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Abstract

We generalize an old result due to Lowenthal [1] and a more recent one due to Hamada [2] on the order of finite generation

of the rotation group SO ( 3 ) both for fixed and arbitrary compound transformations. Unlike the above cited authors, we

consider decompositions into factors with more than two invariant axes and provide rather intuitive geometric proofs. Thus,

we derive a simple estimate for the number of factors in a decomposition and discuss possible means of optimization as well as

particular examples of potential interest for the applications.
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The Order of Finite Generation of SO(3)

and Optimization of Rotation Sequences

Danail Brezov

Abstract

We generalize an old result due to Lowenthal [1] and a more recent
one due to Hamada [2] on the order of finite generation of the rotation
group SO(3) both for fixed and arbitrary compound transformations.
Unlike the above cited authors, we consider decompositions into fac-
tors with more than two invariant axes and provide rather intuitive
geometric proofs. Thus, we derive a simple estimate for the number of
factors in a decomposition and discuss possible means of optimization
as well as particular examples of potential interest for the applications.

Introduction

The order of finite generation of a compact Lie group G with respect to a
subset of elements Ω ⊂ G is defined as the minimal number N of elements
gi ∈ Ω, in which an arbitrary X ∈ G may be factorized. In 1971 Lowenthal
[1] proved his famous result on the order of the rotation group in R3, namely

Theorem 1 Each SO(3) transformation may be decomposed into

Nγ = 1 +

⌈
π

γ

⌉
. (1)

alternating rotations about two fixed axes with relative angle γ ∈
(
0,

π

2

]
.

Here and below we use the notation1 ⌈x⌉ = min{n ∈ Z | x ≤ n} = −⌊−x⌋,
where ⌊x⌋ stands for the integer part of x. Note that the only way to ensure
order three is to pick orthogonal axes that gives the classical Euler setting.
For γ = 60◦, we may decompose into four factors, γ = 45◦ yields five etc.
Below we consider the decomposition conditions for the cases of two and
three factors and then generalize the corresponding results using induction.

1in literature ⌈x⌉ and ⌊x⌋ are often referred to as ceiling and floor function, respectively.
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Low Order Cases

In the following we adopt the notation of [3]. Let n, ĉi ∈ S2 denote respec-
tively the invariant unit vectors of the compound rotation R and those in
the decomposition Ri, with orientation chosen such that the relative angles

γij = arccos (ĉi · ĉj), βi = arccos (ĉi · n)

are (positive) acute or right. Similarly, we shall use the notation

γ̃ij = arccos (ĉi · R ĉj)

and let ϕ and ϕi denote the rotation angles with the so chosen orientation.
Note that in this way n and ĉj are regarded as points on the closed unit semi-
sphere S̄2+ and γij , βj , respectively as spherical distances. Below we shall
relate lengths of broken geodesics in S̄2+ with decomposability conditions and
thus derive an estimate for the order of SO(3) beginning with the following

Lemma 1 With the above notation each R(n, ϕ) ∈ SO(3) satisfies

γij − 2βj ≤ γ̃ij ≤ γij + 2βj , γij − |ϕ| sinβj ≤ γ̃ij ≤ γij + |ϕ| sinβj .

Proof. The first estimate says that 2βi is the maximal angle, at which R
shifts vectors on the unit sphere (the case of a half-turn). For the second
one we introduce spherical coordinates with polar and azimuthal angles: re-
spectively ϕ and βj and point out that the γ̃jj ≤ |ϕ| sinβj since the geodesic
distance γ̃jj cannot exceed the length of the corresponding meridian arc.
The triangle inequality completes the proof as γ̃ij ∈ [γij − γ̃jj , γij + γ̃jj ]. □

Next, we considered the decomposition problem beginning with two factors:

Lemma 2 A transformation R ∈ SO(3) is decomposable into a pair of con-
secutive rotations about ĉ1 and ĉ2 (in this order) if and only if γ̃21 = γ21.

Proof. Necessity is easier to prove since the invariant axis theorem yields

(ĉ2,R ĉ1) = (ĉ2,R2R1 ĉ1) = (Rt
2 ĉ2,R1 ĉ1) = (ĉ2, ĉ1)

that is seen as an equality for the cosines of the positive acute or right angles
γ̃21 and γ21. Next, we note that SO(3) is compact and connected, acting
freely on itself via left shifts, so the map R̃λ= RRt

1(λ) with λ ∈ S1 satisfies

(ĉ2, R̃λĉ1) = (ĉ2, ĉ1)
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and thus, the λ-orbit of ĉ1 is a rotation about ĉ2. But then, R̃λ, and hence
R, can be decomposed into a pair of successive rotations about ĉ1 and ĉ2. □

With this in mind, it is not hard to prove the following

Lemma 3 The decomposition R = R1R2R1 exists

� for an arbitrary angle ϕ if and only if β1 ≤ γ12;

� for an arbitrary axis n if and only if |ϕ| ≤ 2γ12.

Proof. We use the notation γ = γ12 for convenience and conjugate obtaining

R(n′, ϕ) = R2(ϕ2)R1(ϕ1 + ϕ3), n′ = R1(−ϕ3)n

with β′
1 = ∡(ĉ1,n′) = β1 for an arbitrary angle ϕ3. The locus of R(n′, ϕ) ĉ1

for any fixed angle ϕ ∈ S1 is a circle centered at ĉ1 and parameterized with
ϕ3, whose radius obviously does not exceed 2β1. Therefore, if β1 ≤ γ this
orbit has at least one common point with the γ-orbit of ĉ1 about ĉ2, i.e., one
can set the value of ϕ3 in such a way that the angle γ̃′21 between R(n′, ϕ) ĉ1
and ĉ2 equals γ and the above decomposition is guaranteed by Lemma 2.
The exact same argument leads to the conclusion that the above ϕ3-orbit
has a common point with the γ-orbit of ĉ1 about ĉ2 as long as |ϕ| ≤ 2γ that
proves necessity and sufficiency is implied by the invertibility of Lemma 2. □

Next, we discuss a more general result obtained also in [3] in a different way.

Proposition 1 The decomposition R = R3R2R1 exists if and only if

|γ12 − γ23| ≤ γ̃31 ≤ γ12 + γ23. (2)

Proof. Let us consider a dual system of axes {ĉ′k} attached to the rotating
object called the rotating or body frame, while the stationary one {ĉk} is
usually referred to as the spacial frame. Obviously, the first rotation axis
in the decomposition is the same in the two frames, i.e., ĉ′1 = ĉ1, while the
other pairs are related respectively as ĉ′2 = R′

1ĉ2 and ĉ′3 = R′
2R′

1 ĉ3, where
we denote R′

k = R(c′k). Moreover, suppose that R can be decomposed in
the body frame as R = R′

3R′
2R′

1. Since ĉ′3 is an invariant vector for R′
3,

this yields ĉ′3 = R ĉ3. Then, the matrix entries g′ij and r′ij in the rotating
(body) frame are naturally expressed in terms of those in the spacial one as

g′12 = g12, g′23 = g23, g′13 = r13
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and the corresponding Gram determinant is given by the expression

G(ĉ′1, ĉ
′
2, ĉ

′
3) = 1 + 2g12 g23 r13 − g212 − g223 − r213 ≥ 0.

Next, we claim that the decompositions in the two dual systems of axes
coexist (each one implies the other) and are related by the following formula

R1R2 . . .Rn=R′
nR′

n−1 . . .R′
1, R′

k=R1R2 . . .Rk−1RkR−1
k−1 . . .R

−1
2 R−1

1

that is easy to prove by induction starting with

R′
2R′

1 = R1R2R−1
1 R1 = R1R2

since we obviously have R̃R(c) R̃−1= R(R̃ c) andR′
1= R1 by construction.

Then, the decomposition R = R′
3R′

2R′
1 is equivalent to R = R1R2R3,

so we need to reorder the vectors in the above Gram determinant, which
is the same as replacing r13 with r31. Moreover, since gij = cos γij and
r31 = cos γ̃31, the quadratic inequality ∆ = G(ĉ′3, ĉ

′
2, ĉ

′
1) ≥ 0 is equivalent to

cos (γ12 + γ23) ≤ cos γ̃31 ≤ cos (γ12 − γ23). (3)

Finally, one may always choose the orientation of ĉi in such a way that

γ12, γ23 ∈
(
0,

π

2

]
so that the solution is given namely by formula (2). This

proves the necessity of (2). Then, one needs to show that ∆ ≥ 0 is sufficient
for the existence of the corresponding rotating frame {ĉ′k}, or simply point
out that the solutions obtained in [4] rely only on the definiteness of ∆. □

One straightforward consequence is the Davenport universality condition

R = R3R2R1 ∀R ∈ SO(3) ⇔ γ12 = γ23 =
π

2
· (4)

Another one is certainly Lemma 3, which follows directly in the case of
coincident first and third axis with the aid of Lemma 1. Note that the non-
orthogonal Euler setting γ12 = γ23 = γ and γ13 = 0 is less restrictive on β1
compared to the Bryan case, in which all relative angles are equal γij ≡ γ.
More precisely, the former yields the estimate β1 ≤ γ, while for the latter we
have 2β1 ≤ γ. We shall see it is a common property of rotational sequences.
Note also that with the aid of the famous Rodrigues’ rotation formula

R(n, ϕ) = cosϕ I + (1− cosϕ)nnt + sinϕn× (5)

we obtain in the case γ31 = 0 from the inequality of Proposition 1

cos γ̃11 = cos2 β1 + cosϕ sin2 β1 = (cosϕ− 1) sin2 β1 + 1 ≥ cos 2γ12

and hence, the necessary and sufficient condition takes the form

sin
|ϕ |
2

sinβ1 ≤ sin γ12. (6)
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The Induction Step

We shall use the notation Σk = γ12 + γ23 + . . .+ γk−1,k and Σ̄k = Σk + γk,1
respectively for the lengths of the open and closed spherical paths connecting
the points ĉi ∈ S̄2+ associated with the rotation axes in the given order.

Moreover, we let ∆ij
k = Σ̄k − 2γij ≥ 0 (k ≥ 3) represent the path defect

given by the triangle inequality on S2 and omit the subscript if possible.
Next, we shall use induction to generalize Proposition 1 to N= k+1factors.
The case N = 4 has been studied in [5] in the context of optimal sequences.

Lemma 4 The existence of the decomposition R = Rk . . .R2R1, such that
Ri ∈ SO(3), implies either the estimate 2β1 ≤ ∆k,1

k and/or |ϕ| sinβ1 ≤ ∆k,1
k .

Proof. For k = 3 the result is implied by Lemma 1 and Proposition 1 and

for k > 3 we proceed by induction noting that γ̃
(k+1)
k+1,k = γ̃

(k)
k+1,k due to the

invariant axis theorem, while the triangle inequality on the sphere yields
γ̃k,1 − γk,k+1 ≤ γ̃k+1,1 ≤ γ̃k,1 + γk,k+1, so the result follows by induction. □

Note that typically no γi,i+1 exceeds the sum of the rest, e.g. in the case
of a closed path, and this condition is both necessary and sufficient as the
lower bound for γ̃k,1 becomes trivial and the triangle inequality is minimal.

Otherwise the precise estimate involves the minimum of ∆12
k , ∆23

k and ∆k,1
k .

Corollary 1 The existence of the decompositions

R = R1(ϕ
′
1)Rk(ϕk) . . .R1(ϕ1), R = Rk(ϕk)R1(ϕ

′
1)Rk−1 . . .R1(ϕ1)

for an arbitrary R ∈ SO(3) implies that 2β1 does not exceed the length of
the geodesic path connecting the points ĉi on S2+ in the corresponding order.

Proof. For the first decomposition we simply apply Lemma (4) taking into
account that ∆11

k = Σ̄k and the lower bound for γ̃11 is trivial. To show the
second one we express R = R1R′

kRk−1 . . .R1 where R′
k is an appropriate

conjugation of Rk with R1, for which the above result finally yields

2β1 ≤ γ12 + γ23 + . . .+ γ′k−1,k + γ′k,1

with γ′k,1 = γk,1 and by the triangle inequality γ′k−1,k ≤ γk−1,1 + γk,1. □

Corollary 2 With the above notation let γ̄ = 1
k Σ̄k be the mean spherical

distance of the path. Then, an arbitrary R ∈ SO(3) may be decomposed into

Nγ̄(β) ≤ 1 +

⌈
2β

γ̄

⌉
(7)

rotations about the ĉi’s where β = minβi. Axes can be reordered optimally.
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Restriction on the Angle

Now, let us consider the case, in which the angle of the compound rotation
is under control, but we have no information about its axis n starting with

R = R1(ϕ
′
1)Rk . . .R2(ϕ2)R1(ϕ1)

where the condition for the decomposition given by Lemma 1 yields

cos γ̃11 = (ĉ1,Rĉ1) ≥ cos Σ̄k. (8)

Using Rodrigues’ rotation formula (5) like in equation (6), from the above
scalar product we obtain with the optimal choice of a first axis the condition

sin
|ϕ |
2

sinβ ≤ sin
Σ̄k

2
, β = minβi. (9)

Note that in the latter estimate we assume 2β > Σ̄k ≤ π, since otherwise no
restriction on the angle is necessary. Moreover, it is not hard to show that

γ̃11 = 2arcsin

∣∣∣∣ sin ϕ

2
sinβ

∣∣∣∣ ≤ |ϕ | sinβ

which is also a good approximation for small values of |ϕ |, so the condition

|ϕ | sinβ ≤ Σ̄k

is sufficient for the approximate estimate

Nγ̄(β, ϕ) ≤ 1 +

⌈
|ϕ | sinβ

γ̄

⌉
· (10)

In particular, if there is no information about the invariant axis n, we assume
the highest possible value for β and the above formula is reduced to

Nγ̄(ϕ) ≤ 1 +

⌈
|ϕ |
γ̄

⌉
· (11)

Combining these results with Corollary 2, we obtain the following

Proposition 2 With β, γ̄ and ϕ as before, we may decompose R(n, ϕ) into

Nγ̄(β, ϕ) ≤ 1 +

⌈
min (|ϕ | sinβ, 2β)

γ̄

⌉
(12)

rotations about the ĉi’s where the second option is considered only if |ϕ | > 2.
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Relations to Classical Results

In this section we see how the problems we focus on correspond to classi-
cal facts about spherical trigonometry, the theorems of Rodrigues-Hamilton
and Donkin etc. To begin with, if the rotation axes are associated with
points zi on the unit sphere, then they form a polygon with side lengths
γjk = arccos gjk and let γ̃jk = arccos g̃jk with g̃jk denoting the co-factor of
gjk in the Gram determinant g = ω2. Then, the spherical cosine theorem
determines the vertex angles αk in the case of three axes as

cosαi = −
g̃jk√

ω2 + g̃2jk

, sinαi =
ω√

ω2 + g̃2jk

(13)

and the decomposition of unity I = R3R2R1 derived in [4] with scalar

parameters τk =
ω

g̃ij
is actually a verification of the famous Rodrigues-

Hamilton theorem (see [6]). Moreover, we have the dual statement, known
as Donkin’s theorem, where the axes of rotation are related to the poles of the
given triangle, which has αk as its side lengths and gij as the corresponding
vertex angles. Note also that the two-axes decompositions considered in
[4] may be considered similarly as a manifestation of Rodrigues-Hamilton
theorem, with the a3 replaced by the compound rotation invariant vector n

τ1 =
ζ̃3

g12ζ1 − ζ2
, τ2 =

ζ̃3
g12ζ2 − ζ1

, τ =
ζ̃3

g12 − ζ1ζ2
(14)

where we denote ζi = n · ai and ζ̃i = n · ãi, respectively. Note that the first
two equalities above provide the scalar parameters for the decomposition

R(τ2a2)R(τ1a1) = R(τn)

while the third one can be interpreted as a necessary and sufficient condition.
Similarly, the classical Euler decomposition (for non-orthogonal axes)

R(ϕ,n) = R(ϕ3,a1)R(ϕ2,a2)R(ϕ1,a1) = R(ϕ2,a
′
2)R(ϕ1 + ϕ3,a1)

with a′2 = R(ϕ3,a1)a2 may be obtained in this way as

ϕ1 + ϕ3 = 2arctan
ζ̃ ′3

g12ζ1 − ζ ′2
, τ2 =

ζ̃ ′3
g12ζ ′2 − ζ1

, τ =
ζ̃ ′3

g12 − ζ1ζ ′2

with the notation ζ ′i = n · a′i and ζ̃ ′i = n · ã′i where ã′3 = a1 × a′2. This
problem, however, allows for a simpler treatment [4]. Note that in the case
of gimbal lock a3 = Ra1 the above holds for the unprimed quantities ζi, ζ̃i.

7



Final Remarks

Let us note that in the case of two axes considered by Lowenthal and Hamada
the above estimate for the order becomes exact and in particular, if there
is no additional information about n or ϕ, they all reduce to formula (1).
More generally, for equal relative angles γij the estimate is independent of
the choice of path. However, this is possible only for two or three axes with
gij ≥ 0. In other cases one can minimize the length of the rotation sequence
by maximizing the one of the corresponding spherical path Σ̄k connecting
the ĉi’s. One straightforward way to do so is by choosing γ = max γij and
proceeding with only two axes, but in some cases this maximum may not
be unique, for instance if the axes determine a proper spherical polygon, we
can also choose the maximal billiard orbit with fixed number of reflections.
The first axis ĉ1, on the other hand, should be chosen closest to n so that
β1 is minimal. Typically one may need to make a compromise between min-
imizing β1 and maximizing γ as formula (12) suggests. Similar arguments
clearly hold for the spin cover SU(2) as well and may be applied to spin sys-
tems and in particular q-bits used in quantum computation with the proper
definition of relative angles in that case. It is not quite clear, however, how
much of that refers to the non-compact group SL(2,R) ∼= SU(1, 1) playing
also a major role in physics, despite its similar decomposition properties [4].

Our last remark concerns rigid motions in E3 represented via screws (see
[7] for details) modeled using unit dual extension to the underlying algebra
R → R[ε], incorporating translations as nilpotent elements (ε2 = 0). We
introduce the dual angle φ = φ + εd and axis vector n = n + εm ∈ S2[ε]
(i.e., n2 = 1 and m ⊥ n) using the screw displacement d = n · p (with p
denoting the translation vector) and moment m, which provide the Plücker
coordinates of the screw axis n given by Mozzi-Chasles theorem stating that
every rigid motion in E3 is a screw motion, i.e., rotation and translation with
a common axis. Dual extensions exhibit the transfer principle allowing us
to extend the above results for decompositions of screw motions by consid-
ering analogous conditions on the unit dual sphere S2[ε]. However, this goes
beyond the scope of the present work so we leave it for future detailed study.
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