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Abstract

Wind power is an exceptionally clean source of energy, its rational utilization can fundamentally alleviate the energy, environ-

ment, and development problems, especially under the goals of “carbon peak” and “carbon neutrality”. A combined short-term

wind power prediction based on LSTM artificial neural network has been studied aiming at the nonlinearity and volatility of

wind energy. Due to the large amount of historical data required to predict the wind power precisely, the ambient temperature

and wind speed, direction, and power are selected as model input. The CEEMDAN has been introduced as data preprocessing

to decomposes wind power data and reduce the noise. And the PSO is conducted to optimize the LSTM network parameters.

The combined prediction model with high accuracy for different sampling intervals has been verified by the wind farm data

of Chongli Demonstration Project in Hebei Province. The results illustrate that the algorithm can effectively overcome the

abnormal data influence and wind power volatility, thereby provide a theoretical reference for precise short-term wind power

prediction.
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Abstract: Wind power is an exceptionally clean source of energy, its rational utilization can fundamentally alleviate the energy, 

environment, and development problems, especially under the goals of "carbon peak" and "carbon neutrality". A combined short-

term wind power prediction based on LSTM artificial neural network has been studied aiming at the nonlinearity and volatility 

of wind energy. Due to the large amount of historical data required to predict the wind power precisely, the ambient temperature 

and wind speed, direction, and power are selected as model input. The CEEMDAN has been introduced as data preprocessing to 

decomposes wind power data and reduce the noise. And the PSO is conducted to optimize the LSTM network parameters. The 

combined prediction model with high accuracy for different sampling intervals has been verified by the wind farm data of 

Chongli Demonstration Project in Hebei Province. The results illustrate that the algorithm can effectively overcome the abnormal 

data influence and wind power volatility, thereby provide a theoretical reference for precise short-term wind power prediction. 
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1 Introduction 

As the foundation of social economic development and 

people's production and life, energy promotes the 

development and progress of society. From climate 

governance to energy structure transformation, achieving 

the goals of "carbon peaking" and "carbon neutrality" is an 

inevitable choice for China in terms of ecological 

civilization, and it has practical significance for promoting 

efficient energy allocation and utilization[1]. Among the 

large amount of new energy, wind energy is widely 

distributed with huge reserves and pollution-free. Its rational 

use can fundamentally solve the energy shortage and 

environmental problems. The gradual maturity of wind 

power technology and the optimization and upgrade of wind 

power equipment has promoted the continuous development 

of the global wind power industry, giving the energy system 

a strategic opportunity for deep decarbonization [2]. 

To improve the reliability of the power supply and 

ensure the stable operation of the power system, wind power 

prediction is the key to solving the problem of large-scale 

wind power grid connection. Accurate wind power 

prediction can provide a reference for the future wind power 

transmission from the wind power system to the high-

voltage transmission grids, help the power system 

deployment department to modify the deployment plan in a 

timely and effective manner, solve the problem of ambiguity 

in wind power deployment to varying degrees, guarantee the 

supply and demand balance of the power system, and 

improve the safety and stability of the high-voltage 

transmission grid operation [3-4]. Wind power forecasting 

technology can be divided into ultra-short-term, short-term 

and medium and long-term forecasting according to the 

forecasting time [5]. The time scale of short-term prediction 

is 0~72h. Short-term wind power forecasting provides 

  

conditions for future wind power bidding and online access, 

and provides a reference for the organization of wind farms 

to arrange maintenance and maintenance time, effectively 

reducing the number of wind farms to be shut down for 

maintenance, increasing the effective capacity of wind farms, 

and providing guarantees for the safe and stable operation of 

wind farms [6-7]. 

With the development of wind power forecasting 

technology, the application of a single model does not show 

good performance in prediction. A hybrid approach 

combining several single algorithms can overcome the 

drawbacks of single algorithm based models and improve 

the accuracy of wind power prediction [8]. most forecasting 

models follow the steps of "data preprocessing- forecasting 

model construction- forecasting model optimization", using 

neural networks, support vector machines and deep learning 

networks, etc. as forecasting models, using particle swarm 

algorithms, Bee colony algorithm, genetic algorithm, etc. to 

optimize the parameters of the prediction model to improve 

the prediction accuracy of the prediction model [9-11]. 

Among the above methods, the Ensemble Empirical Mode 

Decomposition(EEMD) has the characteristics of intuitiven

ess and strong adaptability, and can effectively process 

nonlinear and non- stationary data signals; As a typical repr

esentative of a deep learning network, Long Short Term Me

mory (LSTM) network has the characteristics  of  wide  app

lication range and strong adaptability in time series; Particle 

Swarm Optimization (PSO) algorithm has fast 

convergence speed and can effectively alleviate local optim

ization problems [12-13]. 

In view of the characteristics of wind power data 

volatility, this paper uses the EEMD-improved Complete 

EEMD with Adaptive Noise (CEEMDAN) to reduce the 

noise of the original wind power data components during 

data preprocessing, to eliminate abnormal data and improve 

the applicability of the data. When optimizing the prediction 
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model, the parameters of the LSTM model are optimized by 

PSO to improve the prediction accuracy of the LSTM model. 

Finally, a CEEMDAN-PSO-LSTM combined prediction 

model is constructed, which is verified by wind field data to 

effectively improve the prediction accuracy of the model. 

2 Algorithm principle 

In this paper, CEEMDAN is selected to preprocess the 

historical data collected by wind farms to solve the modal 

aliasing phenomenon of traditional EEMD; LSTM network 

is chosen as the core prediction model to solve the long-term 

dependence of traditional neural networks; the LSTM 

network model parameters are optimized by PSO algorithm 

to further improve the prediction accuracy of the model [14-

16]. 

2.1 Complete Ensemble Empirical Mode Decompositi

on Adaptive Noise (CEEMDAN) 

The Complete Ensemble Empirical Mode Decomposit

ion Adaptive Noise (CEEMDAN) is a variation of the 

EEMD algorithm [17-18] that provides an exact 

reconstruction of the original signal and a better spectral 

separation of the Intrinsic Mode Functions (IMFs), which is 

calculated according to the average value of the results. the 

process is as follows: 

1) Add the signal item ( )x t to be decomposed to the 

white noise signal
0
( )n t of equal length multiple times to 

obtain the noise signal ( )
n

x t , the expression is as follows: 

 
0

( ) ( ) ( )= + 
n

x t x t k n t

  

(1) 

Where k is the oscillation amplitude parameter. 

Decompose the expanded data ( )
n

x t for n times to obtain 

the IMF data component ( )( )
,

1, 2,...,=
n i

c t i n , which is the 

thi  IMF data component obtained by data decomposition 

after adding white noise for the 
thn  time. 

2) Expand the overall average of 
,
( )

n i
c t  to eliminate 

the influence of the white noise data signal and the IMF 

added multiple times, and the finally obtained 
thi  IMF 

component is obtained, the expressed is as follows: 

 
,

1

1
( ) ( )

=

= 
N

i n i
n

c t c t
N

  (2) 

3) Calculate the effective error between the initial data 

signal and the processed data signal, the expression is as 

follows: 

 


 =
n

n
  (3) 

Where   is the magnitude of white noise; n is the 

overall average number. 

4) Calculate the residual term of the 
thn  order until it 

is no longer allowed to decompose, the expression is as 

follows: 

 

( ) ( ) ( ) ( )
1

 
=

= − +
n

n i i i
i

R t x t x t t

  

(4) 

 

2.2 Particle Swarm Optimization（PSO） 

Particle Swarm Optimization (PSO) distributes individ

ual information to the whole so that the whole can make the 

best judgment while obtaining the information [19]. 

Assuming that there are M particles in an N-dimensional 

target search space, the
thi particle represents an N-

dimensional distribution vector, and Pi represents the 

specific position of the
thi particle, the expression is as 

follows: 

( ) MiPPPP iNiii ,...,2,1,,...,, 21 ==   (5) 

The expression for the moving speed of the 
thi  

particle is as follows: 

( ) MiVVVV iNiii ,...,2,1,,...,, 21 ==   (6) 

The optimal position currently searched by the 
thi  

particle, the expression is as follows: 

( ) MiPPPE iNiibest ,...,2,1,,...,, 21 ==   (7) 

The global optimal position searched by the particle 

swarm, the expression is as follows: 

( )gNggbest PPPG ,...,, 21=     (8) 

The individual extreme value and the global optimal 

value are combined to update the velocity and position of 

the particle, the expression is as follows: 

)()( 2211 ibestibestii PGRCPERCVWV −+−+= (9) 

)1(0 ++= kvxX ii     (10) 

In the formula, 1
C  and 2

C are the learning ratios; W is 

the inertia constant; 1
R  and 2

R  are the random probability 

numbers in the control range [0,1]. 

 

2.3 Long Short-Term Memory (LSTM) 

As an improved model of recurrent neural network, 

long short-term memory (LSTM) network replaces ordinary 

neuron modules with special memory neurons to enhance 

the ability to remember the long-term training state and 

effectively solve the problem of gradient disappearance and 

explosion in recurrent neural networks to alleviate the 

problem of falling into the local optimum caused by over-

fitting [20-23]. Its network selectively exchanges 

information through the structure of information and 

control gates. The network structure is shown in Figure 1. 

 

FIGURE 1  LSTM Network Structure 



  

 

The forget gate transmits the information of the 

previous hidden state and the current input information to 

the sigmoid function at the same time, and the output value 

is between 0 and 1, and whether to leave the information 

according to the ratio. The closer to 0, the more information 

should be discarded; the closer to 1, the more information 

should be retained. 

( )gtcgthgtxgt bcwhwxwg +++= −− 11
  (11) 

The update gate adds the input characteristics at the 

current moment to the shared information, which is used to 

update the cell state. Adjust the sigmoid function value 

between 0-1. Closing to 0 means that the information is not 

updated, closing to 1 means that the information is updated. 

( )itcithitxit bcwhwxwi +++= −− 11    (12) 

The output gate is used to determine the output value at 

the next moment. Pass the updated state to the tanh function, 

and finally multiply the output of tanh with the output of 

sigmoid to determine the information that the hidden state 

should carry, and use this hidden state as the current output 

and pass it to the next time step. 

( )cthctxctttt bhwxwicgc +++= −− 11 tanh   (13) 

( )otcothotxot bcwhwxwo +++= −1    (14) 

( )ttt coh tanh=     (15) 

Where ( )
1

1


−
 =

+
x

e
 , tanh

−

−

−
=

+

x x

x x

e e

e e
. where xgw , xiw ,

xcw , xow  represents the weight matrix connecting the input 

information tx ; hgw , hiw , hcw , how  represents the weight 

matrix connected to the output information 1−th  at the 

previous moment; cgw , ciw , cow represents the weight 

matrix of the connected memory unit information 1−tc  ; gb ,

ib , cb , ob  represents the bias vector. 

3 CEEMDAN-PSO-LSTM combined prediction 

model 

In the wind power prediction model, the data collected 

from wind farms are usually used as the input of the 

prediction model for short-term wind power prediction. 

When selecting data, most prediction models only consider 

the influence of wind speed on the output power of wind 

farms [24]. Considering the comprehensiveness of the 

influencing factors, this research selects wind power, wind 

speed, wind direction, and ambient temperature as the input 

of the prediction model. In order to effectively improve the 

prediction accuracy, preprocess the historical data collected 

by wind farms, and a reliable sample data set is established 

through data decomposition and screening, which is divided 

into training set, verification set, and test set to obtain the 

wind power prediction results. The schematic diagram of the 

prediction process is shown in Figure 2. 
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FIGURE 2  Schematic diagram of forecast process 

 

The proposed research is based on the historical data of 

Chongli Large-scale Wind-solar Complementary Coupled 

Hydrogen Production System Application Demonstration 

Project in Zhangjiakou city, Hebei Province. First, sampling 

the output power of a single fan in the wind farm, and 

conduct sampling every 10 min. In the sample data set after 

processing, 2000 data points are obtained, and 50% of the 

sample data are selected to train and optimize the model, so 

that the model parameters are optimized. The optimized 

model parameters are verified with 25% sample data to 

verify the feasibility of the prediction model. The remaining 

25% of the sample data are used as test sets for short-term 

wind power prediction. This paper is based on the output 

data of wind farms for 13 consecutive days, the short-term 

wind power output in the next 3 days is predicted. 

The CEEMDAN-PSO-LSTM combined model is pre-

processed by the CEEMDANE algorithm, and the PSO 

algorithm optimizes the LSTM network model. Model 

parameters are optimized as particles, and PSO algorithm is 

used to update the learning factor to reduce the learning rate, 

and the speed and position of particles are constantly 

updated. By evaluating the fitness value of the objective 

function, the optimal model parameters can be obtained 

when the global optimum is achieved. The prediction flow 

chart of CEEMDAN-PSO-LSTM network combination 

prediction model is shown in Figure 3, and the specific 

prediction steps are: 

Step1. The original data of the wind farm are preprocessed 

by CEEMDAN, and the preprocessed sample data are 

divided into training set, verification set, and test set. 

Step2. Initialize the PSO parameters, including the number 

of iterations of the population, the learning factor, and the 

bound interval of the particle position and velocity.  

Step3. Build the LSTM prediction model and determine the 

parameter optimization range. 

Step4. The fitness value of PSO was calculated, and the 

relative error between the real value and the predicted value 

of the training sample was taken as fitness function. 

Step5. Update the speed and position of particles, evaluate 

the fitness value of particles, and update the individual 

optimal position and global optimal position of particles. 

Step6. Determine whether the end condition is met. When 

the maximum number of iterations is reached, the optimal 

parameters are assigned to the LSTM model, and the test set 

is used for prediction, and the prediction results are obtained. 

Otherwise, continue training the LSTM model until the end 

condition is satisfied. 

 



  

 

FIGURE 3  CEEMDAN-PSO-LSTM forecast process 

 

FFIGURE 4  Sample data partition 

Aiming at the problem of wind farm data fluctuation 

caused by the instability of wind energy, in order to better 

test the prediction effect of the prediction model, the 

accuracy of the prediction model is verified, and the original 

data is divided according to the degree of data fluctuation. 

Wind speed is the main factor affecting wind power. When 

wind speed changes, wind power fluctuations are different. 

When the wind speed changes dramatically, the output wind 

power fluctuates greatly. When the wind speed changes 

gently, the fluctuation of the wind power output from the 

wind farm is small. Therefore, when the wind speed changes 

normally within [2m/s, 12m/s], the data output from the 

wind farm is defined as the original data 1; When the wind 

speed changes drastically within the interval of [2m/s, 

12m/s], the data output from the wind farm is defined as the 

original data 2; When the wind speed changes gently within 

the range of [7m/s, 10m/s], the output data of the wind farm 

is defined as the original data 3, and the specific partition 

results are shown in Figure 4. 

4 Experiment and analysis 

The measured wind power of a wind farm in 

Zhangjiakou city, Hebei Province for 20 consecutive 

days in August 2019 is selected as the original data for  

the experiment. The rated capacity of the unit is 

1.5 MW, and conduct sampling every 10 min. Data are 

preprocessed by CEEMDAN, and the decomposition 

results are shown in Figure 5. 

    

 

FIGURE 5  CEEMDAN Decomposition component 

As can be seen from Figure 5, CEEMDAN decomposes 

the data into IMF1-IMF8 and a residual component R9. The 

variation trend of each component is different, and there are 

obvious extreme values in each component. The more the 

number of extreme points, the faster the component 

fluctuation speed, and the higher the frequency, so the 

number of extreme points reflects the frequency of the 

component. In order to better divide the components 

decomposed by CEEMDAN, the number of extreme values 

in each component and the correlation coefficients between 

the components and the original data is calculated 

respectively. The results are shown in Table.1. 

 

 

 

TABLE 1  The number of extreme values of different components and the coefficient with the original data signal 

components IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 R9 

The number of 

extreme points 
9715 7191 6878 3983 2257 1291 613 293 146 

the correlation 

coefficients 
0.1952 0.1435 0.1972 0.2313 0.2578 0.2935 — — — 

As can be seen from Table 1, the number of extreme 

values in IMF1-IMF6 component is greater than 1000, so 

IMF1-IMF6 is regarded as high frequency component, and 

the rest as low frequency component. In the high-frequency 

component, the correlation coefficient between IMF1-IMF4 

and the original wind power signal is less than 0.25, 

indicating that the correlation between IMF1-IMF4 and the 

original wind power signal is small, which affects the 

prediction accuracy, and it is removed as noise. Finally, the 

IMF5-IMF8 and R9 components are reconstructed, and the 

comparison with the original wind power is shown in Figure 

6. 
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FIGURE 6  Overall and Partial comparison chart 

 

 

 

According to the overall and local comparative analysis, 

after CEEMDAN processing, the change trend of sample 

data is smoother, and the burr is significantly reduced. In 

view of the influence of prediction time on the accuracy, the 

prediction accuracy of the model under different time scales 

is verified. Sample data processed by CEEMDAN is taken 

as input, and the relative error between prediction results and 

model is shown in Figure 7. 

 

 
 
FIGURE 7(a)  Sample interval of 5 minutes predicted results 

 
 

 

 

 
FIGURE 7(b)  Sample interval of 10 minutes predicted results 

 

 
FIGURE 7(c)  Sample interval of 20 minutes predicted results 



  

 
FIGURE 7(d)  Relative error of prediction at different sampling 

intervals 

 

In order to better verify the prediction effect of the 

model, LSTM, PSO- LSTM, CEEMDAN- LSTM, CEEM

DAN-PSO- BP, CEEMDAN-PSO-SVM, and CEEMDAN-

PSO-LSTM prediction models are constructed respectively, 

and the prediction effects of the models were compared. The 

results are shown in Figure 8. 

 
FIGURE 8  Comparison of forecast result 

 

In order to compare and analyze the prediction effects 

of the above prediction models more clearly, the Mean 

Absolute Error (MAE), Root Mean Square Error (RMSE), 

Mean Absolute Per- centage Error (MAPE) and R2 perform

ance index of each model are calculated respectively. The 

calculation results are shown in Table 2.

 

Table 2  Comparison table of prediction performance of corresponding models 

 

From the analysis of the above results, it can be concluded 

that: 

1) The prediction accuracy of CEEMDAN-PSO-LSTM 

model fluctuates slightly with different degree of data 

fluctuation. When the sampling interval is 5 minutes, the 

relative error of prediction results is small. When the 

sampling interval is 10 minutes, the relative error of 

prediction results is about 6% on average. When the 

sampling interval is 20 minutes, the relative error of 

prediction results is large. Therefore, different sampling 

intervals have certain influence on the prediction accuracy 

of the prediction model, and the prediction error increases 

with the increase of sampling intervals. 

2) Compared with the pre-optimization and post-

optimization prediction models, CEEMDAN-PSO-LSTM 

model has advantages in short-term wind power prediction. 

The MAE, RMSE, and MAPE evaluation indexes of 

CEEMDAN-LSTM compared with LSTM model decreased 

by 34.00, 28.97 and 3.42% respectively, and R2 increased by 

0.0551, which verified the necessity of CEEMDAN data 

preprocessing in wind power prediction. Compared with 

CEEMDAN-LSTM model, MAE, RMSE and MAPE 

evaluation indexes of CEEMDAN-PSO-LSTM model 

decreased by 31.75, 24.81 and 4.01% respectively, and R2 

increased by 0.0849. It is proved that PSO optimization 

algorithm can effectively improve the accuracy of prediction 

model. 

3) In the same sample data set, the prediction 

performance of different prediction models is different. 

Compared with CEEMDAN-PSO-BP neural network model, 

MAE, RMSE and MAPE of CEEMDAN-PSO-LSTM 

model decreased by 22.1804, 24.1967 and 4.30% 

respectively, and R2 increased by 0.0838. Compared with 

CEEMDAN-PSO-SVM model, MAE, RMSE and MAPE 

decreased by 47.7304, 42.6494 and 7.84%, respectively, and 

R2 increased by 0.1419. 

To sum up, according to the comprehensive analysis of 

MAE, RMSE, MAPE and R2 prediction evaluation indexes 

of the prediction model. The CEEMDAN-PSO-LSTM 

combined prediction model proposed in this paper has a 

prediction accuracy of 97.25%, which can better complete 

short-term wind power prediction under different time 

scales. 

5 Conclusion 

The combined CEEMDAN-PSO-LSTM wind power 

prediction model is proposed for solving the wind speed 

changes, volatility, and less controllability. The preprocess 

CEEMDAN decomposes wind power and eliminates 

abnormal data to improve the applicability of input data. The 

LSTM model optimized by PSO algorithm has avoided 

falling into the local optimal characteristics effectively and 

improve the accuracy further. The CEEMDAN-PSO-LSTM 

combined prediction model has been validated by 

comparative analysis of the prediction results at different 

Prediction models MAE (kW) RMSE (kW) MAPE(%) R2 

LSTM 140.71 164.11 10.18 0.8286 

PSO-LSTM 113.31 138.90 9.15 0.8772 

CEEMDAN-LSTM 106.71 135.14 6.76 0.8837 

CEEMDAN-PSO-BP 97.1431 134.5271 7.0511 0.8848 

CEEMDAN-PSO-SVM 122.6931 152.9798 10.5934 0.8267 

CEEMDAN-PSO-LSTM 74.9627 110.3304 2.7488 0.9686 



  

time scales. The calculation speed and inputs data 

simplification should also be also considered to satisfy the 

online wind power prediction in the future. 
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