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Abstract

The global sulfur cycle has implications for human health, climate change, biogeochemistry, and bioremediation. The organosul-

fur compounds that participate in this cycle not only represent a vast reservoir of sulfur, but are also used by prokaryotes as

sources of energy and/or carbon. Closely linked to the inorganic sulfur cycle, it involves the interaction of prokaryotes, eukary-

otes, and chemical processes. However, ecological and evolutionary studies of the conversion of organic sulfur compounds are

hampered by the poor conservation of the relevant pathways and their variation even within strains of the same species. In

addition, several proteins involved in the conversion of sulfonated compounds are related to proteins involved in sulfur dissim-

ilation or turnover of other compounds. Therefore, the enzymes involved in the metabolism of organic sulfur compounds are

usually not correctly annotated in public databases. To address this challenge, we have developed HMSS2, a profiled Hidden

Markov Model-based tool for rapid annotation and synteny analysis of organic and inorganic sulfur cycle proteins in prokary-

otic genomes. Compared to its previous version (HMS-S-S), HMSS2 includes several new features. HMM-based annotation is

now supported by non-homology criteria and covers the metabolic pathways of important organosulfur compounds, including

dimethylsulfpopropionate, taurine, isethionate, and sulfoquinovose. In addition, the calculation speed has been increased by a

factor of four and the available output formats have been extended to include iTol compatible datasets, and customised sequence

FASTA files
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Abstract  30 

The global sulfur cycle has implications for human health, climate change, biogeochemistry, 31 

and bioremediation. The organosulfur compounds that participate in this cycle not only 32 

represent a vast reservoir of sulfur, but are also used by prokaryotes as sources of energy 33 

and/or carbon. Closely linked to the inorganic sulfur cycle, it involves the interaction of 34 

prokaryotes, eukaryotes, and chemical processes. However, ecological and evolutionary 35 

studies of the conversion of organic sulfur compounds are hampered by the poor conservation 36 

of the relevant pathways and their variation even within strains of the same species. In 37 

addition, several proteins involved in the conversion of sulfonated compounds are related to 38 

proteins involved in sulfur dissimilation or turnover of other compounds. Therefore, the 39 

enzymes involved in the metabolism of organic sulfur compounds are usually not correctly 40 

annotated in public databases. To address this challenge, we have developed HMSS2, a 41 

profiled Hidden Markov Model-based tool for rapid annotation and synteny analysis of organic 42 

and inorganic sulfur cycle proteins in prokaryotic genomes. Compared to its previous version 43 

(HMS-S-S), HMSS2 includes several new features. HMM-based annotation is now supported 44 

by non-homology criteria and covers the metabolic pathways of important organosulfur 45 

compounds, including dimethylsulfpopropionate, taurine, isethionate, and sulfoquinovose. In 46 

addition, the calculation speed has been increased by a factor of four and the available output 47 

formats have been extended to include iTol compatible datasets, and customised sequence 48 

FASTA files. 49 

 50 
 51 
  52 
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1 INTRODUCTION 53 

The global organic sulfur cycle occurs in both terrestrial and aquatic environments and 54 

involves the interplay of prokaryotes, eukaryotes, and chemical processes. Millions of 55 

megatonnes of sulfonated compounds are produced annually by biological and industrial 56 

processes. These compounds not only represent a vast reservoir of sulfur but can also be used 57 

by prokaryotes as a sources of energy and carbon (Moran & Durham, 2019). Understanding 58 

the mechanisms and ecological interactions of prokaryotes in the organic sulfur cycle is of 59 

great importance because the decomposition of organic sulfur compounds affects human 60 

health, bacterial virulence in infection (Dhouib et al., 2021), global warming, bioremediation 61 

processes such as wastewater treatment (Schäfer et al., 2010), and is linked to the 62 

biogeochemical cycling of sulfur between habitats (Koch & Dahl, 2018).  63 

Sulfonated compounds can range from small size with only a C1 carbon skeleton up to 64 

sulfonated lipids with long-chain alkanes, amino acids such as cysteine, or sulfur-containing 65 

cofactors with complex structures such as lipoate (Boden & Hutt, 2019; Goddard-Borger & 66 

Williams, 2017; Moran & Durham, 2019). While chemistry offers an infinite number of possible 67 

sulfonated compounds and new ones are being discovered all the time, these compounds 68 

often lack a described metabolic function or the pathways for their synthesis or degradation 69 

have not been elucidated (Thume et al., 2018). Only the most abundant sulfonated 70 

compounds, such as sulfoquinovose, dimethylsulfopropionate (DMSP), taurine, isethionate, 71 

cysteine, and methionine, have been studied biochemically in terms of synthesis and 72 

degradation pathways. 73 

In aquatic environments, the anti-stress molecule DMSP is the most well-known 74 

organosulfur compound (Kiene et al., 2000). Mainly produced by macroalgae and 75 

phytoplankton, it is emitted by around 600 million tonnes per year. Bacterial DMSP 76 

degradation in the oceans, salt marshes, and coastal regions is the major source of 77 

dimethylsulfide (DMS), which is released at a rate of about 300 million tonnes per year (Moran 78 

& Durham, 2019). As a volatile compound, DMS affects atmospheric chemistry and global 79 

warming by forming cloud condensation nuclei that increase the reflection of solar radiation 80 

(Schäfer et al., 2010). In the context of the global sulfur cycle, DMS acts as a link between the 81 

terrestrial, atmospheric and aquatic environments (Lovelock et al., 1972). DMS-derived 82 
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carbon and sulfur are used as electron acceptors or donors during dissimilation, or are 83 

assimilated via the intermediates dimethlysulfone and methanesulfinate (Fig. 1). 84 

Sulfonated lipids are estimated to be the largest reservoir of sulfur in terrestrial 85 

ecosystems (Goddard-Borger & Williams, 2017). Sulfoquinovose is a sulfonated glucose 86 

derivate and the most common part of the head group of sulfolipids which are integral part of 87 

thylakoid membranes of chloroplasts and photosynthetic systems. Mainly produced by plants, 88 

algae, and cyanobacteria its turnover rate has been estimated at around 10 billion tonnes per 89 

year (Goddard-Borger & Williams, 2017). The bacterial decomposition of sulfoquinovose 90 

involves several different pathways similar to the degradation of glucose (Fig. 2a), with the 91 

exception that smaller sulfonated compounds are often released, since complete utilisation 92 

with release of free sulfur by a single organism is often not possible (Wei et al., 2022). Release 93 

and scavenging of sulfonated intermediates is achieved by various transport systems (Fig. 2b). 94 

Sulfoquinovose decomposition and release of inorganic sulfur is then completed by pathways 95 

linked to taurine, isethionate and/or sulfoacetate (Fig. 2c). In summary, prokaryotic utilization 96 

of these organic compounds as sources of sulfur, carbon, and energy is far from being a 97 

uniform process and new metabolic pathways for the degradation of sulfonated compound 98 

are constantly being discovered (Boden et al., 2010; Koch & Dahl, 2018; Sharma et al., 2022; 99 

Wolf et al., 2022). 100 

These processes are also closely linked to the availability of inorganic sulfur as the 101 

released sulfur is either assimilated or excreted as sulfate (Ruff et al., 2003), sulfite (Koch & 102 

Dahl, 2018; Li et al., 2022; Sharma et al., 2022), thiosulfate (De Zwart et al., 1997), 103 

tetrathionate (Boden et al., 2010) or sulfide (Peck et al., 2019). Indeed, the complete 104 

consumption of the volatile sulfonated C1-compound DMS coupled with the oxidation of the 105 

thiosulfate formed as an intermediate, has been reported for a single organism, providing a 106 

new link between the organic and inorganic sulfur cycles (Koch & Dahl, 2018). However, the 107 

fate of the sulfur released from sulfonated compounds is often not known or assumed to be 108 

the same as in dissimilatory sulfur oxidation or reduction. The physiology and interactions of 109 

bacterial communities that release sulfur from sulfonated carbon compounds have been 110 

sparsely explored and the few existing studies are based on, or assume, sulfur cycling via 111 

dissimilatory sulfite reductases (Burrichter et al., 2021; Hanson et al., 2021; Wolf et al., 2022). 112 
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Ecological studies of organic sulfur compounds are difficult because their metabolism is 113 

poorly conserved across bacterial phylogeny and can even vary between strains of the same 114 

species. Thus, even within a species, predictions based on taxonomic assignment are not 115 

possible (Schäfer et al., 2010). As the functional annotation pipelines of public databases 116 

mainly focus on the synthesis of methionine and cysteine, the enzymes involved in the 117 

metabolism of organic sulfur compounds are usually not correctly annotated. Inaccurate 118 

annotation in public databases is exacerbated by the fact that several proteins involved in the 119 

conversion of sulfonated compounds are related to proteins involved in sulfur dissimilation or 120 

the turnover of other compounds e.g. the DMSO reductase family (Leimkühler & Iobbi-Nivol, 121 

2016) or quinone oxidoreductase complexes (Duarte et al., 2021). For these reasons, the 122 

abundance of microbes utilising organic sulfur compounds is likely to be underestimated 123 

(Carrion et al., 2019) and the role of sulfonated compounds is understudied (Wolf et al., 2022). 124 

Thus, there is a knowledge gap of the link between inorganic and organic sulfur cycling in 125 

ecological systems. 126 

To fill this gap, we have extended HMS-S-S (Tanabe & Dahl, 2022). This tool was 127 

originally developed for rapid detection and annotation of inorganic sulfur dissimilation in 128 

prokaryotic genomes. With the substantial extension presented here, it now includes not only 129 

inorganic sulfur metabolism enzymes, but also enzymes with characterized or at least strongly 130 

indicated function in the metabolism of sulfonated sulfur compounds. These include 131 

sulfoquinovose synthesis and degradation pathways, DMSP metabolism, taurine and 132 

isethionate conversion, and transport systems for various sulfonated compounds. For all these 133 

pathways, we developed individual profiled hidden Markov Models (HMM) and validated 134 

score thresholds by cross-validation and with an independent test dataset. HMS-S-S itself has 135 

been completely redesigned, improving usability and output formats, and extending the file 136 

manipulation tool. By optimising the underlying algorithms, the overall computing speed has 137 

been increased by a factor of four. Due to the complete overhaul, we have renamed the tool 138 

“HMSS2”. HMSS2 now covers the known metabolism of inorganic and organic sulfur 139 

compounds, facilitating the exploration of the microbe-driven natural sulfur cycle. 140 
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2 METHODS 141 

2.1 HMSS2 improvements and workflow 142 

Algorithmic improvements were made on the speed and user-friendliness by process 143 

optimization and the implementation of additional features. HMSS2 algorithms are now 144 

completely written in Python and precompiled versions are available. In this way, the number 145 

of dependencies required to be installed by the user has been greatly reduced to just two 146 

external programs. HMMER and Prodigal are still required but installing and configuring of 147 

MySQL is no longer necessary. The installation was further simplified by preparation of a pre-148 

compiled executable, that will run directly on a Unix system. 149 

HMSS2 includes the basic design of HMS-S-S with further automation. User-supplied 150 

input requires a directory containing files in FASTA nucleotide format, consisting of scaffolds 151 

or contigs. Alternatively, it is possible to provide amino acid sequences in FASTA files and the 152 

corresponding features in GFF3 formatted files. All files in the directory will then be processed 153 

in consecutive order. Nucleotide input files are first searched for open-reading frames and 154 

translated into protein sequences by Prodigal. This step is omitted if protein sequences are 155 

provided. Profile hidden Markov Models (HMM) are then queried against the protein 156 

sequences of the current file with validated bit score cutoffs via hmmsearch. Hits are saved in 157 

a local database together with corresponding genomic features and protein amino acid 158 

sequences. The local database now uses the SQLite database engine and an improved 159 

database table structure that allows to save multi-domain proteins with all domains. In the 160 

next step, the detected proteins are searched for genetic co-localization. This is done via the 161 

genomic features and a maximum nucleotide distance between two genes to be syntenic. 162 

Syntenic gene clusters are then compared with a set of predefined and named gene patterns. 163 

A new feature of HMSS2 is the detection of co-linear gene clusters. This is a special type of 164 

synteny where the genes occur in exactly the same order as the gene pattern. Gene clusters 165 

that are similar to the pattern(s) provided are then named by characteristic keywords. NCBI, 166 

GTDB taxonomy files or custom files with a similar format can be used to assign taxonomic 167 

information. As the taxonomy may change over time, it is recommended that the user updates 168 

this information locally as required. Results can be retrieved from the local database filtered 169 

by protein domains and/or keywords via HMSS2. The standard output now includes FASTA 170 

formatted files and iTol datasets. 171 
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2.1 Training dataset generation, annotation and HMM development 172 

Datasets were generated from genomic data downloaded from NCBI RefSeq (Haft et al., 173 

2018) or GenBank (Sayers et al., 2019) as of September 2022. The HMM training dataset 174 

contained all assemblies from the NCBI RefSeq database with an assembly level of a complete 175 

chromosome. The independent test data consisted of assemblies originating from GenBank, 176 

again with an assembly level of the complete chromosome. GenBank covers a greater number 177 

of phyla and a wider range of quality and is therefore not entirely similar to the training data 178 

from RefSeq. Sequence annotation for Hidden-Markov-model generation was performed 179 

using the training dataset and list of reference proteins for organic sulfur metabolism (Table 180 

S1). Methods for annotating the training and independent test datasets and for HMM 181 

generation were used as described previously (Tanabe & Dahl, 2022). 182 

2.4 Performance metric calculation 183 

Performance was determined using balanced accuracy (Brodersen et al., 2010), F1-score 184 

(Forman & Scholz, 2010), and the Matthew-correlation-coefficient (MCC) (Chicco & Jurman, 185 

2020). The metric values were additionally corrected for the dataset's skewness (Jeni et al., 186 

2013) (Table S2). Values for each Hidden Markov Model were calculated from a confusion 187 

matrix obtained by comparing the annotation of the training/test dataset and annotation 188 

assigned by the HMMs. Matching assignments were considered as true positives (TP), while 189 

mismatching assignments were considered as false positives (FP), if the HMM recognised a 190 

sequence unrelated to the HMM training sequences. All sequences that were not recognized 191 

by the HMM but matched the annotation were counted as false negative (FN), and all other 192 

sequences were recorded as true negatives (TN). 193 

2.5 Thresholding and cross-validation 194 

Thresholding and cross-validation were executed as previously described (Tanabe & 195 

Dahl, 2022). For each HMM, bit scores for noise cutoff, trusted cutoff, and an optimized 196 

threshold were determined prior to cross-validation. The noise cutoff corresponded to the 197 

score of the lowest scoring TP hit. The trusted cutoff corresponded to the score of the highest 198 

scoring FP hit. The optimized cutoff was computed during a nested cross-validation procedure 199 

with a 10-fold outer loop and a 5-fold inner loop (Varma & Simon, 2006). The optimized cutoff 200 
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corresponded to the median of the thresholds with the highest F1 scores across all inner folds. 201 

Outer folds were analyzed after all thresholds were set.  202 

Each cross-validation fold was generated from the HMM training data. Sequences were 203 

randomly sorted into the 10 outer folds of equal size, followed by the equal deviation of each 204 

outer fold into 5 inner folds. A cross-validation procedure was then performed on all folds. 205 

The inner folds were used to determine the optimized thresholds. The overall performance of 206 

each HMM was then done with a confusion matrix created for the outer folds using the 207 

optimized thresholds as a cutoff. Balanced accuracy was calculated as the average of all 208 

accuracies from each fold. F1 score and MCC were calculated as the sum of the confusion 209 

matrices from all folds (Forman & Scholz, 2010). The same procedure without fold generation 210 

was performed for the independent test dataset (Chicco, 2017). 211 

2.6 Performance testing 212 

The performance of HMSS2 was compared with that of HMS-S-S version 1 (Tanabe & 213 

Dahl, 2022). The HMM library included all 164 HMMs of the original library, detecting 214 

dissimilatory sulfur metabolism. A quadratic increasing number of randomly selected 215 

genomes ranging from 2 to 64 were chosen from the training dataset described for version 1 216 

and used as input for the performance comparison. The input data were in FASTA nucleotide 217 

format. Each run was repeated three times with newly randomised input data to reduce 218 

performance bias caused by the input data. Both program versions were benchmarked for the 219 

execution time required for the workflow from data ientry to the final annotated hits with 220 

appropriately named gene clusters, but without taxonomy assignment. Time was measured 221 

as the required wall-clock runtime when running HMS-S-S or HMSS2 with four parallel threads 222 

on an Intel Core i7-6700 CPU.  223 

3 RESULTS 224 

Here, we created a comprehensive database of reliable hidden Markov models (HMMs) 225 

based on archaeal and bacterial proteins associated with organic sulfur metabolism. The same 226 

approach has already been used for the enzymes of dissimilatory metabolism of inorganic sul-227 

fur compounds (Tanabe & Dahl, 2022). Not only sequence similarity, but also integrated 228 

synteny was considered to assign a protein to a specific functional group. The HMMs created 229 
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here focus on the most abundant organic sulfur compounds in terrestrial and aquatic environ-230 

ments. The compounds covered here include dimethylsulfoniopropionate (DMSP), dimethyl 231 

sulfide (DMS), dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO2) (Fig. 1), 2,3-dihydroxy-232 

propane-1-sulfonate (DHPS), isethionate, taurine, and membrane sulfolipids (Fig. 2). The 233 

HMMs for the enzymes of the metabolic pathways for degradation of individual compounds 234 

are described in full below. Normally, prokaryotes do not code for the entire degradation 235 

pathways, but only for parts of them. 236 

3.1 HMM Development: DMSP degradation 237 

DMSP is primarily produced by single-celled phytoplankton and algal seaweeds, where 238 

it acts as an osmolyte and anti-stress molecule (Kiene et al., 2000). Degradation of DMSP 239 

either requires a demethylation pathway or a DMSP lyase (Fig. 1). The demethylation pathway 240 

is encoded by the dmdABCD gene cluster and starts with the demethylation of DMSP via DmdA 241 

to form methylmercaptopropionate. This intermediate is further catabolized by DmdB, DmdC 242 

and finally DmdD with the release of acetaldehyde and methanethiol (Bullock et al., 2014; 243 

Reisch et al., 2011). For each of the enzymes, one HMM was generated, making four in total. 244 

Several non-orthologous DMSP lyases, DddL, DddP, DddQ, DddW and DddY, have been 245 

characterised which convert DMSP to acrylate with the release of DMS and acrylate. The latter 246 

is then converted to 3-hydroxypropionate by AcuNK (Curson et al., 2011) or to propionyl-CoA 247 

by AcuI (Todd et al., 2012). DMSP lyase DddD catalyzes formation of propionyl-CoA and DMS 248 

from DMSP in a single reaction without the formation of an acrylate intermediate. 249 

3-hydroxypropionate can be further converted to acetyl-CoA via DddA and DddC (Curson et 250 

al., 2011). HMMs were generated for AcuI, AcuN, AcuK, DddA, and all DMSP lyases. As there 251 

were less than ten sequences identified for DddQ, DddW and DddC, HMMs could not be 252 

constructed for these three enzymes. 253 

3.2 HMM development: Assimilation of methanethiol and DMS 254 

DMS and methanethiol are C1-organosulfur compounds derived mainly from the 255 

degradation of DMSP. Both can be assimilated by bacteria as a source of sulfur and carbon, 256 

where methanethiol is first converted to DMS, followed by oxidation and assimilation (Fig. 1). 257 

The conversion of methanethiol to DMS is catalyzed by methanethiol S-methyltransferase, 258 

MddA. This membrane-bound enzyme transfers a single sulfur atom from S-259 
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adenosylmethionine to methanethiol (Carrion et al., 2015). The resulting DMS can be further 260 

oxidized by either dimethylsulfide cytochrome c reductase, DdhABCD, also known as 261 

dimethylsulfide dehydrogenase (McDevitt, Hanson, et al., 2002), or by multicomponent DMS 262 

monooxygenase DsoABCDEF (Horinouchi et al., 1999). The periplasmic DdhABC 263 

dimethylsulfide dehydrogenase couples the oxidation of DMS to the reduction of two c-type 264 

cytochromes, producing DMSO as the final product. DdhD is a cytoplasmic protein that is not 265 

part of the DMS dehydrogenase but has a proposed function in the assembly of the DdhAB 266 

complex and its secretion via the Tat pathway (McDevitt, Hugenholtz, et al., 2002). For DdhA 267 

and DdhB, it was possible to generate individual HMMs, while this was not the case for DdhC 268 

and DdhD which had less than ten validly annotated sequences in the training dataset. The 269 

multicomponent DMS monooxygenase DsoABCDEF oxidizes DMS in a two-step reaction to 270 

DMSO2 with DMSO as intermediate. As the sulfur moiety is specifically oxidised, this enzyme 271 

is also referred to in the literature as assimilatory DMS S-monooxygenase (Boden & Hutt, 272 

2019). A total of six HMMs were generated for this complex. After the oxidation of DMS to 273 

DMSO2, the next step in sulfur assimilation is the oxygen-dependent conversion of DMSO2 to 274 

methanesulfinate, catalyzed by FMN-dependent DMSO2 monooxygenase SnfG (Wicht, 2016). 275 

SnfG was represented by a single HMM. Methanesulfinate is chemically oxidized to 276 

methanesulfonate, which is further oxidized to sulfite and formaldehyde by the assimilatory 277 

methanesulfonate monooxygenase MsuDE in a NADH- and oxygen-dependent reaction. For 278 

MsuDE, a HMM was trained for each subunit. 279 

3.3 HMM development: Dissimilation of DMSO2 280 

Dimethylsulfone is mainly derived from oxidation of DMS. The degradation of dimethyl 281 

sulfone (DMSO2) begins with its reduction to dimethyl sulfoxide (DMSO) by a DMSO2 282 

reductase in an NADH-dependent reaction (Fig. 1). Although the activity has been measured 283 

in crude extracts of some methylotrophic Actinobacteria and Alphaprotebacteria (Borodina et 284 

al., 2000; Borodina et al., 2002), the enzyme has not been characterized. DMSO is then further 285 

reduced to dimethylsulfide (DMS). Two types of DMSO reductases have so far been 286 

characterized (Boden & Hutt, 2019). The first, membrane-bound enzyme is composed of the 287 

three subunits, DmsABC, and uses electrons from the quinol pool for DMSO reduction (Bilous 288 

& Weiner, 1985). For this enzyme one HMM for each subunit was trained. The second DMSO 289 

reductase uses NADH for this purpose and probably consists of only one subunit with high 290 
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similarity to DmsA, indicated by its cross-reaction with DmsA antibodies. A separate HMM 291 

could not be trained for this enzyme, because it is only known by its activity in crude extracts 292 

(Borodina et al., 2002). In addition to the Dms-type DMSO reductases, a soluble periplasmic 293 

DMSO reductase, DorCAD, has been characterized (A. G. McEwan et al., 1998). The 294 

corresponding genes are regulated by DorS and DorR (Kappler & Schäfer, 2014). For each of 295 

these five proteins/subunits, we constructed one HMM. The DMS, which is released by DMSO 296 

reductase of both types, is oxidized to methanethiol (CH3SH) and formaldehyde by a DMS 297 

monooxygenase, DmoAB, in another NADH-consuming reaction (Boden et al., 2011). As only 298 

dmoA has been validly identified so far, we trained a HMM specifically for DmoA, but not for 299 

DmoB. Further oxidation of methanethiol by a methanethiol oxidase MtoX leads to the final 300 

release of sulfide and another molecule of formaldehyde (Eyice et al., 2017). A single HMM 301 

was trained for MtoX. 302 

3.4 HMM development: Dissimilation of methanesulfonate 303 

Methanesulfonate is formed by spontaneous chemical oxidation of DMS in the 304 

atmosphere (Fig. 1). It is used by diverse aerobic bacteria as a sulfur source and by some 305 

specialized methylotrophic prokaryotes as a source of carbon and energy (Kelly & Murrell, 306 

1999). The dissimilatory methanesulfonate monooxygenase catalyzes the conversion of 307 

methanesulfonate to formaldehyde and sulfite (Henriques & De Marco, 2015). This enzyme is 308 

encoded by the msmABCD operon, which is often located adjacent to the msmEFGH operon, 309 

usually in the opposite direction. The latter encodes a putative ABC-type transporter (Fig. 2b) 310 

proposed to facilitate the import of methanesulfonate into to the cytoplasm (Henriques & De 311 

Marco, 2015). Six HMMs were developed to represent each of these proteins. MsmC and 312 

MsmD had to be excluded due to the small number of sequences in the training datasets. 313 

3.5 HMM development: Alkanesulfonate oxidation and transporters 314 

The ssuEADCB gene cluster encodes the two-component alkanesulfonate 315 

monooxygenase SsuDE and the alkanesulfonate ABC-transporter SsuABC (Fig. 2b). 316 

Alkanesulfonate monooxygenase catalyzes the oxidation of various sulfonated alkanes as 317 

substrates with variable affinity, including phenylated organic compounds like N-318 

phenyltaurine. After transport into the cell via SsuABC, the sulfonate is cleaved by SsuDE in a 319 

reaction dependent on NADH and molecular oxygen (Eichhorn et al., 1999). Electrons are 320 
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provided by SsuE via an FMN cofactor. SsuD then cleaves the sulfonate group and oxidizes the 321 

terminal carbon atom. For this pathway five HMMs, one for each encoded protein, were 322 

created. 323 

3.6 HMM development: Sulfoquinovose synthesis 324 

Sulfoquinovose (SQ) is a sulfonated derivate of glucose where the 6-hydroxyl group is 325 

substituted by a sulfonate group. SQ is a constituent of the unique head group of the 326 

membrane-bound glycolipid sulfoquinovosyl diacylglycerol (SQDG) present in thylakoid 327 

membranes and photosynthetic prokaryotes. On a genetic level, five genes sqdA, sqdB, sqdC, 328 

sqdD and sqdX have been described to be involved in SQDG synthesis in bacteria so far 329 

(Benning & Somerville, 1992a, 1992b; Guler et al., 2000; Rossak et al., 1995). The functions of 330 

SqdA and SqdC have not been completely resolved (Benning & Somerville, 1992b; Rossak et 331 

al., 1997). The synthesis begins with the exchange of the 6-hydroxyl group of uridine-332 

diphosphate (UDP)-glucose for a sulfonate group by UDP-sulfoquinovose synthase, SqdB. The 333 

formation of SQDG is then catalyzed SQDG synthase, SqdD or SqdX (Rossak et al., 1995). A 334 

total of five HMMs was trained to detect the enzymes of this pathway. 335 

3.7 HMM development: Sulfoquinovose degradation and transport 336 

As sulfoquinovose is a sulfonated derivate of glucose, it is catabolized in a similar manner 337 

and can serve as a carbon and energy source (Hanson et al., 2021). Several pathways 338 

resembling glucose degradation have been characterized, including the Sulfo-Embden-339 

Meyerhof-Parnas pathway (Denger et al., 2014), the Sulfo-Entner–Doudoroff pathway (Felux 340 

et al., 2015), the transaldolase-based pathway related to the pentose phosphate pathway 341 

(Frommeyer et al., 2020) and a complete degradation pathway based on a sulfoquinovose 342 

monooxygenase (Sharma et al., 2022) (Fig. 2a). 343 

The Sulfo-Embden-Meyerhof-Parnas pathway (Fig. 2a) begins with import of 344 

sulfoquinovose by the transporter YihO. A sulfolipid α-glucosidase YihQ may also be involved 345 

and other SQ derivatives may also be imported. Analogous to the EMP pathway, SQ is then 346 

cleaved to dihydroxyacteonephosphate (DHAP) and 3-sulfolactaldehyde (SLA) via the 347 

isomerase YihS, kinase YihV and aldolase YihT. In an NADH-dependent reaction, the reductase 348 

YihU then reduces SLA to the final product 2,3-dihydroxypropane sulfonate (DHPS), which is 349 
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transported out of the cell again via YihP. A separate HMM was created for each of the Yih 350 

proteins.  351 

The Sulfo-Entner–Doudoroff is analogous to the ED pathway (Fig. 2a). As there was no 352 

specific abbreviated name assigned to these enzymes by the original publication (Felux et al., 353 

2015), we assigned names to enhance HMSS2 output readability. SQ is cleaved by a 354 

dehydrogenase SedA, a lactonase SedB, a dehydratase SedC and an aldolase SedD to pyruvate 355 

and SLA. Another dehydrogenase, SedE, then oxidizes 3-sulfolactaldehyde (SLA) in an NAD-356 

dependent reaction to 3-sulfolactate (SL), which is then exported. A separate HMM was 357 

generated for each of the proteins mentioned, for a total of 5 HMMs.  358 

The third SQ degradation pathway contains a transaldolase as the key enzyme (Fig. 2a) 359 

(Frommeyer et al., 2020). SQ is imported into this pathway via the transporter SftA and 360 

converted to sulfofructose by the isomerase SftI. This product, together with glycerine-361 

aldehyde-3-phosphate, is then converted by the transaldolase SftT to SLA and fructose-6-362 

phosphate. SLA, in turn, is converted to SL in an NAD-dependent reaction by the 363 

dehydrogenase SftD and exported via the transporter SftE or reduced to 2,3-364 

dihydroxypropane sulfonate (DHPS) in an NADH-dependent reaction by the reductase SftR. A 365 

separate HMM was generated for each of the Sft proteins, for a total of 6 HMMs.  366 

The fourth known degradation pathway for SQ (Fig. 2a) differs from the others described 367 

so far, because it involves oxidation of the entire molecule, including cleavage of sulfur 368 

(Sharma et al., 2022). The pathway described begins with the import of 369 

sulfoquinovosylglycerol by an ABC transporter called SmoEFGH. In the cytoplasm, 370 

sulfoquinovosyl glycerol is cleaved by the sulfoquinovosidase SmoI to SQ. In contrast to the 371 

other pathways, SQ is now transformed to 6-oxo-glucose and sulfite by an alkanesulfonate 372 

monooxygenase, SmoC. The electrons for this reaction come from NADPH via the flavin 373 

reductase SmoA. 6-oxo-glucose is converted in another NADPH-dependent reaction by SmoB 374 

into glucose, which is then available for glycolysis. Eight HMMs were generated for this 375 

pathway, one for each protein. An additional HMM was trained for SmoD ,a putative regulator 376 

encoded in the smo operon. 377 
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3.8 HMM development: 2,3-dihydroxypropane sulfonate transporters and 378 

degradation 379 

According to the postulated pathway for degradation of 2,3-dhydroxy propane sulfonate 380 

(DHPS) (Fig. 2c), the compound is either taken up by the TRAP transporter HpsKLM or by HpsU 381 

(Fig. 2b). The DHPS-3-dehydrogenase HpsN then converts (R)-DHPS to sulfolactate with 382 

concomitant formation of two equivalents of NADH. For (S)-DHPS, it was postulated that this 383 

compound is first converted to the (R)-DHPS enantiomer via (R)-DHPS-2-dehydrogenase HpsP 384 

and (S)-DHPS-2-dehydrogenase HpsO (Mayer et al., 2010). The resulting (R)-sulfolactate can 385 

be further converted in several ways: The (R)-sulfolactate sulfolyase SuyAB catalyzes a 386 

desulfonation reaction, releasing sulfite and pyruvate. The (S)-enantiomer of sulfolactate is 387 

first converted to sulfopyruvate by SlcC and then to (R)-sulfolactate by ComC (Mayer et al., 388 

2010). Both enantiomers were postulated to be transported by the exporter SlcHFG (Mayer 389 

et al., 2010) (Fig. 2b). On HMM was created for each protein/subunit of the DHPS degradation 390 

pathway. 391 

3.9 HMM development: Isethionate and taurine degradation 392 

Isethionate and taurine are C2-sulfonates which are produced by eukaryotes from 393 

cysteine or methionine (Moran & Durham, 2019). Bacterial degradation of these compounds 394 

includes sulfoacetaldehyde as an intermediate which is a point of convergence with 395 

sulfoacetate degradation (Weinitschke, Hollemeyer, et al., 2010) (Fig. 2c). Two different 396 

transporters are proposed for the import of isethionate (Fig. 2b). These are the TRAP 397 

transporters IseKLM and IseU from the major facilitator superfamily. After import into the 398 

cytoplasm, isethionate is oxidized to sulfoacetaldehyde by the isethionate dehydrogenase IseJ 399 

(Weinitschke, Sharma, et al., 2010). In some organisms, isethionate is not converted, but the 400 

sulfonate group is cleaved off by isethionate sulfite lyase IslAB, releasing sulfite and 401 

acetaldehyde (Peck et al., 2019).  402 

Taurine import is postulated to be facilitated by the ABC transporter TauAB1B2C or the 403 

TRAP transporter TauKLM (Fig.2b). There are several possibilities for the further pathway. 404 

Taurine can either be oxygenated by TauD to form 1-hydroxy-2-aminoethane sulfonic acid, 405 

which decomposes to aminoacetaldehyde and sulfite (Eichhorn et al., 1999), or it is oxidized 406 

in NADH-dependent reaction by the taurine dehydrogenase TauXY, which produces 407 
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sulfoacetaldehyde. The same product is also produced by the transfer of the amino group to 408 

pyruvate by taurine:pyruvate aminotransferase Tpa (Bruggemann et al., 2004)) or to 409 

2-oxoglutarate by taurine:2-oxoglutarate aminotransferase Toa (Krejcik et al., 2010). 410 

Sulfoacetaldehyde can be converted by the NADPH-dependent sulfoacetaldehyde 411 

reductase IsfD to isethionate which is then exported by the IsfE transporter (Krejcik et al., 412 

2010). Another possible fate of sulfoacetyladehyde is desulfonation coupled to a 413 

phophorylation by sulfoacetaldehyde acetyltransferase Xsc to acetyl phosphate which is 414 

further converted to acetyl-CoA by phosphate acetyltransferase Pta (Weinitschke, Sharma, et 415 

al., 2010) Sulfite released in the each of these processes is exported via TauE (Weinitschke et 416 

al., 2007). An individual HMM was developed for each individual protein/subunit mentioned 417 

here. An exception was made for TauB1 and TauB2, which were combined into a single HMM 418 

due to their similarity. Additionally, we trained an HMM for TauZ, a protein of unknown 419 

function, and the regulator TauR. Both are commonly found genetically associated with other 420 

tau genes. 421 

3.10 HMM development: Sulfoacetaldehyde formation 422 

Sulfoacetaldehyde is not only produced by taurine and isethionate degradation but also 423 

by the dissimilation of sulfoacetate (Weinitschke, Hollemeyer, et al., 2010). The transporter 424 

SauU is hypothesised to facilitate the entry of sulfoacetate into the cell (Fig. 2b). Subsequently, 425 

sulfoacetate is activated by sulfoacetate-CoA ligase, SauT, and finally reduced to 426 

sulfoacetaldehyde via sulfoacetaldehyde dehydrogenase, SauS, consuming NADPH. SauS, 427 

SauT and SauU (Weinitschke, Hollemeyer, et al., 2010) were each represented by a HMM 428 

respectively. Sulfoacetaldehyde can also be produced by decarboxylation of sulfopyruvate 429 

(Fig. 2c) catalyzed by ComDE (Denger et al., 2009). These two subunits are each represented 430 

by a HMM.  431 

3.11 HMM development: Cysteine synthesis 432 

Cysteine is an essential amino acid with a thiol side chain. Here, we started to cover the 433 

relevant proteins with HMMs primarily based on knowledge collected with enterobacterial 434 

model organisms. Biosynthesis begins with the import of sulfate or thiosulfate into the 435 

bacterial cell via CysUWA (Aguilar-Barajas et al., 2011) or YeeE/YedE-like (Tanaka et al., 2020) 436 

transporters. Sulfate is reduced to sulfide which is then incorporated into O-acetylserine to 437 
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synthesize cysteine (Kredich, 1996). In E. coli, sulfate is activated by ATP sulfurylase CysDN 438 

(Leyh et al., 1988) to adenosine 5'-phosphosulfate (APS), which can be further activated by 439 

APS kinase CysC to 3'-phosphoadenosine-5'-phosphosulfate (PAPS). PAPS reductase CysH then 440 

reduces the activated compound to sulfite. In some bacteria, including most cyanobacteria, 441 

APS can be reduced to sulfite directly, without phosphorylation to PAPS (Bick et al., 2000). The 442 

assimilatory APS reductases catalyzing this reaction exhibit similarity to the assimilatory PAPS 443 

reductases (Abola et al., 1999; Bick et al., 2000) and are covered by the same HMM (CysH) in 444 

this work. In Enterobacteria, sulfite is reduced to sulfide via CysIJ. Finally, cysteine is 445 

synthesized from sulfide and O-acetyl-L-serine by the cysteine synthase CysK. A total of 10 446 

new HMMs was generated for the mentioned proteins/subunits. An HMM for YeeE/YedE-like 447 

transporters was already available through HMS-S-S (Tanabe & Dahl, 2022) 448 

3.12 HMM validation: cross validation and independent test data set 449 

The HMMs developed were validated by cross-validation and with an independent test 450 

data set. In cross-validation, sequences unrelated to the tested HMM training data were 451 

added as true negative examples in addition to the omitted training sequences (Chicco, 2017; 452 

Refaeilzadeh et al., 2009). The omitted sequences from each fold served as true positive 453 

examples. Cross-validation was performed using the optimized thresholds calculated prior to 454 

cross-validation. Thus, the threshold values should also be checked for their suitability. 455 

Performance was measured using the Matthews Correlation Coefficient (MCC). This metric 456 

ranges from -1 to 1, with 0 corresponding to random assignment, 1 corresponding to perfect 457 

assignment with no misclassification, and -1 corresponding to complete misclassification. 458 

Here, the individual occurrence of FP or FN lowers the score on the MCC, while the 459 

combination of both misclassifications lowers the score more dramatically than the single 460 

occurrence of either type of error (Chicco & Jurman, 2020). 461 

The majority of the HMMs developed showed high precision and recall in the cross-462 

validation and on the test dataset (Fig. 3). Of the 134 HMMs covering proteins of organic sulfur 463 

compound metabolism, 127 stayed above an MCC of 0.80 during the cross-validation (Fig. 3, 464 

Table S2). The evaluation of the 134 HMMs against the independent test dataset resulted in 465 

120 HMMs with an MCC of 0.80 or higher. HMMs for the alkanesulfonate transporter subunits 466 

SsuB and SsuC failed the cross-validation threshold of 0.8 slightly by 0.02 points but performed 467 

better on the independent test dataset. These were the only cases where the cross-validation 468 
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performance was insufficient but the performance on the test dataset was above the 469 

threshold. From the HMMs with an MCC > 0.8 during cross-validation, seven scored below 0.8 470 

in the test dataset. These were MsmG with an MCC of 0.78, SmoI (0.76), MsmB (0.66), DddA 471 

(0.62), DorA (0.46) and SftD (0.03). For SftD, MsmB, MsmG and DddA this was due to a high 472 

number of sequences which were falsely classified as negative, probably due to a low training 473 

sequence diversity. Thus, these HMMs had a high precision and did not generate high numbers 474 

of false positive hits, but they performed low in recognition resulting in a high number of 475 

unrecognized sequences. The opposite was the case for the DorA HMM, which generated too 476 

many false positive hits but no false negative ones. Sulfoquinovosidase SmoI interfered in the 477 

detection with sulfoquinovosidase named YihQ. The same holds true for transporters HpsU 478 

and IseU. All sequences that were falsely classified by one of these two HMMs belonged to 479 

the other HMM. Together these two HMMs performed well in detecting of isethionate and 480 

DHPS transporters of the major facilitator superfamily. The situation was similar for YihO and 481 

SftA which are both postulated sulfoquinovose importers that catalyse the same function in 482 

the context of sulfoquinovose degradation. In summary, 112 of 134 HMMs were successfully 483 

tested via cross-validation and with an independent dataset. Two other pairs of HMMS can be 484 

used together, for the safe detection of sulfoquinovosidase and the transporters YihO and 485 

SftA.  486 

3.13 HMM validation: Case study 487 

HMSS2 was also validated with 24 complete genomes from bacteria with organic sulfur 488 

compound metabolism (Table S3), which were screened for the presence of enzymes for the 489 

utilisation of taurine, isethionate, DHPS, sulfoquinovose and DMS (Fig. 4).  490 

Proteins for taurine utilization were found mainly in the known taurine-utilizing genera 491 

Octadecabacter, Roseobacter, Roseovarius and Ruegeria of the Rosebacterales, including the 492 

taurine degraders Roseovarius nubinhibens (Denger et al., 2009) and Ruegeria pomeroyi 493 

(Gorzynska et al., 2006). These strains encoded for the TauABC taurine importer, Tpa and Xsc 494 

constituting the complete degradation pathway from free taurine via sulfoacetaldehyde to 495 

acetyl phosphate with the release of sulfite. Roseobacter denitrificans additionally possessed 496 

genes for the taurine dehydrogenase TauXY and the taurine:2-oxoglutarate aminotransferase 497 

Toa, which can also convert taurine to sulfoacetaldehyde. The sulfoacetaldehyde 498 

acetyltransferase Xsc was present in all genomes examined. This is probably due to the fact 499 
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that sulfoacetaldehyde is not exclusively an intermediate of taurine degradation but also of 500 

isethionate, sulfoacetate and DHPS degradation, and possibly of other as yet unknown 501 

pathways (Weinitschke, Hollemeyer, et al., 2010). In line with this possibility, genes encoding 502 

isethionate dehydrogenase IseJ, which converts isethionate to sulfoacetaldehyde, were found 503 

in almost all analyzed Rhodobacterales, Hyphomicrobiales and Gammaproteobacteria 504 

genomes, consistent with earlier reports (Weinitschke, Sharma, et al., 2010). Leminorella 505 

grimontii, Hyphomicrobium denitrificans and all Methylophaga species were exceptions, 506 

consistent with the inability of H. denitrificans and Methylophaga to consume organosulfur 507 

compounds with more than one carbon atom.  508 

Isethionate desulfonation via isethionate sulfite-lyase IslAB has been found in 509 

microcompartments of Bilophila wadsworthia (Burrichter et al., 2021). In accordance, HMSS2 510 

detected the importer IseU and IslAB in this organism. A similar desulfonation pathway 511 

without microcompartments was postulated for Desulfovibrio alaskensis and D. desulfuricans 512 

(Burrichter et al., 2021). In D. desulfuricans, HMSS2 also found IseU and IslAB, suggesting that 513 

this organisms, like B. wadsworthia, may scavenge free isethionate via IseU. In contrast, D. 514 

alaskensis encodes IslAB but not IseU. Instead, it contains sulfocacetaldehyde reductase IsfD 515 

(or SarD), which is also present in Bilophila wadsworthia. In both cases, this enzyme may 516 

provide an endogenous source of isethionate (Burrichter et al., 2021).  517 

Most analysed genomes possessed the potential for sulfopyruvate and (R)-sulfolactate 518 

generation from DHPS and (L)-sulfolactate. The potential of (R)-DHPS oxidation via HpsN 519 

generating 2 NADH equivalents was found in all analysed strains and most lso encoded for 520 

isomerization of (S)-DHPS to (R)-DHPS via HpsP (17/24 genomes). The predicted presence of 521 

genes for desulfonation of sulfopyruvate by ComDE and sulfolactate by SuyAB as found here 522 

is also in accordance with previous reports for the Roseobacterales clade (Chen et al., 2021; 523 

Denger et al., 2009), the Hyphomicrobiales (Chen et al., 2021), Desulfovibrio desulfuricans and 524 

B. wadsworthia (Hanson et al., 2021). Even without the ability to desulfonate sulfopyruvate 525 

or sulfolactate, the conversion of DHPS to sulfopyruvate or sulfolactate and export of these as 526 

end products provides 2-3 NADH equivalents and thus a growth advantage for the organism.  527 

Sulfoquinovose degradation via the Sulfo-Entner-Doudoroff pathway is present in eight 528 

bacteria, including Pseudomonas putida and other bacteria for which this pathway has been 529 

described or postulated (Felux et al., 2015). The complete sulfoquinovose degradation 530 
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pathway based on a sulfoquinovose monooxygenase was found in seven proteobacteria in 531 

accordance with previous reports (Sharma et al., 2022). The other known sulfoquinovose 532 

degradation pathways were not detected, which is likely due to the presence of the Sulfo-533 

Embden-Meyerhof-Parnas pathway (Denger et al., 2014) primarly in Enterobacterales and the 534 

transaldolase-dependent sulfoquinovose degradation in Firmicutes (Frommeyer et al., 2020). 535 

Bacteria from these taxonomic groups were not included in the case study. 536 

DMS degradation has been described for Methylophaga thiooxydans, Methylophaga 537 

sulfidovorans (Kröber & Schäfer, 2019), Hyphomicrobium denitrificans (Koch & Dahl, 2018), 538 

and Hyphomicrobium sulfonivorans (Boden et al., 2011). According to our HMSS2 analysis, H. 539 

sulfonivorans encoded for DmoA, while all other three encoded only for methanethiol oxidase 540 

MtoX. DmoA was missing and the organisms must contain a so far unknown DMS 541 

monooxygenase. In accordance with previous reports, MtoX was also found in 542 

Methylacidiphilum fumariolicum (Schmitz et al., 2022), and several Rosebacterales, including 543 

Ruegeria pomeroyi (Eyice et al., 2017). The latter is a known degrader of DMSP to 544 

methanethiol via DmdA, B, C and DmdD (Reisch et al., 2011) which were all detected by the 545 

HMMs created here. 546 

In summary, our case study on characterized organosulfur compound degraders has 547 

shown that in all cases the detection by HMSS2 agrees with the published analyses of other 548 

authors. 549 

3.14 HMSS2 improvements 550 

HMSS2 has a redesigned engine and additional features for protein annotation and 551 

output format customisation (Fig. 5). Proteins with multiple domains are now stored with all 552 

domains and not just the domain with the highest score. This was accomplished by improving 553 

the local relational database structure. This requires that the recognised domain regions in 554 

the primary sequence do not overlap, so that domains with high scores are not overwritten 555 

by lower scores. On the other hand, high-scoring domains may still overwrite one or more 556 

lower-scoring domains during annotation. 557 

Gene arrangement can now be used by HMSS2 for annotation as a non-homologous 558 

criterion. Hits below the threshold are also considered and annotated if they lie within a gene 559 

cluster and the potentially assigned annotation would complete a known gene cluster 560 
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arrangement. Thus, a gene that highly likely occurs within a gene cluster must reach a lower 561 

cutoff than normal to be detected if it is encoded within such a cluster. 562 

The output formats have been greatly expanded, and new features were added to 563 

improve usability and readability. It is still possible to retrieve sequences filtered by protein 564 

type, the genomic proximity and the presence of proteins or gene clusters in the same 565 

genome. HMSS2 automatically recovers a list of all hits with genomic features and a separate 566 

protein sequence file in FASTA format. Additionally, two subsets of the latter file are created. 567 

One subset includes all hits that are unique to their genome respectively, while another subset 568 

includes all hits that occur at least twice in the same genome. Multi-domains proteins, 569 

retrieved by the requested protein type, are listed separately if at least one other domain has 570 

been annotated.  571 

An output module for iTol compatible datasets was also included. This module 572 

integrates the generation of iTol datasets for presence/absence of the keywords/domains for 573 

each genome. Range datasets, which mark specific proteins in a phylogenetic tree, can now 574 

also be generated by HMSS2, as well as iTol compatible datasets for displaying gene clusters. 575 

HMSS2 also comes with several utilities to modify the output protein FASTA files. It is now 576 

possible to assign the taxonomic names of the source organism to each sequence. Files can 577 

now be filtered by length, merged without duplicating sequence identifiers and sequences 578 

from multiple FASTA files originating from the same organism can be concatenated into a 579 

single sequence. With a FASTA-formatted file as input, a list of neighboring genes is now 580 

accessible to support searches for conserved but previously undiscovered gene constellations. 581 

The execution time of the HMSS2 was compared to that of HMS-S-S to demonstrate the 582 

scalability and efficiency of HMSS2. For this test, increasing numbers of genomes were 583 

randomly selected from the assemblies of the training dataset and gene clusters were 584 

annotated and determined with the 164 HMMs of the original library. Time measurements 585 

were performed in triplicate with random selection of input assemblies for each replicate. The 586 

execution time was then averaged over all replicates. Comparison between the two versions 587 

showed a large difference in the required execution time (Fig. 6, Table S4). The observed 588 

increase in execution speed for HMSS2 became more significant as the number of genomes 589 

processed increased and scaled linearly with the number of input assemblies. While HMS-S-S 590 

required around 26 minutes to process 64 assemblies, HMSS2 needed only 7 minutes for this 591 



 
 

21 
 

task. Thus, the introduced improvements led to a fourfold accelerated computation speed for 592 

HMSS2. 593 

4 DISCUSSION 594 

Here, we present a substantial update that provides an HMM-based search tool for 595 

proteins involved in the metabolism of inorganic and organic sulfur compounds. The high 596 

accuracy of the advanced tool presented here provides a reliable basis for genome analysis 597 

and is further supported by the genomic context detection. The HMSS2 algorithm now uses 598 

homologous and non-homologous criteria already in the protein annotation step, not just for 599 

the later identification of gene clusters. In addition, the overall execution time was accelerated 600 

by fourfold compared to the previous version, further speeding up the detection of sulfur 601 

metabolism pathways in genomes and metagenomes. With the increasing number of available 602 

genomes, faster protein annotation is required to handle the immense amount of available 603 

data. 604 

We also significantly broadened the applicability of HMSS2 by adding the conversion of 605 

sulfonated carbon compounds. HMSS2 now covers pathways from the entire sulfur cycle, 606 

enabling studies on the link between the cycles of inorganic and organic sulfur compounds. In 607 

addition to providing operon structure information to support equivalence prediction, the 608 

accessibility and display of the annotated proteins has been greatly enhanced. Not only can 609 

sequences now be filtered by annotation, but also the presence of genes and genomic context 610 

can be displayed using other specialised applications, further extending the capabilities of 611 

synteny analysis. Such analyses are not limited to studies of the ecological role of prokaryotes 612 

but also include the evolution of metabolic pathways (Garcia et al., 2022), distribution of new 613 

pathways (Sharma et al., 2022) and genomic context visualization (Garcia et al., 2019; Letunic 614 

& Bork, 2021).  615 

The expansion to the metabolism of organic sulfur compounds resulted in the 616 

generation of 134 additional HMMs in addition to the 164 HMMs previously included in 617 

HMS-S-S, almost doubling the total number of proteins included. The accuracy of the newly 618 

generated HMMs and the respective thresholds were demonstrated by cross-validation and a 619 

test dataset. Observed deviations between both testing methods are likely due to an uneven 620 

distribution and abundance of protein sequences influencing the number and diversity of 621 
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testable sequences. The quality of the 134 novel HMMs was ensured by selection of high-622 

quality genomes derived from the RefSeq and GenBank databases. The overall development 623 

process had already been successfully applied for the proteins of inorganic sulfur metabolism 624 

(Tanabe & Dahl, 2022). The test dataset was obtained from the full diversity of phyla accessible 625 

from GenBank and should therefore reflect the widest possible range of sequence variation. 626 

However, although the cutoff values have been validated, they are likely to need adjustment 627 

for newly discovered phyla (Anantharaman et al., 2018; Jaffe et al., 2020). 628 

The diversity of proteins involved in the metabolism of organic sulfur compounds 629 

covered by HMSS2 also includes less prominent pathways for degradation and conversion of 630 

compounds such as sulfoquinovose or DMS. Although a considerable proportion of sulfur in 631 

the biosphere is bound in substrates or intermediates of these pathways, they are not 632 

commonly included in annotation pipelines and often unrecognized or incorrectly annotated. 633 

This is illustrated by fact that only 16 of the 124 proteins included here for the conversion of 634 

sulfoquinovose, taurine, isethionate or DMSP have an exact counterpart in PFAM (El-Gebali et 635 

al., 2019) or TIGRFAMs. In contrast, eight of ten HMMs covering sulfate assimilation for 636 

cysteine biosynthesis have a TIGRFAM equivalent. A common problem in the functional 637 

annotation of enzymes involved in metabolism of organic sulfur compounds are enzymes, 638 

such as DmsA or DorA, that belong to the DMSO reductase superfamily. This family includes 639 

tetrathionate reductase, polysulfide reductase and thiosulfate reductase, as well as several 640 

other proteins unrelated to sulfur metabolism. Tertiary structure and complex composition is 641 

conserved throughout all members of this family (Alastair G. McEwan et al., 2010) and 642 

substrate specificity may only arise through a small number of conserved amino acids at the 643 

active site (Struwe et al., 2021). The validation performed here showed that related complexes 644 

in the DMSO reductase family did not negatively affect the HMMs for DmsA and DorA. 645 

Furthermore, the reliability of prediction is raised when genomic context is paired with the 646 

prediction made by the HMM detection as already discussed above.  647 

5 CONCLUSIONS 648 

In summary, HMSS2 is an advanced comprehensive HMM-based tool for annotation and 649 

synteny analysis of prokaryotic sulfur metabolism. It has a higher speed and a much wider 650 

coverage than its predecessor HMS-S-S and now includes proteins involved in the metabolism 651 
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of inorganic and organic sulfur compounds. The use of curated functionally equivalent 652 

sequences for HMM training resulted in HMMs with high precision and recall. This also fills a 653 

gap in the coverage of sulfur metabolism prediction by HMMs. The application possibilities 654 

also include the combination with other HMMs from public databases or user-defined models 655 

and can therefore be extended according to the user’s needs. The improved output formats 656 

are also applicable to ecology and evolutionary research. 657 
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 951 

Figure 1 Prokaryotic metabolism of C1 organosulfur compounds. All proteins shown have a corre-952 
sponding HMM in HMSS2. Cytc, Cytochrome c; DMSP, dimethylsulfoniopropionate; DHPS, 2,3-dihydrox-953 
ypropane-1-sulfonate; DMS, dimethylsulfide; DMSO, dimethylsulfone, DMSO2 dimethylsulfoxide; FMN, 954 
flavin mononucleotide; FMNH2, reduced flavin mononucleotide; MeSH, methanethiol; MMPA, methyl-955 
mercaptopropionate; MMPA-CoA, 3-methylmercaptopropionyl-CoA; MTA-CoA, methylthioacryloyl-956 
CoA; THF, tetrahydrofolate. 957 
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 959 

Figure 2. Prokaryotic metabolism of organosulfur compounds with two or more carbon atoms and 960 
relevant transporters. (a) Pathways of sulfoquinovosyl glycerol degradation. (b) Transport systems for 961 
import and export of organic sulfur compounds. (c) Degradation pathways of C2 and C3 organosulfur 962 
compounds. Usually, the same cell does not contain all the pathways. All proteins show have a corre-963 
sponding HMM in HMSS2. Cytc, Cytochrome c; DHPS, 2,3-dihydroxypropane-1-sulfonate; FMN, flavin 964 
mononucleotide; FMNH2, reduced flavin mononucleotide; 2-OG, 2-oxoglutarate. 965 
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 966 

 967 

Figure 3 Validation of the 134 HMMs generated in this work. Performance was assessed by cross-968 
validation (blue dots) and on an independent test dataset (red diamonds). For each HMM Matthew 969 
correlation coefficient was calculated. HMMs were ranked by their performance in cross-validation. 970 
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 972 

Figure 4. Presence/absence of proteins involved in the metabolism of organic sulfur compounds. Oc-973 
currence of genes for proteins involved in taurine degradation, isethionate degradation, 2,3-dihydrox-974 
ypropane-1-sulfonate, sulfoquinovose and DMS metabolism, is indicated by filled orange, violet, pur-975 
ple, green and light brown circles, respectively. The function of the individual proteins can be deduced 976 
from Figures 1 and 2. 977 
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 979 

Figure 5. Algorithm overview of HMSS2. New features added in HMSS2 are highlighted in yellow. The 980 
only external programs required are HMMER3 and Prodigal. 981 
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 984 

Figure 6. Computing time required by HMS-S-S compared to HMSS2. Test were performed in triplicate 985 
with defined numbers of randomly selected sulfur-oxidizing or sulfur-reducing prokaryotes and 164 986 
HMMs. Blue circles: HMS-S-S, organe diamonds: HMSS2 987 
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Supplementary Tables and Figures 990 

Table S1. Reference proteins for dataset annotation 991 

Table S2. HMM performance evaluation 992 

Table S3. HMS-S-S vs. HMSS2 Benchmark 993 

Table S4. Organisms for case study 994 


