ∩V2(Ω). (7.24)

Then the direct problem problems (3.9), (1.3)-(1.4) and (3.9), (1.3), (1.5) have unique strong
solution u(x, t) in QT2. Therefore, corresponding inverse problems (1.1)-(1.4), (1.8) and
(1.1)-(1.3), (1.5), (1.9) have a unique strong solution and for them the following estimate is
hold

‖u‖2
L∞(0,T2;V1(Ω)∩V2(Ω)) + ‖ut‖2

L2(0,T2;V1(Ω)∩V2(Ω)) ≤M3 <∞. (7.25)

where M3 is positive constant depending on data of the problem.

8. Some special cases of inverse problems I-IV allowing global in time
unique solvability and removing the restriction (4.1)

In this section, we consider the inverse problems (1.1)-(1.4), (1.6) (Inverse problem I); and
(1.1)-(1.3), (1.5), (1.6) (Inverse problem II); (1.1)-(1.4), (1.8), (Inverse problem III); (1.1)-
(1.3), (1.5), (1.9), (Inverse problem IV) in some special cases which the existence and unique-
ness of weak and a strong solutions of (1.1)-(1.4), (1.8), (Inverse problem III); (1.1)-(1.3),
(1.5), (1.9), (Inverse problem IV) can be established global in time, and the restriction (4.1)
on data which also means local solvability, can be removed for problems (1.1)-(1.4), (1.6)
(Inverse problem I); and (1.1)-(1.3), (1.5), (1.6) (Inverse problem II). The main difficulty to
prove this is obtaining global in time first a priory estimate like (7.5), which arises from the
presence of a nonlinear convective member (u · ∇) u in the functional F (u, t) in (3.9) and
given by (3.8). Global solvability of these inverse problems without the convective term, i.e.
linear cases, were studied in [27]. However, the global solvability can be established under
some additional restrictions on the given functions for the nonlinear problems.
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8.1. Inverse problems III-IV: Global existence and uniqueness in the case of spe-
cial source term. Let us consider the problem (1.1)-(1.4), (1.8) ((1.1)-(1.3), (1.5), (1.9) is
similar) with the special right-hand side f(t)g(x, t) := f(t)σ(x), i.e. with the same function
σ(x) = ω(x)− κ∆ω(x) a included in the integral overdetermination conditions (1.7):

ut + (u · ∇) u− κ∆ut − ν∆u +∇p−
tˆ

0

K(t− s)∆u(s)ds = f(t)σ(x), (x, t) ∈ QT , (8.1)

div u(x, t) = 0, (x, t) ∈ QT , (8.2)
u(x, 0) = u0 (x) , x ∈ Ω, (8.3)
u(x, t) = 0, (x, t) ∈ ΓT , (8.4)

or
un(x, t) = u · n = 0, curl u× n = 0, (x, t) ∈ ΓT (8.5)

and
(u(t), ω)2,Ω + a (u(t), ω) = e(t), t ∈ [0, T ]. (8.6)

Let us assume that in addition to (3.5)-(3.6) the following conditions are fulfilled

ω , 0, ∀x ∈ Ω (or ‖ω‖2
2,Ω + κ ‖ω‖2

V1(Ω) , 0). (8.7)

In this case, an equivalent direct problem corresponding to (8.1)-(8.4), (8.6)((8.1)-(8.3), (8.5),
(8.6)) is the following initial-boundary value problem, which need to define the function u
from (8.3), (8.4) ((8.3), (8.5)) and

ut + (u · ∇) u− κ∆ut − ν∆u−
t́

0
K(t− s)∆u(s)ds+∇p = F (u, t)σ(x), (x, t) ∈ QT ,

div u(x, t) = 0, (x, t) ∈ QT ,
(8.8)

with the nonlocal functionals

F (u, t) := 1
ω0

e′(t)− ((u · ∇)ω,u)2,Ω + νa (u, ω)−
tˆ

0

K(t− s) (u, ω) ds

 , (8.9)

where ω0 := ‖ω‖2
2,Ω + κ ‖ω‖2

V1(Ω) > 0 is strictly positive number. For this problem the
following assertion is hold.

Theorem 6. Assume that the conditions (3.2), (3.5), (3.7), (7.4) and (8.7) are fulfilled.
Then the direct problem (8.8),(8.9), (8.3), (8.4) ( (8.8),(8.9),(8.3), (8.5)) has global in time
a unique weak solution u(x, t) in QT , and for a weak solution the estimate (7.5) is hold for
all t ∈ (0, T ].

Lemma 5. Assume that the conditions (3.2), (3.5), (3.7), (7.4) and (8.7) are fulfilled. Then
the following a priori estimate is valid for all t ∈ (0, T ]

‖un‖2
L∞(0,T ;V1(Ω)) + ‖un‖2

L2(0,T ;V1(Ω)) ≤M3 <∞, (8.10)

where M3 is a positive constant depending on data of the problem
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Proof. As we note above, in order to prove this, it is sufficient to establish the first a priori
estimate (7.7) for any t ∈ (0, T ] for solution of (8.8)-(8.9). Then repeat the next steps of the
proof of Theorem 4 and 6. In this case, the energy equality (7.8) and (7.18) have the form

1
2
d

dt

(
‖un‖2

2,Ω + κ ‖un‖2
V1(Ω)

)
+ ν ‖un‖2

V1(Ω) =

−
tˆ

0

K(t− s)a (un(s),un(t)) ds+ F (un, t)e(t),
(8.11)

ν

2
d

dt
‖un‖2

V1(Ω) + ‖unt (t)‖2
2,Ω + κ ‖unt (t)‖2

V1(Ω) =

−
tˆ

0

K(t− s)a (un(s),unt (t)) ds+ F (un, t)e′(t)− ((un · ∇) unt ,un)2,Ω .
(8.12)

where the functional F (un, t) is defined by (8.9), and for them hold the estimate (7.9) with
k0 := ω0, respectively. Next, estimate the term on the right-hand side of (8.11) as (7.10),
(7.11) ∣∣∣∣∣∣∣−

tˆ

0

K(t− s)a (un(s),un(t)) ds

∣∣∣∣∣∣∣ ≤
ν

4 ‖u
n‖2

V1(Ω) + K2
0
ν

tˆ

0

‖un(s)‖2
V1(Ω) ds (8.13)

|F (un, t)e(t)| ≤ |e(t)|
ω0

[
|e′(t)|+ ν ‖un‖V1(Ω) ‖ω‖V1(Ω) +

C2(Ω) ‖un‖2
V1(Ω) ‖ω‖V1(Ω) + ‖ω‖V1(Ω)K0


tˆ

0

‖un(s)‖2
V1(Ω) ds


1
2
 ≤

1
2ω0

(
|e(t)|2 + |e′(t)|2

)
+ ν

4 ‖u
n‖2

V1(Ω) + ν

ω2
0
‖ω‖2

V1(Ω) |e(t)|
2 +

C2(Ω)
ω0

|e(t)| ‖ω‖V1(Ω) ‖u
n‖2

V1(Ω) + K2
0

2κω2
0
|e(t)|2 ‖ω‖2

V1(Ω) + κ2

tˆ

0

‖un(s)‖2
V1(Ω) ds.

(8.14)

Plugging (8.13), (8.14) into (8.11), then integrating by s from 0 to t we have

y(t) + ν ‖vn‖2
L2(0,T ;V1(Ω)) ≤ C1

tˆ

0

y(s)ds+ C2, (8.15)

where y(t) = ‖un‖2
2,Ω + κ ‖un‖2

V1(Ω) , C1 = 2C2(Ω)
ω0κ

sup
t∈[0,T ]

|e(t)| ‖ω‖V1(Ω) + T + 2TK2
0

νκ
,

C2 =
‖e(t)‖2

L2[0,T ] + ‖e′(t)‖2
L2[0,T ]

ω2
0

+ 2νκ+K2
0

κω2
0
‖ω‖2

V1(Ω) ‖e(t)‖
2
L2[0,T ] + ‖un0‖

2
2,Ω + κ ‖un0‖

2
V1(Ω) .

Apply classical Grönwall’s lemma to (8.15), we have

‖un‖2
2,Ω + κ ‖un‖2

V1(Ω) ≤ C2e
C1T . (8.16)
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Taking the supremum from both sides of (8.15) by t ∈ [0, T ] and using the estimate (8.16)
we have

sup
t∈[0,T ]

(
‖un‖2

2,Ω + κ ‖un‖2
V1(Ω)

)
+ ν ‖un‖2

L2(0,T ;V1(Ω)) ≤M3 = M3(C1, C2, T, κ). (8.17)

�

Lemma 6. Assume that all conditions of the Lemma 5 are valid. Then for un the following
a priori estimate is valid for all t ∈ (0, T ]

sup
t∈[0,T ]

‖un‖2
V1(Ω) + ‖unt ‖

2
L2(QT ) + ‖unt ‖

2
L2(0,T ;V1(Ω)) ≤M4 <∞. (8.18)

where M6 is a positive constant depending only on data of the problem.

Proof. Estimate the term on the right-hand side of (8.12) as (7.18)∣∣∣∣∣∣∣−
tˆ

0

K(t− s)a (un(s),unt (t)) ds

∣∣∣∣∣∣∣ ≤
κ

4 ‖u
n
t ‖

2
V1(Ω) + K2

0
κ

tˆ

0

‖un(s)‖2
V1(Ω) ds ≤

κ

4 ‖u
n
t ‖

2
V1(Ω) + K2

0
κ
M3,

(8.19)

|F (un, t)e′(t)| ≤ |e
′(t)|
ω0

[
|e′(t)|+ ‖ω‖V1(Ω)

(
ν ‖un‖V1(Ω) + C2(Ω) ‖un‖2

V1(Ω) +

K0


tˆ

0

‖un(s)‖2
V1(Ω) ds


1
2

 ≤ |e′(t)|22ω2

0
+ 1

2
[
|e′(t)|2 +

‖ω‖2
V1(Ω)

ν2 ‖un‖2
V1(Ω) + C4(Ω) ‖un‖4

V1(Ω) +K2
0

tˆ

0

‖un(s)‖2
V1(Ω) ds


 ≤

|e′(t)|2

2ω2
0

+ 1
2
[
|e′(t)|2 + ‖ω‖2

V1(Ω)M3
(
ν2 + C4(Ω)M3 +K2

0

)]
.

(8.20)

∣∣∣− ((un · ∇) unt ,un)2,Ω

∣∣∣ ≤ κ4 ‖unt ‖2
V1(Ω) + C2

κ
M2

3 . (8.21)

Plugging (8.19)-(8.21) into (8.12), then taking supremum and integrating by s from 0 to t,
we get

ν sup
t∈[0,T ]

‖un‖2
V1(Ω) +

tˆ

0

(
‖uns (s)‖2

2,Ω + κ ‖uns (s)‖2
V1(Ω)

)
ds ≤M4, (8.22)

where M4 = M4(ν, κ, K0,M3). Therefore, the estimates (8.17) and (8.22) give (7.5). �

Theorem 7. Assume that the conditions (3.2), (3.5)-(3.7), (8.7), and (7.24) are fulfilled.
Then the inverse problem (8.8), (8.9), (8.3), (8.4) ( (8.8), (8.9),(8.3), (8.5)) has a unique
strong solution for all t ∈ (0, T ] and the estimate (7.25) is valid.
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8.2. Uniqueness and existence in the case of without restriction (4.1) and special
source terms: Inverse problems I-II. Let us consider the problems (1.1)-(1.4), (1.6) and
(1.1)-(1.3), (1.5), (1.6) with the right-hand side f(t)g(x, t) := f(t)ω(x), where ω(x) is the
same function included in the integral overdetermination condition (1.7):

ut + (u · ∇) u− κ∆ut − ν∆u +∇p−
tˆ

0

K(t− s)∆u(s)ds = f(t)ω(x), (x, t) ∈ QT , (8.23)

div u(x, t) = 0, (x, t) ∈ QT , (8.24)
u(x, 0) = u0 (x) , x ∈ Ω, (8.25)
u(x, t) = 0, (x, t) ∈ ΓT , (8.26)

or
un(x, t) = u · n = 0, (D(u) · n)× n = 0, (x, t) ∈ ΓT (8.27)

and ˆ

Ω

uω(x)dx = e(t), t ≥ 0. (8.28)

Let (3.4)-(3.6) be fulfilled and ω , 0, ∀x ∈ Ω. In this case, an equivalent direct problem
corresponding to (8.23)-(8.26), (8.28) ((8.23)-(8.25), (8.27), (8.28)) is the following initial-
boundary value problem, which need to define the function u from (8.25), (8.26) ((8.25),
(8.27)) and

ut + (u · ∇) u− κ∆ut − ν∆u−
t́

0
K(t− s)∆u(s)ds+∇p = Φ(u, t)ω(x), (x, t) ∈ QT ,

div u(x, t) = 0, (x, t) ∈ QT ,
(8.29)

with the nonlocal functionals

Φ(u, t) := 1
ω0

e′(t)− ((u · ∇)ω,u)2,Ω + κa (ut, ω) + νa (u, ω)−
tˆ

0

K(t− s) (u, ω) ds

 ,
(8.30)

where ω0 := ‖ω‖2
2,Ω > 0 is strictly positive number. For this problem the following assertion

is hold without any restriction like (4.1).

Theorem 8. Assume that the conditions (3.2), (3.4)-(3.7) are fulfilled with ω , 0, ∀x ∈ Ω.
Then the nonlocal problem (8.29), (8.30), (8.25), (8.26) ( (8.29), (8.30), (8.25), (8.27)) has
local in time a unique weak solution u(x, t) in QT , and for a weak solution the estimate (4.2)
is hold for all t ∈ (0, T ].
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