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Abstract

This study applies the generative adversarial network-based optimization approach to site selection and capacity determination

of energy storage device in a power grid. Through the combination of modified long short-term memory and generative adversar-

ial networks, the proposed method enhances the learning capability for the decision support of energy storage allocation. This

method excels at the utilization of modified long short-term memory to ensure a better data-generation and data-discrimination

in a generative adversarial network, enabling the achievement of effective data learning and deduction. To validate the feasibility

of the proposed approach, a practical system as well as an example system are both examined under different scenarios, where

the placement cost, peak load, and voltage deviation are all concerned. Test results gained from this study are beneficial for

energy storage industry applications. In this study, a novel approach is proposed for site selection and capacity determination of

energy storage devices in power grids by applying a generative adversarial network-based optimization method. The proposed

approach combines modified long short-term memory and generative adversarial networks to enhance the learning capability for

decision support of energy storage allocation. Specifically, the modified long short-term memory improves the data-generation

and data-discrimination in the generative adversarial network, leading to effective data learning and deduction. To demonstrate

the feasibility of our proposed approach, a practical system as well as an example system are tested under different scenarios,

where the placement cost, peak load, and voltage deviation are all taken into considerations. Test results indicate the feasibility

of the method, providing valuable insights for the energy storage industry.
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Abstract: This study applies the generative adversarial network-based optimization approach to site selection and capacity 

determination of energy storage device in a power grid. Through the combination of modified long short-term memory and 

generative adversarial networks, the proposed method enhances the learning capability for the decision support of energy storage 

allocation. This method excels at the utilization of modified long short-term memory to ensure a better data-generation and data-

discrimination in a generative adversarial network, enabling the achievement of effective data learning and deduction. To validate 

the feasibility of the proposed approach, a practical system as well as an example system are both examined under different 

scenarios, where the placement cost, peak load, and voltage deviation are all concerned. Test results gained from this study are 

beneficial for energy storage industry applications.  In this study, a novel approach is proposed for site selection and capacity 

determination of energy storage devices in power grids by applying a generative adversarial network-based optimization method. 

The proposed approach combines modified long short-term memory and generative adversarial networks to enhance the learning 

capability for decision support of energy storage allocation. Specifically, the modified long short-term memory improves the data-

generation and data-discrimination in the generative adversarial network, leading to effective data learning and deduction. To 

demonstrate the feasibility of our proposed approach, a practical system as well as an example system are tested under different 

scenarios, where the placement cost, peak load, and voltage deviation are all taken into considerations. Test results indicate the 

feasibility of the method, providing valuable insights for the energy storage industry. 

 

 

1 Introduction 

The rapid advancement of battery manufacturing 

technology has made energy storage devices a critical 

solution for addressing the issue of energy shortages. Energy 

storage devices offer flexible charging and discharging 

mechanisms, allowing them to charge during off-peak hours 

and supply power to the grid during peak times, which 

significantly reduces grid congestion [1]-[2]. Moreover, 

energy storage devices can be integrated with monitoring and 

communication devices to regulate their real and reactive 

power output. This integration helps to mitigate voltage and 

frequency variations caused by load changes and improve the 

quality of supplied power [3]-[4]. 

Previous literature has addressed the decision-making 

methods for determining the capacity and charge/discharge 

scheduling of single energy storage devices [5]-[7]. Energy 

storage is known for enhancing the continuity of power 

supply during intermittent generation due to weather changes 

[8]-[10]. Additionally, energy storage devices can regulate 

power over a brief period since their charge/discharge 

reaction is faster than that of conventional thermal power 

generating units, providing higher flexibility to the 

dispatching operation. With the emergence of microgrids, 

energy storage devices are increasingly being installed to 

adapt to load changes and assist in handling islanding 

operations once the grid is disconnected from mains power 

[11]-[13]. Although these studies have been effective in grid 

operation, they have been limited in overall performance 

assessment of energy storage placement. Therefore, 

intelligent approaches such as genetic algorithms and particle 

swarm optimization have been employed for solution search 

[14]-[15]. However, their computation procedures may not 

consider capacity, leading to the inadvertent utilization of 

energy storage and ineffective planning. More attention is 

needed to address this issue for a better allocation of energy 

storage equipment. 

This paper integrates the photovoltaic system with an 

energy storage device to complement the insufficient supply 

of the solar system while minimizing the impact on the grid, 

particularly during night peak loading periods. The study 

aims to simultaneously determine the site and capacity of the 

energy storage device, including reactive power regulation 

[16]-[20]. To facilitate the computation, this study proposes 

a generative adversarial network (GAN) with modifications, 

embedding long short-term memory (LSTM) for memory 

gating mechanisms in both data generator and discriminator 

within the network. This gating control simplifies memory 

inference and accelerates computation convergence [21]-[26]. 

Furthermore, the generative adversarial network is powerful 

in creating datasets for testing, and model simulation 

accuracy is improved via learning from massive datasets. 

This article begins by investigating power flow simulation 

to understand system features, focusing on scenarios that 

involve the integration of photovoltaics and wind power with 

the grid. Mathematical models of multi-objective functions 

are formulated while considering planning costs, peak load, 

and voltage deviation. Next, a generative adversarial 

network-based optimization approach is applied to establish 

a trained network with inference capability for the site 

selection and capacity determination of energy storage 

devices in a power grid. This method has three notable 

features: 

1)  It systematically determines the optimal allocation of 

energy storage devices by considering site and capacity, 

Application of generative adversarial network-  
based optimization approach to energy storage 

allocation in power systems 
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where total operation cost, peak load, and voltage deviation 

are all included. 

2) This study proposes a solution approach to reinforce 

the training model, enabling effective inference of energy 

storage planning under different grid-connection conditions. 

3) The scheme of proposed algorithm is well-organized 

and expandable. This method can be also cooperated with 

other commercial software for utility planning applications.  

The proposed algorithm scheme is well-organized and 

expandable. Additionally, it can be easily integrated with 

other commercial software for utility planning applications. 

The organization of this paper is as follows: Section 2 

formulates the problem of energy storage device planning, 

Section 3 presents the proposed method, Section 4 describes the 

numerical tests, and Section 5 draws conclusions. 

2 Energy storage planning 

Fig. 1 illustrates the block diagrams of energy storage 

devices. The primary objective of integrating energy storage 

systems with the grid is to regulate power flow rapidly and 

address dispatch issues, ultimately improving the reliability 

of power supply. The use of energy storage devices also helps 

alleviate the pressure of load demand during peak hours [27]-

[30]. The charging and discharging states of an energy 

storage device are expressed as follows: 

1 −= + t t t

i i iE E P t                                  (1) 

where Ei  is the charging status of the ith energy storage device 

at time t, Ei
t-1

 is the initial charging of the ith energy storage 

device, Pi
t represents the charging power of the ith energy 

storage device at time t, Δt is the duration of charging, and 

β
 
is the charging efficiency. Conversely, the discharging 

status can be expressed as follows: 

 
1 1



−= − t t t

i i iE E P t                                (2) 

Ei

Pi

Utility

grid

Z

Battery Energy Storage

Lithium-ion Battery

Charging/Discharging

 Control System

AC DC

Power Conditioning 

System

 
Fig. 1. Block diagrams of energy storage devices 

To ensure that the energy storage device operates within the 

allowable limits, the following constraints are provided: 

 min , max , t

r i i r iK E E K E                            (3) 

0  ess busN N                                    (4) 

min max pV V V                                  (5) 

Next, Eq. (5) is used to express the voltage limits, where Vp
 
is 

the voltage of the pth bus, and Vmin, Vmax are the upper and lower 

limit of the bus voltage, respectively. Based on the above 

operating limits, the study next includes the planning cost, 

peak load, and voltage deviation as the objectives for the 

formulation of multi-objective functions. First, the planning 

cost of energy storage device consists of installation cost and 

line loss. The installation cost is related with the number of 

devices and their individual capacity, which is expressed 

below:  

As expressed in Eq. (3), Er,i represents the rated capacity of 

the ith energy storage device, while Kmin and Kmax are constants 

used to ensure a reasonable output of energy storage devices. 

Additionally, Eq. (4) specifies that the number of installed 

energy storage devices must not exceed the total number of 

system buses. Here, Ness represents the number of energy 

storage devices, and Nbus 
represents the number of buses in 

the system. Eq. (5) is used to express the voltage limits, where 

Vp is the voltage of the pth bus, and Vmin and Vmax represent the 

lower and upper limits of the bus voltage, respectively. Based 

on these operating limits, the study then includes planning 

cost, peak load, and voltage deviation as objectives in the 

formulation of multi-objective functions. The planning cost 

of the energy storage device comprises the installation cost 

and line loss. The installation cost is related to the number of 

devices and their individual capacity, as expressed below: 

,

1=

= 
Ness

e e r n

n

C c E                                         (6) 

where Ce is the installation cost of energy storage device, ce is 

the cost per unit storage capacity, Ness is the number of devices 

installed, and Er,n is the capacity of the nth energy storage 

device. In addition to installation cost, the line loss is 

concerned here, which can be computed using the following 

equation: 

1 1 1 1= = = =

= + −    
kNNg Nc Ne

i j k l

loss G DG L es

i j k l

P P P P P             (7) 

where Ploss is the amount of line loss, P 
i 

G is the generated power, 

P 
j 

DG is the generation of distributed generators,  P
k 

L is the load 

power, ±P
l 

es is the inflow or outflow of real power of the 

energy storage device, Ng is the number of generating units, Nc 
is the number of distributed generators, Ne is the number of 

energy storage devices, and Nk 
is the number of load buses. 

The cost of line loss is then calculated as follows: 

1

yM

loss loss d loss

d

C e M P
=

=                                  (8) 

    = +total e lossC C C                                           (9) 

Eq. (9) can be normalized as follows: 

min
1

max min

−
=

−

totalC C
f

C C
                                         (10) 

where Cmin and Cmax is the minimum and the maximum 

planning cost. Subsequently, the second objective function 

considered is the determination of the peak load, which is 

calculated as follows 

 ,
1....24

max ( )pk L t
t

P P
=

=                                  (11) 

where Ppk is the maximum load of the system, and PL,t is the 

load at the t hour. This objective function can be also 

preprocessed as below 

,min

2

, ,min

pk pk

pk max pk

P P
f

P P

−
=

−
                                  (12) 

where Ppk,max and Ppk,min is the maximum and the minimum 

value of the peak load. Next, the third objective function is 

voltage deviation, which is calculated below 

1,...,
max ( ) 100 %

bus

rated n

D
n N

rated

V V
V

V=

−
=                  (13) 

where VD is the maximum rate of voltage deviation, Vrated is 
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the rated bus voltage, and Vn is the n-th bus voltage. This 

objective function is normalized below  

     
D D, min

3

,max ,minD D

V V
f

V V

−
=

−
                                   (14) 

where VD,max 
and VD,min is the maximum and the minimum 

percentage of voltage deviation rate. The multi-objective 

function is formulated by combining f1, f2 and f3 equations (10), 

(12), and (14), respectively. The resulting function can be 

summarized as follows: 

)fwfwf(wfobj 332211min ++=                  (15) 

The individual weight of f1, f2 and f3 are denoted by w1, w2 and 

w3, respectively, and can be adjusted according to planning 

needs. With these weights, the model formulation of energy 

storage allocation is complete. 

3 Generative adversarial network-based 
optimization approach 

This study employs a modified approach based on 

generative adversarial networks (GANs) to analyze and 

determine the optimal site and capacity for energy storage 

devices. By incorporating the long short-term memory neural 

network (LSTM), the study introduces a modified version 

called the modified long short-term memory neural network 

(MLSTM). This MLSTM is integrated with the generator and 

discriminator of the GANs, resulting in an enhanced learning 

process. The following sections provide a detailed 

explanation of this integrated approach. 

The long short-term memory (LSTM) neural network is a 

recurrent neural network known for its utilization of three 

gates to regulate data transmission. However, when 

confronted with larger training datasets, the multiplication of 

the gating matrix within LSTM can lead to an increase in 

computational burden, subsequently impacting convergence 

performance. Hence, this study proposes an enhanced gating 

mechanism as a modification to the network. This 

modification eliminates the need for temporary output 

addition from the previous layer, while still maintaining 

satisfactory learning performance in subsequent propagation 

layers. In essence, the study adjusts the weight of the 

temporary output Yt-1 in the previous layer to zero and 

investigates the propagation neuron of the gating mechanism. 

×

it

Forget
gate

Input
gate

tanh

Output
gate

otft ×

×+
tanh

 Output

Ct-1

Memory 
cell

Previous 
memory cell 

xt

at

Input
+

PV and Wind of
grid-connected
Learning Data

W

Predict the best 
Energy Storage 
Device of installation
Location and value

Ct Yt

 
Fig. 2 Modified LSTM model 

 

Fig. 2 illustrates the modified long short-term memory 

neural network, displaying the output equations for the input 

gate, filter gate, and output gate as listed below: 

( )tanht i t ii W x b= +                          (16) 

( )tanht f t ff W x b= +                         (17) 

( )tanht o t oo W x b= +                             (18) 

where xt is the input neuron value at time t, which corresponds 

to the capacity of the current power transmission system 

when renewable energy is integrated. The data points are 

multiplied by the output weights and augmented with an 

offset (bi, bf, and bo) of 0.1. These multiplication results are 

subsequently filtered and passed through the nonlinear 

activation function (tanh) to derive the modified gate output. 

It is important to note that cross-validation is also employed 

in this process to ensure effective data learning. 

Following the validation of MLSTM, the study proceeds to 

investigate the application of generative adversarial networks 

as the solution approach for energy storage placement. Fig. 3 

illustrates the employed GAN for this study, wherein the data 

generator generates or fabricates data to feed the network. 

The discriminator, on the other hand, distinguishes 

differences and extracts relevant information. Through the 

learning process, the generated data and real data become 

increasingly similar, significantly reducing the required size 

of the training dataset. The underlying principle of this 

network lies in the use of maximum likelihood estimation. It 

involves establishing a probability distribution function Pd (x) 

based on the real input data, where x represents data points 

within the dataset. Consequently, a probability distribution 

function Pg (z) is initially constructed based on the generator's 

content. By adjusting Pg (z) to satisfy the condition of Pd =Pg, 

the optimal solution can be achieved. 

Based on the principle of equilibrium mentioned above, 

this study utilizes the generator to produce samples that 

reflect the intermittent power generation of photovoltaics and 

wind turbines. Subsequently, the discriminator is employed 

to extract useful data for decision support regarding the 

location and capacity of energy storage devices. To enhance 

computational performance, the MLSTM is adopted to 

replace traditional neural networks within the generator and 

discriminator of the original generative adversarial network. 

Essentially, the objective of Fig. 3 is to optimize memory cell 

and gating mechanisms to guide the generated data towards 

real data, enabling the trained neural network to extract 

crucial information and exhibit superior inference capability. 

In this modified generative adversarial network, the 

generator's input is obtained through a random variable z, 

which is then filtered by the MLSTM network to approximate 

the distribution of real data with G(z). These data are 

subsequently fed into the discriminator alongside real data, 

training the network to capture representative relationships 

and serve as decision support for the problem concerned. 

Real data of grid-

connection

Generator

Decisions of 

energy storge

 allocation

Generated data of 

grid-connection 
z

x

Random 

Input

Real Input

Discriminator

G(z)

MLSTM
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Fig. 3  Block diagram of proposed method including the 

modified generative adversarial network 
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4 Computation procedure 

Fig. 4 illustrates the flowchart of the proposed method, 

with the main computation blocks outlined as follows: 

Step 1) Initialization of parameters 

    The computation initializes with the data collected from 

the utility, including energy storage capacity, available 

locations, neural network parameters, and operating limits.    

   Step 2) Construction of database 

    In this step, load flow computation is conducted to 

determine the operating status of the power system, 

incorporating the presence of renewable energy sources at 

different buses. Subsequently, the location and capacity of 

energy storage devices are simulated, providing information 

such as line loss, bus voltage magnitude, and planning cost. 

These data are then collected to form a database for training 

the discriminator model. 

   Step 3) Construction of data generator model  

    During this step, a normally distributed power generation 

profile for renewable energy is randomly generated. This 

generated profile is utilized for training the MLSTM network, 

as shown in Fig. 2. The nonlinear activation function, tanh, is 

employed for the network neurons with an offset of 0.1. The 

output value of G(z) is normalized within the range of [-1, 1]. 

Once the data regarding grid-connected power generation is 

captured, the corresponding location and capacity of the 

energy storage device can be inferred and prepared for further 

verification. 

   Step 4) Confirmation of discriminator model 

      In this study, the discriminator is constructed using the 

MLSTM architecture. It receives both real load flow data and 

data generated from the network for training purposes. During 

the training process, the learning rate is initially set at 0.05 

and gradually decreased. The cross-validation technique is 

also implemented to ensure the effectiveness of the trained 

discriminator. 

  Step 5) Process termination  

   During the training process, once the maximum number of 

training epochs is reached and the convergence condition is 

met, the relevant parameters are stored, and the training is 

terminated. Subsequently, utilizing the data of grid-connected 

generation as input to this modified generative adversarial 

network, the network determines and presents output 

information, including the location and capacity of energy 

storage devices. 
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Fig. 3 Flowchart of proposed method 

5 Numerical simulations 

The proposed approach has been evaluated on a subset of 

the Taiwan power system [31] and the IEEE 30-bus system 

[32]. In Fig. 4, the 14-bus system located in southern Taiwan 

is depicted with the swing bus at bus #1, and photovoltaic and 

wind power generation at bus #13 and #14, respectively. The 

energy storage device's charging and discharging mechanism 

helps regulate the grid's supply and demand, enabling better 

control of voltage changes at each bus in the system. Lithium-

ion batteries are selected as the primary components of the 

energy storage device due to their high energy density. In this 

study, the energy capacity is set at 300 MWh, the power 

capacity at 30 MW, and the charging/discharging efficiency 

at 90%. To account for the durability and usage of lithium-

ion batteries, their lifetime is set at 10 years [33]. The 

installation cost is assumed to be $80/MWh, and the line loss 

cost is $2.1/kWh, based on a published report [34]. Safety 

measures include setting the upper and lower voltage limits 

for each bus in the system at 1.0 p.u. and 0.9 p.u., respectively. 

The proposed method is implemented in the Python 

programming language. We investigate four scenarios: Test 

1, 2, and 4 on the practical 14-bus system, and Test 3 on the 

IEEE 30-bus system. 

5.1 Test 1 

By considering hourly load changes and intermittent power 

after the integration of photovoltaic generation with wind 

power, both methods of the original generative adversarial 

network and the proposed approach are applied to determine 

the location and capacity of energy storage devices. Factors 

such as placement cost, peak load, and voltage deviation are 

considered during this process.  In this test scenario, the real 

power load is 426 MW, and the reactive power load is 94 

Mvar. Fig. 5 illustrates the photovoltaic and wind power 
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generation for this test system, where photovoltaic generation 

with a capacity of 5 MW is installed at bus #13, and wind 

power generation with a capacity of 30 MW is installed at bus 

#14. 
 

 

 Fig. 4 Test system 

 
Fig. 5 Photovoltaic and wind power generation. 

The computation begins by employing the Newton-

Raphson method to simulate the power flow, incorporating 

energy storage devices with capacities of 10, 15, 20, 25, and 

30 MW connected to their corresponding buses. The real 

power status and line loss data are obtained to establish the 

dataset. Note that bus #1, #13, and #14 are excluded from this 

analysis as they serve as either swing buses or reserved 

locations for renewable energy placement. Simulation results 

for energy storage allocation are presented in Table 1. Two 

methods are evaluated in this simulation: Method 1 employs 

the original generative adversarial networks (GAN), while 

Method 2 utilizes the proposed approach. Three groups of 

energy storage devices are allocated in this test. Fig. 6 

illustrates the charging and discharging schedules for these 

devices, with charging occurring from 1 to 6 am and from 10 

pm to 12 am, and discharging taking place from 7 am to 7 

pm. Fig. 7 compares the load demand with and without the 

proposed method, demonstrating effective peak burden 

alleviation facilitated by the energy storage devices. 

Additionally, Fig. 8 shows the voltage deviation rate 

calculated with and without the proposed approach. The 

proposed method significantly reduces the deviation rate, 

effectively maintaining bus voltages within predetermined 

values. 

 

 

 

Table 1 Simulation results of grid-connected energy 

storage devices for Test 1 

Energy storage 

device No. 

Method 1 
(Original GAN)  

   Method 2  
       (Proposed Method)  

Location 

(Bus) 

Capacity 

(MWh) 

Location 

(Bus) 

Capacity 

(MWh) 

 

         1 4 190 3 195 

   2 8 250 8 245 
 

   3 11 250 12 245 

 

Fig. 6 Charging and discharging schedule of energy           

storage devices 

 

Fig. 7 Load demand with and without the proposed           

method 

 
Fig. 8 Voltage deviation rate of each bus for Test 1   

5.2 Test 2 

     This test focuses on determining the optimal location and 

capacity of an energy storage device within a power grid that 

features a larger-scale integration of photovoltaic generation. 

Its purpose is to evaluate the feasibility of the proposed 

method in addressing the night peak demand observed in 

Taiwan. As the amount of photovoltaic power generation 

declines after sunset, energy storage devices must activate 

rapidly to meet the grid's requirements. The simulation 

conducted in this study involves a photovoltaic generation 

system with a capacity of 60 MW installed at bus #13 and 

#14, supplying power from 7 am to 5 pm [35]. The 

objectives encompass total operation cost, peak load 
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management, and voltage deviation mitigation. 

       Table 2 presents the computation results obtained using 

the proposed method, allowing for a comparison with 

another existing approach. The table provides details on the 

installation location and capacity of four groups of energy 

storage devices. Fig. 9 illustrates the charging and 

discharging schedule of these energy storage devices, while 

Fig. 10 showcases the load variation when the energy 

storage devices are employed. These figures demonstrate 

that the proposed method effectively addresses the issue of 

the night peak demand. Fig. 11 displays the voltage 

deviation rate at each bus, highlighting that both methods 

are effective in maintaining a satisfactory voltage deviation 

rate. 

Table 2 Simulation results of grid-connected energy 

storage devices for Test 2 

Energy storage 

device No. 

      Method 1 
(Original GAN) 

     Method 2  
       (Proposed Method) 

Location 

(Bus) 

Capacity  

(MWh) 

Location 

(Bus) 

Capacity 

(MWh) 

1 3 80 3 80 

   2 7 165 5 160 

   3 8 270 9 260 

   4 10       160 12 160 

 
Fig. 9 Charging and discharging schedule of energy 

storage devices 

 
Fig. 10 Load demand with assistance of energy storage 

devices. 

 
Fig. 11 Voltage deviation rate of each bus for Test 2 
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Fig. 12 IEEE 30-bus system 

5.3 Test 3 

This case study focuses on simulating the provision of 

reactive power by an energy storage device through a power 

conversion system. Fig. 12 depicts an IEEE 30-bus system, 

where wind power is integrated at Bus #26 and #29. The 

objective is to stabilize the bus voltage variations resulting 

from the intermittent nature of wind power generation 

through the regulation of reactive power from the energy 

storage devices. The total real power in this case is 402 MW, 

while the total reactive power is 188 Mvar. The wind farm's 

generators have a power capacity of 30 MW, representing a 

high proportion of renewable energy generation. The study 

specifically investigates an energy storage device with a 

capacity of 60 MVA and a reactive power output of 36 Mvar, 

aimed at regulating the system voltage [36]. 

    As this case study prioritizes the average load rather than 

the peak load, the weights assigned to ω1, ω2 and ω3, 

representing the placement cost, peak load, and voltage 

deviation respectively, are set as 1, 0, and 1 in the objective 

function formulation. The computation results for energy 

storage allocation concerning reactive power are presented 

in Table 3. The table specifies the location and capacity of 

the energy storage devices for different wind generation 

outputs ranging from 10 MW to 30 MW. Two sets of energy 

storage devices are considered, with placement options at 

Bus #18 and #24, or Bus #18 and #25. Fig. 13 illustrates the 

voltage deviation rate with and without the proposed method. 

Both methods exhibit a maximum voltage deviation of 

approximately 12%. 

     Fig.14 presents the simulation results for voltage 
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variation under various levels of wind power penetration. In 

each of the five wind power penetration cases, the placement 

of energy storage devices assists in keeping the voltage of 

each bus close to 0.9 p.u. This outcome confirms the 

method's effectiveness in enhancing voltage stability. 

Table 3 Computation results of energy storage allocation 

consideration the provision of reactive power. 

No. 
Wind 
(MW) 

Energy Storage 

Location 
(Bus) 

Reactive 
power 
(Mvar) 

1 10 
18 -36 

24 -36 

2 15 
18 -35 

25 -35 

3 20 
18 -34 

24 -34 

4 25 
18 -25 

24 -25 

5 30 
18 -24 

24 -24 

 

 
Fig. 13 Voltage deviation rate of each bus for Test 3. 

 
Fig. 14 Voltage variation under different penetrations of 
wind power generations. 

5.4 Test 4 

       This case study investigates the optimal placement of 

energy storage devices in the presence of wind power 

integration within the grid. The motivation behind this study 

arises from the impact of the strong northeast monsoon in 

Taiwan during winter, which leads to significant fluctuations in 

power generation throughout the day, thereby affecting the 

stability of power supply. Fig. 15 provides a schematic diagram 

illustrating the integration of wind power with energy storage 

devices. To ensure the grid's normal operation, the existing 

approach relies on charging the batteries during off-peak hours 

and discharging them during peak hours. However, the 

substantial difference between the maximum and minimum 

wind power generation exceeding 220 MW may result in 

considerable voltage fluctuations, potentially compromising 

the quality of busbar voltage. To mitigate this issue, a power 

conversion system (PCS) is employed to convert wind power 

into DC for storage and subsequently convert it back to AC for 

grid integration. This PCS solution prompts the simulation test 

conducted here to evaluate the optimal placement of energy 

storage devices under this scenario. 

In this simulation test, the conversion efficiency of the PCS 

(AC to DC) is set at 90%, and the weights assigned to the total 

placement cost, peak load, and voltage deviation are 

individually set at 0, 1, and 1 in the formulation of the objective 

function. Based on the data collected from the average wind 

power generation in Taiwan, the highest and lowest wind 

power generation values are recorded as 280 MW and 60 MW, 

respectively, as depicted in Fig.16. 

This test commences with a power flow calculation to 

identify suitable locations for wind power allocation. Bus #11, 

#12, #13, and #14 are identified as appropriate locations. Using 

the proposed method, Bus #11 and #12 are selected for energy 

storage device allocation. The next step involves determining 

the capacity of each energy storage device for different periods 

of wind power generation. Table 4 presents the computation 

results for energy storage allocation during the first, fourth, 

eighth, thirteenth, seventeenth, and twenty-first hour. 

Based on the information in Table 4, Figure 17 illustrates the 

charging periods from 1 am to 8 am, 4 pm to 5 pm, and 10 pm 

to 12 am, as well as the discharging periods from 9 am to 3 pm 

and 6 pm to 9 pm. The maximum charging capacity is 254 MW, 

while the maximum discharging capacity is 190 MW. These 

charging and discharging schedules align with the load 

variation trend of the considered transmission system, 

effectively balancing the power grid's supply and demand. 

Furthermore, Fig. 18 depicts the voltage at each busbar of the 

power grid at the 13th hour (1 pm), reflecting that none of the 

bus voltages fall below 0.9 p.u. This test demonstrates the 

method's effectiveness in providing stability support to the 

system. 

Energy Storage System

P

Utility

grid
Battery

PCS

DC AC

PCS

AC DC

 
Fig. 15 Schematic diagram of wind power integrated  

with energy storage device 

     
     Fig. 16 Load curve and wind power generation. 
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Table 4  Computation results of energy storage allocation for 

each period of wind power generation 

Time 
Wind 
(MW) 

Energy Storage 

Location 

(Bus) 

Capacity 

 (MWh) 

1 94.03 
11 42.02 

12 52.01 

4 71.17 
11 23.0 

12       48.17 

8 44.36 
11 26.74 

12 17.62 

13 275.31 
11   165.31 

12 110.0 

17 254.22 
11 142.0 

12   112.22 

21 169.07 
11   75.07 

12  94.0 

 
    Fig. 17 Charging and discharging schedule of energy 

storage device  

 

 
Fig. 18 Voltage fluctuation value of each bus at the 13th 

hour for Test 4. 

6 Conclusions 

This study proposes a modified generative adversarial 

network-based optimization approach to improve decision-

making support for energy storage device placement. The 

proposed method combines modified long short-term memory 

with generative adversarial networks to intelligently allocate 

energy storage. Practical feasibility tests have been conducted 

on a real power grid using utility data. The results demonstrate 

that the proposed approach effectively reduces costs and 

improves voltage profiles through optimized energy storage 

placement. This advancement facilitates planning automation 

and paves the way towards a greener power network. 
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