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1 Abstract

The numerical solution of partial differential equations is often performed on a
numerical grid, where the grid points are used for estimating the partial deriva-
tives. The grid can be fully static as in Eulerian type of solution method, or
the grid points can move during the solution, which is the case in Lagrangian
type of method. In the current article, a numerical solution method is pre-
sented, where the grid points are located on iso-contours of the two-dimensional
field. The method calculates the local movement of the iso-contours according
to an evolution equation described by the PDE, and the solution proceeds by
moving the grid points towards the calculated direction. Additional stability
is obtained by setting the grid points to move along the iso-contour line. To
exemplify the application of the method, numerical examples are calculated for
the two-dimensional diffusion equation.

2 Introduction

In the previous study [1], the movement of a phase interface was simulated
with level-set type method using a physical science based model which takes
into account the transformation strains and carbon partitioning and diffusion.
In that study the connection to the Allen-Cahn equation [1] was made, which
connected it’s solution to the level-set approach. As a extension of this idea,
the connection between a general partial differential equation (PDE) with first
order time derivative and the level set formulation is investigated in the current
study.

The current approach is closely connected with the level-set method [2],
which is often applied for simulations involving phase boundary movement.
Level set methods usually perform the solution of a partial differential equation
(PDE) in a grid that is not based on the points contained on the isocontours.
The level-set method can be used in any types of grids, even in completely Eu-
lerian framework [3, 4], where the computational grid does not need to move.
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Sometimes it is important to be able to adapt the mesh to allow for more pre-
cision at certain locations that require fine grids for accurate solution, and to
allow to the grid become sparse at regions that do not require dense grid for the
solution accuracy so that the computational time does not increase too much.
For generating adaptive meshes, a class of methods, called deformation methods
have been created based on the level-set concept. In the deformation methods,
the grid points are moved according to a specific monitor function, which allows
to refine the grid locally [5].

In the current study, the mesh points are contained in the iso-contour lines
and the focus is on the movement of the grid points, where the function retains
it’s value. Thus the method calculates the movement of the iso-contour lines,
and the points contained in these iso-contours are used as the computational
mesh gridpoints. This has certain advantages: first, the the iso-contours and
their movement can have actual physical or application specific meaning, and
it is often the desired result of the simulation. The current study provides
the equations relating the PDE, gradient of the field and the first order time
deriative and it provideds the means to calculate the iso-contour movement
directly. Secondly, as the iso-contour points are used as the grid-points, this
method provides a good basis for generating adaptive meshes.

3 Theory

The method described in this article provides a numerical solution procedure to
PDE described by Eq. (1)

∂

∂t
u = L(u) (1)

where t is time and L(u) is general PDE operator. For example, in diffusion
equation with constant diffusion coefficient D the operator is L(u) = D(∂xxu+
∂yyu).

The method is based on the fact that advection equation can be used to
calculate the movement of isocontours and it contains first order time derivative,
which can be equated with the left hand side of Eq. (1). The advection equation
is ∂tu = −v⃗ · ∇u, which describes the movement of a field u in the direction v⃗.
If the propagation velocity v⃗ changes as function of position, the shape of the
field changes with time. Let us now choose the vector v⃗ so that it is directed in
the negative direction of the gradient, v⃗ = −sn̂, where n̂ = ∇u/|∇u| is a unit
vector that has the same direction as ∇u (|∇u| is the length of the gradient
vector). In this case = ∂tu = −v⃗ · ∇u = sn̂ · ∇u = s∇u·∇u

|∇u| = s|∇u|, so that Eq.

(2) is true.
∂

∂t
u = s|∇u| (2)

Eq. (2) is applied in the Level-Set (LS) method to describe shape evolution of
diffuse interface, when the local propagation speed s is first determined based
on physical principles. In the level set method, signed distance from the region
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interface is usually used as the propagating field, and re-calculation of this field
can be required.

In the current article, we apply the Eq. (2) to describe the evolution of the
iso-contours of a general field whose evolution equations can be calculated with
an equation of the form given by Eq. (1). Iso-contour normal vector is parallel
to the gradient. Since the local velocity v⃗ = sn̂ of the field u was chosen in the
negative direction of the gradient of u, the Eq. (2) describes the local movement
of the field iso-contour with speed s.

Now, comparing Eq. (1) and (2), it can be seen that since both equations
contain the first order time derivative, they can be equated, which yields the
propagation speed of the iso-contour to the negative direction of the gradient,
Eq. (3), which is the direction of the iso-contour normal.

s =
L(u)

|∇u|
when |∇u| ≠ 0 (3)

Once the local speed of an iso-contour point p⃗(t) = (px, py) is calculated
using Eq. (3), the time derivative of the isocontour point position is obtained
using Eq. (4).

∂p⃗

∂t
= v⃗ = −sn̂ (4)

Further, by noting that n̂ = ∇u/|∇u|, Eq. (4) can be also written out as Eq.
(5)

∂p⃗

∂t
= −L(u)

|∇u|
n̂ = −L(u)

∇u

|∇u|2
(5)

Now, the movement of the point p⃗ contained at the iso-contour can be cal-
culated, using the time derivative ∂tp⃗ = (∂tpx, ∂tpy) which is obtained either
from Eqs. (3) and (4), or directly from Eq. (5).

However, as described in the section 4, it appeared that the numerical so-
lution was rather unstable if simple Euler forward time step was used. This is
most likely because of the same issues as associated with the solution of the ad-
vection equation, which is notorious for its instability in the basic Euler forward
time-stepping procedure. To overcome this issue, the time-stepping described
by Eqs. (6) and (7) was applied, which is similar to the one used for obtaining
stable solution for advection equation in [6], but here the average time derivative〈

∂p⃗
∂t

〉
was used instead of ∂p⃗

∂t

∣∣∣
t=ti

. In general, the average time derivative could

provide better solution also in the case if variable timesteps were used.

p⃗(ti +∆t) = p⃗(ti −∆t) +

〈
∂p⃗

∂t

〉
2∆t (6)

where 〈
∂p⃗

∂t

〉
=

1

2

(
∂p⃗

∂t

∣∣∣
t=ti−∆t

+
∂p⃗

∂t

∣∣∣
t=ti

)
(7)

After moving the isocontour gridpoint in the direction of the isocontour
normal (i.e. the direction of the gradient) using either Eqs. (3, 4, 6) or Eq.
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(5, 6), the gridpoint can be additionally moven along the isocontour line. This
is because the value of the function u does not change when the gridpoint is
moved along the isocontour - when the gridpoint is moved to a new position
along the isocontour, the new position will also belong to the isocontour. This
fact was used to maintain the grid shape more regular, as shown in the section
4.

For maintaining better grid shape, the gridpoints were moved along the
isocontours after the time evolution step, so that the grid would remain suit-
ably regular. This was achieved by calculating the difference of the current
x-coordinate of the gridpoint from it’s initial x-coordinate px(i,j)(t)− px(i,j)(0).
If this value was negative, the gridpoint was moved towards the right hand side
gridpoint (i + 1, j) which is on the same isocontour. On the other hand, if
px(i,j)(t) − px(i,j)(0) > 0, the gridpoint was moved towards the left gridpoint

(i−1, j), located on the same isocontour. More precisely, the vector b⃗ descibing
the movement of the gridpoint along the isocontour is stated Eq. (8).

b⃗ = γĥ

where

ĥ =
p⃗(i+1,j)(t)− p⃗(i,j)(0)

|p⃗(i+1,j)(t)− p⃗(i,j)(0)|
if px(i,j)(t)− px(i,j)(0) < 0

and

ĥ =
p⃗(i−1,j)(t)− p⃗(i,j)(0)

|p⃗(i−1,j)(t)− p⃗(i,j)(0)|
if px(i,j)(t)− px(i,j)(0) > 0

(8)

where the adjustment parameter γ controls how much the gridpoint moves along
the isocontour line during a timestep. The value γ = 0.05 was used in the current
example.

4 Numerical experiments

To test the application of the method in practice, numerical experiments were
conducted. To make sure that the method produces correct result, it is use-
ful to compare the numerical solution obtained with the method to an ana-
lytical solution. For this purpose, the solution for the one dimensional dif-
fusion equation was calculated for a case that has a simple analytical solu-
tion. By using the separation of variables, the usual Fourier solution for the
following case can be found: The analytical solution for a diffusion equation
∂tu = ∂xxu with Dirichlet boundary conditions u(0) = 1 and u(2π) = 0 and
initial condition u(x, 0) = 1 − x/(2π) + 0.15sin(x) has the analytical solution
u(x, t) = 1− x/(2π) + 0.15exp(−t)sin(x).

To apply the method described in the theory section for this one dimensional
case, the range of values of the initial function were divided to 100 equally spaced
iso-contours (0, 0.01, 0.02, 0,03, ...). The second order spatial derivative ∂xxu
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Figure 1: Comparison of the numerical solution to the analytical solution for
∂tu = ∂xxu with Dirichlet boundary conditions u(0) = 1, u(2π) = 0 and initial
condition u(x, 0) = 1 − x/(2π) + 0.15sin(x). The coloured solid lines represent
the numerical solution at different times, and the dashed black line shows the
corresponding analytical solution, which fully overlaps with the numerical solu-
tion for each time instant.

was calculated at each point by applying the region weighted average method [7].
In one dimensional case the regions are the lengths of the segments separating
the isocontour points. The speed of the movement of the isocontour is calculated
applying Eq. (3) (isocontour is a straigh line represented by a point in the 1
dimensional case). The direction of the movement n̂ = ∇u/|∇u| is the sign of
the gradient, and the velocity of the isocontour is obtained from Eq. (5). For
each timestep ∆t, the new position of the isocontour is calculated as

p⃗(ti +∆t) = p⃗(ti) +
∂p⃗

∂t
∆t (9)

The calculated solution compared to the analytical solution for the one di-
mensional diffusion equation is shown in Fig. 1, where the solid lines represent
the numerical solution at different times, and the dashed black line shows the
corresponding analytical solution. It can be seen that the method reproduces
the analytical solution.

The isocontour method is particularly useful in a context, where the func-
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tion is defined on one boundary region, and the points contained in this region
move. Such condition was defined and the time evolution of the system was
calculated. For the test case, the two dimensional diffusion equation with con-
stant diffusivity D = 1 was picked, i.e. the PDE is described by Eq. (10). The
method [7], which is capable of handling irregular grids, was used to calculate
the first and second order partial derivatives for the two dimensional case.

∂

∂t
u =

∂2u

∂x2
+

∂2u

∂y2
(10)

The calculation domain was defined as a rectangular grid with grid point
spacing in the x and y directions ∆x = 0.02 = ∆y and the grid xi,j points
were numbered with indices i and j in the horizontal x and vertical y direction.
The initial condition of the system was defined as u(x, y) = 1 − y, as shown
in Fig. 2 a). This is the steady state condition for Eq. (10) for the boundary
values described by the function at their initial position. The values of the
function on the upper, left and right boundaries were not allowed to change
during the simulation, and the positions of the points at these boundaries were
held fixed. On the bottom boundary, where initially y = ∆y, the function
values were defined as u = ∆y for all t, but the positions of the gridpoints of
this iso-contour were changed during the calculation according to Eq. (11).

y(x) = a(t)exp

(
−(x− x0)

2

b

)
+∆y

a(t) =
t

2 · 10−2
0.2 when 0 ≤ t < 2 · 10−2

a(t) = 0.2 when t ≥ 2 · 10−2

(11)

where x0 = 0.48 and b = 0.1. This means that the points contained on
the isocontour u = 0 were moving in the y-direction, so that the y-coordinates
as function of time were described by the gaussian function, Eq. (11). The
x-coordinates of the boundary gridpoints retained their original value for all t.

As a first instance, the movement of the the internal gridpoints were calcu-
lated using Eqs. (3, 4, 6) and they were not moved along the isocontours. It was
found that when the boundary changed significantly, the grid became deformed,
as shown in Fig. 2.

The approach of moving the gridpoints along the isocontour lines, descried
in section 3 helped in maintaining a suitable grid shape, as shown in Fig. 3.
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Figure 2: Simulation results where the gridpoints were not moved along the
isocontour lines. a) t = 5 ·10−3, b) t = 10 ·10−3, c) t = 15 ·10−3, d) t = 20 ·10−3,
e) t = 25 · 10−3, f) t = 0.2.
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Figure 3: Simulation results where the gridpoints were moved along the isocon-
tour lines to maintain a more regular grid shape. a) t = 5 ·10−3, b) t = 10 ·10−3,
c) t = 15 · 10−3, d) t = 20 · 10−3, e) t = 25 · 10−3, f) t = 0.2.
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When t increased, ∂2u
∂x2 + ∂2u

∂y2 approached zero, as the system approached

steady state, since the boundary movement was stopped at time t = 2 · 10−2 as
defined in Eq. (11).

5 Conclusions and outlook

A moving isocontour method was described and numerical experiments were
performed. The method was compared to an analytic solution for one dimen-
sional diffusion equation and it’s applicability was demonstrated also for two
dimensional diffusion equation. The method provides a way for constructing a
moving mesh, based on the movement on the field iso-contours to calculate the
time evolution of a PDE with first order time derivative. The method can also
be used for the PDEs containing higher order time derivatives, if the first order
time derivative can be calculated numerically. The method is useful for calcu-
lating time evolution of the iso-contours when the domain boundary is moving.
In future the method could be applied in calculating the solution to a first or-
der time PDEs for a sharp interface problems with moving boundary, such as
diffusional growth of precipitates or phases in steels [8, 9].
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