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Abstract

This article researches the trajectory tracking problem for unmanned marine vehicles (UMVs) with disturbances and under

denial-of-services (DoS) attacks in the wireless channel. By applying the partial form dynamic linearization algorithm, an

equivalent data-driven model of the UMVs with ocean disturbances is firstly established. And the disturbances are estimated

by using extended state observer, which improves the immunity of the UMVs to disturbances in the environment, and the

robustness of the UMVs systems is better. It is the first time that the DoS attacks are considered under the data model for

UMVs, and a novel data-driven adaptive trajectory tracking control framework is constructed. When the proposed equivalent

data model suffers from DoS attacks which follows the Bernoulli distribution, an attack predictive compensation mechanism is

devised to relieve the influence of DoS attacks. Based on it, the data-driven adaptive trajectory tracking controller is designed

such that the error of trajectory tracking is convergent under DoS attacks and external disturbances. Finally, the effectiveness

of the proposed data-driven control scheme and the predictive compensation mechanism is validated through the simulations.
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Summary

This article researches the trajectory tracking problem for unmanned marine vehicles
(UMVs) with disturbances and under denial-of-services (DoS) attacks in the wireless
channel. By applying the partial form dynamic linearization algorithm, an equivalent
data-driven model of the UMVs with ocean disturbances is firstly established. And
the disturbances are estimated by using extended state observer, which improves the
immunity of the UMVs to disturbances in the environment, and the robustness of the
UMVs systems is better. It is the first time that the DoS attacks are considered un-
der the data model for UMVs, and a novel data-driven adaptive trajectory tracking
control framework is constructed. When the proposed equivalent data model suffers
from DoS attacks which follows the Bernoulli distribution, an attack predictive com-
pensation mechanism is devised to relieve the influence of DoS attacks. Based on it,
the data-driven adaptive trajectory tracking controller is designed such that the er-
ror of trajectory tracking is convergent under DoS attacks and external disturbances.
Finally, the effectiveness of the proposed data-driven control scheme and the predic-
tive compensation mechanism is validated through the simulations.
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1 INTRODUCTION

Unmanned marine vehicles (UMVs) have been playing an important role in the field of ocean engineering, including environ-
mental monitoring1, ocean investigation2, exploration and development of oil3 and so on. Thus, achieving operational stability
of UMVs is a crucial problem, especially in the areas of dynamic positioning4, fault-tolerant control5, mooring control6 and
trajectory tracking control7, among others.

Trajectory tracking control for UMV model has been an active research area in marine engineering and control areas over the
past decades8–13. Unfortunately, the UMVs model is not accurate due to the inevitable uncertainties and disturbances caused by
harsh ocean environments8. The scholars have devoted much effort to model the UMVs and reduce the dependence of algorithms
on models. In Reference 9, the authors studied the tracking control problem with parameter uncertainties and unmeasurable state
variables. The authors in Reference 10 researched the extended state observers (ESO) by data-driven algorithm for multiple
autonomous surface ships. Further more, the authors studied the trajectory tracking control by building data-driven disturbance
observers of autonomous surface vehicles in Reference 11. In addition, the authors approximated the nonlinear term in the model
by using the radial basis function of underactuated surface vessels in Reference 12. Under the circumstances, the demand for

0Abbreviations: ANA, anti-nuclear antibodies; APC, antigen-presenting cells; IRF, interferon regulatory factor.
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UMVs nominal model seems to be solved, but it remains unsolved when the order of the system model is unavailable. Although
the authors address the tracking control problem in Reference 13 by using the proportional-integral-derivative (PID) and fuzzy
control approaches, the PID controllers are unable to handle the UMVs nonlinearity. Furthermore, it is hard to determine the
parameters of fuzzy controller due to the numerous parameters. Apparently, it is one of critical issues to solve the uncertainty
of the model for UMVs. Fortunately, the authors in Reference 14 researched the model-free adaptive control (MFAC), which
gives a new direction about it. And the adaptive neural asymptotic tracking control was studied in Reference 15 for networked
nonlinear stochastic systems. In Reference 16, the nonlinear time-varying term was estimated by ESO and MFAC algorithm.
By using the pseudo-partial derivative (PPD), many equivalent data-driven models were constructed instead of determining the
UMVs nonlinear model. The time-varying PPD matrix can be obtained by the plant’s input/output (I/O) data. Based on compact
form dynamic linearization (CFDL) algorithm, an equivalent dynamic linearization data-driven model for UMVs was built in
Reference 17. However, the CFDL method only considers the relationships between the output signal and the input signal in
the present moment. Compared with CFDL algorithm, the partial form dynamic linearization (PFDL) algorithm considers it
at the preceding 𝐿 moments14. In UMVs system, the change in the output signal at the next moment is not only related to the
change in the input signal at the current moment, but also to the previous input signals. Thus, we attempt to build an equivalent
dynamical linearization data-driven model of UMVs based on the PFDL algorithm.

It is note that the security of transmission of data is particularly important in UMVs systems, and attacks may lead to disas-
trous damage of UMVs. The attackers can launch hostile attacks by breaching the integrity of data and destroying the wireless
connections among sensors, controllers, and actuators18. DoS attacks are one of the common forms of attacks whose purpose
is to block or interfere with communication among system components19. Hence, the security problem of UMVs subject to
DoS attacks began to receive attention. The authors in Reference 20 investigated the secure positioning control problem when a
USV under aperiodic DoS attacks. The authors designed an event-triggered mechanism in Reference 21 to mitigate the effects
of DoS attacks. The drawback is that the unmanned ocean vehicle was modeled as a linear time-variant system in Reference
20,21. In fact, the dynamic model of UMVs are generally nonlinear. Therefore, the problem of DoS attacks was addressed in
Reference 22 for a nonlinear UMV system. But, the control schemes for DoS attacks in Reference 20–22 relied on the model of
unmanned ocean vehicle. However, it is hard to build the precise model of UMVs, which may decrease the control performance
of the UMVs and bring system instability. Thus, designing a security control scheme for UMVs under DoS attacks without the
information of model is a still challenging problem. This promotes us to research a security data-driven control algorithm for
UMVs system suffer from DoS attacks.

Motivated by the above analysis, this article studies the data-driven adaptive trajectory tracking problem of UMVs with DoS
attacks and external disturbances. The major contributions of this paper are shown:

1. An equivalent data-driven model of UMVs (EDM-UMVs) is first proposed in which disturbances are considered separately.
And the disturbances are estimated by ESO. Compared with traditional data-driven model which only considers the I/O data,
the EDM-UMVs further considers the effect of external environment disturbances in this paper. It increases the stability of
the UMVs and has stronger robustness.

2. Differing from the control scheme proposed in Reference 17, the proposed approach in this paper considers the effect of
all input variations within a fixed sliding time window on the output variations at the next moments. A novel PFDL based
data-driven adaptive trajectory tracking control (PFDL-DDATTC) algorithm is proposed to achieve the trajectory tracking
control for UMVs with external disturbances and DoS attacks in this paper.

3. It is the first time that the DoS attacks are considered for UMVs system under the equivalent data-driven model. A novel
data-driven adaptive trajectory tracking control framework is established, and an attack predictive compensation mechanism
is designed to compensate the effects of random DoS attacks. The UMV exhibits better tracking performance under DoS
attacks with different probabilities of attacks.

The structure of this paper is as follows. Section 2 introduces the problem formulation and relevant preliminaries. In Section
3, the paper introduces the PFDL-DDATTC control scheme and analyzes the convergence of the tracking error system for UMVs
under DoS attacks. In Section 4, simulations are conducted to verify the effectiveness of the PFDL-DDATTC algorithm. The
conclusion is conducted in Section 5.
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2 PROBLEM FORMULATION AND PRELIMINARIES

Before obtaining an equivalent dynamical linearization data-driven model of UMVs, the UMVs system model is first given as
follows23:

𝜁̇ (𝑡) =𝐽 (𝜓(𝑡))𝑣(𝑡),
𝑀𝑣̇(𝑡) =𝜏(𝑣) −𝑁(𝑣)𝑣 − 𝐺(𝑣)𝑣 − 𝑔(𝜁 ) + 𝜔(𝑡), (1)

where 𝜁 (𝑡) =
[

𝑥(𝑡) 𝑦(𝑡) 𝜓(𝑡)
]T, (𝑥(𝑡), 𝑦(𝑡)) is the UMVs positions and 𝜓(𝑡) denotes the yaw angle at instant 𝑡; 𝑣(𝑡) =

[

𝜈(𝑡) 𝜗(𝑡) 𝑟(𝑡)
]T expresses the surge velocity , sway velocity and yaw velocity at instant 𝑡 respectively; 𝜏(𝑣) =

[

𝜏𝜈 𝜏𝜗 𝜏𝑟
]T is the

control input vector; 𝑔(𝜁 ) =
[

𝑔𝜈 𝑔𝜗 𝑔𝑟
]T is the vector of gravitational/buoyancy forces and moments;𝜔(𝑡) =

[

𝜔𝜈(𝑡) 𝜔𝜗(𝑡) 𝜔𝑟(𝑡)
]T

represents the disturbances. And 𝐽 (𝜓(𝑡)) expresses the rotation matrix with

𝐽 (𝜓(𝑡)) =
⎡

⎢

⎢

⎣

cos(𝜓(𝑡)) − sin(𝜓(𝑡)) 0
sin(𝜓(𝑡)) cos(𝜓(𝑡)) 0

0 0 1

⎤

⎥

⎥

⎦

.

What’s more, 𝑀,𝑁(𝑣), 𝐺(𝑣) are unknown in this paper, and it represents the matrices of inertia, coriolis/centripetal force,
and damping respectively.

Based on the first-order Euler method and equation (1), it can be derived that:

𝜁 (𝑛 + 1) =𝜁 (𝑛) + 𝑇𝑠𝐽 (𝜓(𝑛))𝑣(𝑛), (2a)
𝑣(𝑛 + 1) =𝑣(𝑛) + 𝐹 (𝑛), (2b)

where 𝑇𝑠 expresses the sampling time, 𝐹 (𝑛) = 𝑓 (𝑣(𝑛), 𝜁(𝑛), 𝜏(𝑛), 𝜔(𝑛)) denotes the unknown dynamics of UMVs with
uncertainties and disturbances.

Assumption 1. The disturbances are bounded and exist a positive constant 𝜔̄ so that ‖𝜔(𝑛)‖ ≤ 𝜔̄ < ∞.
Assumption 2. 24 The partial derivative of function 𝑓𝑖(⋅), 𝑖 = 1, 2, 3 with respect to the input 𝑣(𝑛), 𝑣(𝑛 − 1),⋯ , 𝑣(𝑛 −𝐿 + 1) is
continuous at time 𝑛. 𝐿 is a positive constant, it expresses the length of control input for the UMVs system.
Assumption 3. 24 Define Δ𝜁 (𝑛) = 𝜁 (𝑛) − 𝜁 (𝑛 − 1),Δ𝑣(𝑛) = 𝑣(𝑛) − 𝑣(𝑛 − 1), Δ𝜏(𝑛) = 𝜏(𝑛) − 𝜏(𝑛 − 1), Δ (𝑛) =
[

Δ𝜏T(𝑛) Δ𝜏T(𝑛 − 1) ⋯ Δ𝜏T(𝑛 − 𝐿 + 1)
]T and ΔΩ(𝑛) =

[

Δ𝜔T(𝑛) ⋯ Δ𝜔(𝑛 − 𝐿 + 1)T
]T, Δ𝜔(𝑛) = 𝜔(𝑛) − 𝜔(𝑛 − 1), then

the UMVs system (2b) satisfies the generalized Lipschitz condition, i.e., ‖Δ𝑣(𝑛 + 1)‖ ≤ ‖
[

Δ (𝑛) ΔΩ(𝑛)
]

‖ for ∀𝑛, and
‖

[

Δ (𝑛) ΔΩ(𝑛)
]

‖ ≠ 0, ‖ ⋅ ‖ denotes Euclidean vector norm.

Assumption 4. For the desired trajectory 𝜁𝑟(𝑛) =
[

𝑥𝑟(𝑛) 𝑦𝑟(𝑛) 𝜓𝑟(𝑛)
]T, define Δ𝜁𝑟(𝑛) = 𝜁𝑟(𝑛)− 𝜁𝑟(𝑛−1), it has ‖Δ𝜁𝑟(𝑛)‖ ≤  ,

where  is a positive constant.

Remark 1. In practical terms, Assumptions 1-4 of system (2) are reasonable. Assumption 1 restricts the range of disturbances.
Assumption 2 describes the classical condition for general nonlinear systems. The variation rate of 𝜁 (𝑛) was restricted in
Assumption 3, which is changed by external disturbances and control input. In terms of energy, the system output is generally
bounded due to bounded control input, the same assumption can be seen in Reference 25. Assumption 4 means that the desired
trajectory stays in the limited range of the current position of the UMVs.

2.1 Control Objective
Denote 𝑒(𝑛) = 𝜁𝑟(𝑛 + 1) − 𝜁 (𝑛) as the error of trajectory tracking of the UMVs system. The control objective for trajectory
tracking of the article is to design a data-driven adaptive trajectory tracking control scheme to track the desired trajectory 𝜁𝑟(𝑛)
when UMVs suffer from DoS attacks and external disturbances, which can be represented as:

‖𝑒(𝑛)‖ = ‖𝜁𝑟(𝑛 + 1) − 𝜁 (𝑛)‖ ≤  (3)

where  is a small positive constant.
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3 MAIN RESULTS

3.1 PFDL-based equivalent data-driven model with disturbances
In this subsection, the equivalent data-driven model with independent disturbances of UMVs by PFDL algorithm is first given.

Theorem 1. For the UMVs system (2), satisfying Assumptions 1, 2 and 3 with ‖Δ (𝑛)‖ ≠ 0, there exist PPD matrices Φ̄(𝑛)
and Ψ̄(𝑛), such that the subsystem (2b) can be converted into an equivalent data-driven model as:

Δ𝑣(𝑛 + 1) = Δ𝑣(𝑛) + Φ̄(𝑛)Δ (𝑛) + Ψ̄(𝑛)ΔΩ(𝑛), (4)

where
Φ̄(𝑛) =

[

Φ1(𝑛) Φ2(𝑛) ⋯ Φ𝐿(𝑛)
]

, Ψ̄(𝑛) =
[

Ψ1(𝑛) Ψ2(𝑛) ⋯ Ψ𝐿(𝑛)
]

,

Φ𝑝(𝑛) =
⎡

⎢

⎢

⎣

𝜙11𝑝(𝑛) 𝜙12𝑝(𝑛) 𝜙13𝑝(𝑛)
𝜙21𝑝(𝑛) 𝜙22𝑝(𝑛) 𝜙23𝑝(𝑛)
𝜙31𝑝(𝑛) 𝜙32𝑝(𝑛) 𝜙33𝑝(𝑛)

⎤

⎥

⎥

⎦

,Ψ𝑝(𝑛) =
⎡

⎢

⎢

⎣

𝜑11𝑝(𝑛) 𝜑12𝑝(𝑛) 𝜑13𝑝(𝑛)
𝜑21𝑝(𝑛) 𝜑22𝑝(𝑛) 𝜑23𝑝(𝑛)
𝜑31𝑝(𝑛) 𝜑32𝑝(𝑛) 𝜑33𝑝(𝑛)

⎤

⎥

⎥

⎦

,

and 𝑝 = 1,⋯ , 𝐿, ‖Φ𝑝(𝑛)‖ ≤ 𝜚1, ‖Ψ𝑝(𝑛)‖ ≤ 𝜚2.

Proof. From equation (2b), we obtain

Δ𝑣(𝑛 + 1) =Δ𝑣(𝑛) + 𝐹 (𝑛) − 𝐹 (𝑛 − 1)
=Δ𝑣(𝑛) + 𝑓 (𝑣(𝑛), 𝜁(𝑛), 𝜔(𝑛), 𝜏(𝑛)) − 𝑓 (𝑣(𝑛), 𝜁(𝑛), 𝜔(𝑛), 𝜏(𝑛 − 1)) + 𝑓 (𝑣(𝑛), 𝜁(𝑛), 𝜔(𝑛), 𝜏(𝑛 − 1))
− 𝑓 (𝑣(𝑛), 𝜁(𝑛), 𝜔(𝑛 − 1), 𝜏(𝑛 − 1)) + Ξ1(𝑣(𝑛), 𝜁(𝑛), 𝜔(𝑛 − 1), 𝜏(𝑛 − 1)) (5)

where

Ξ1(𝑣(𝑛), 𝜁(𝑛), 𝜔(𝑛 − 1), 𝜏(𝑛 − 1)) = 𝑓 (𝑣(𝑛), 𝜁(𝑛), 𝜔(𝑛 − 1), 𝜏(𝑛 − 1)) − 𝑓 (𝑣(𝑛 − 1), 𝜁(𝑛 − 1), 𝜔(𝑛 − 1), 𝜏(𝑛 − 1)).

As a matter of fact, the partial derivative of 𝑓 (⋅) is related to external disturbance 𝜔(𝑛), may have two cases: in one case,
𝜔(𝑛) is continuous smooth function; the other case is that 𝜔(𝑛) not be differentiable, such as the 𝜔(𝑛) denotes the time-varying
parameters. Therefore, in the following proofs, we will analyze the disturbances in two different situations.

In the first situation, the partial derivative of 𝑓 (⋅) related to external disturbance 𝜔(𝑛) is differentiable, e.g., 𝜔(𝑛) is continuous
smooth function. On the basis of mean value theorem26 and Assumption 2, one has

Δ𝑣(𝑛 + 1) = Δ𝑣(𝑛) +
𝜕𝑓 ∗

𝜕𝜏𝜄(𝑛)
Δ (𝑛) +

𝜕𝑓 ∗

𝜕𝜔𝜄(𝑛)
Δ𝜔(𝑛) + Ξ1(𝑣(𝑛), 𝜁(𝑛), 𝜔(𝑛 − 1), 𝜏(𝑛 − 1)), (6)

where

𝜕𝑓 ∗

𝜕𝜏𝜄(𝑛)
=

⎡

⎢

⎢

⎢

⎢

⎣

𝜕𝑓 ∗
1

𝜕𝜏𝜄1(𝑛)
𝜕𝑓 ∗

1

𝜕𝜏𝜄2(𝑛)
𝜕𝑓 ∗

1

𝜕𝜏𝜄3(𝑛)
𝜕𝑓 ∗

2

𝜕𝜏𝜄1(𝑛)
𝜕𝑓 ∗

2

𝜕𝜏𝜄2(𝑛)
𝜕𝑓 ∗

2

𝜕𝜏𝜄3(𝑛)
𝜕𝑓 ∗

3

𝜕𝜏𝜄1(𝑛)
𝜕𝑓 ∗

3

𝜕𝜏𝜄2(𝑛)
𝜕𝑓 ∗

3

𝜕𝜏𝜄3(𝑛)

⎤

⎥

⎥

⎥

⎥

⎦

,
𝜕𝑓 ∗

𝜕𝜔𝜄(𝑛)
=

⎡

⎢

⎢

⎢

⎢

⎣

𝜕𝑓 ∗
1

𝜕𝜔𝜄1(𝑛)
𝜕𝑓 ∗

1

𝜕𝜔𝜄2(𝑛)
𝜕𝑓 ∗

1

𝜕𝜔𝜄3(𝑛)
𝜕𝑓 ∗

2

𝜕𝜔𝜄1(𝑛)
𝜕𝑓 ∗

2

𝜕𝜔𝜄2(𝑛)
𝜕𝑓 ∗

2

𝜕𝜔𝜄3(𝑛)
𝜕𝑓 ∗

3

𝜕𝜔𝜄1(𝑛)
𝜕𝑓 ∗

3

𝜕𝜔𝜄2(𝑛)
𝜕𝑓 ∗

3

𝜕𝜔𝜄3(𝑛)

⎤

⎥

⎥

⎥

⎥

⎦

,

𝜏𝜄(𝑛) =
[

𝜏𝜄1(𝑛) 𝜏𝜄2(𝑛) 𝜏𝜄3(𝑛)
]T , 𝜏𝜄𝑗(𝑛) = 𝜄𝜏𝑗(𝑛) + (1 − 𝜄)𝜏𝑗(𝑛 − 1), 𝑗 = 1, 2, 3,

𝜔𝜄(𝑛) =
[

𝜔𝜄1(𝑛) 𝜔𝜄2(𝑛) 𝜔𝜄3(𝑛)
]T , 𝜄 ∈ [0, 1], 𝜔𝜄𝑗(𝑛) = 𝜄𝜔𝑗(𝑛) + (1 − 𝜄)𝜔𝑗(𝑛 − 1), 𝑗 = 1, 2, 3,

and 𝜏𝜄(𝑛) = [𝜏𝜄1(𝑛), 𝜏𝜄2(𝑛), 𝜏𝜄3(𝑛)]T, 𝜏𝜄𝑗(𝑛) = 𝜄𝜏𝑗(𝑛) + (1 − 𝜄)𝜏𝑗(𝑛 − 1), 𝜔𝜄(𝑛) = [𝜔𝜄1(𝑛), 𝜔𝜄2(𝑛), 𝜔𝜄3(𝑛)]T, 𝜔𝜄𝑗(𝑛) = 𝜄𝜔𝑗(𝑛) + (1 −
𝜄)𝜔𝑗(𝑛−1), 𝑗 = 1, 2, 3. What’s more, 𝜕𝑓 ∗

𝜕𝜏𝜄(𝑛)
and 𝜕𝑓 ∗

𝜕𝜔𝜄(𝑛)
express the value of gradient vector of 𝑓 (⋅) with respect to 𝑣(𝑛), 𝜔(𝑛) at the

𝜏𝜄(𝑛) and 𝜔𝜄(𝑛), respectively.
From equation (6), it can be derived that

Δ𝑣(𝑛 + 1) =Δ𝑣(𝑛) +
𝜕𝑓 ∗

𝜕𝜏𝜄(𝑛)
Δ (𝑛) +

𝜕𝑓 ∗

𝜕𝜔𝜄(𝑛)
Δ𝜔(𝑛) +

𝜕Ξ∗
1

𝜕𝜏𝜄(𝑛 − 1)
Δ (𝑛) +

𝜕Ξ∗
1

𝜕𝜔𝜄(𝑛 − 1)
Δ𝜔(𝑛)

+ Ξ2(𝑣(𝑛), 𝜁(𝑛), 𝜔(𝑛 − 2), 𝜏(𝑛 − 2)), (7)

where

Ξ2(𝑣(𝑛), 𝜁(𝑛), 𝜔(𝑛 − 2), 𝜏(𝑛 − 2)) = Ξ1(𝑣(𝑛), 𝜁(𝑛), 𝜔(𝑛 − 1), 𝜏(𝑛 − 1)),
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𝜕Ξ∗
1

𝜕𝜏𝜄(𝑛 − 1)
=

⎡

⎢

⎢

⎢

⎢

⎣

𝜕𝜉∗1
𝜕𝜏𝜄1(𝑛−1)

𝜕𝜉∗1
𝜕𝜏𝜄2(𝑛−1)

𝜕𝜉∗1
𝜕𝜏𝜄3(𝑛−1)

𝜕𝜉∗2
𝜕𝜏𝜄1(𝑛−1)

𝜕𝜉∗2
𝜕𝜏𝜄2(𝑛−1)

𝜕𝜉∗2
𝜕𝜏𝜄3(𝑛−1)

𝜕𝜉∗3
𝜕𝜏𝜄1(𝑛−1)

𝜕𝜉∗3
𝜕𝜏𝜄2(𝑛−1)

𝜕𝜉∗3
𝜕𝜏𝜄3(𝑛−1)

⎤

⎥

⎥

⎥

⎥

⎦

,
𝜕Ξ∗

1

𝜕𝜔𝜄(𝑛 − 1)
=

⎡

⎢

⎢

⎢

⎢

⎣

𝜕𝜉∗1
𝜕𝜔𝜄1(𝑛−1)

𝜕𝜉∗1
𝜕𝜔𝜄2(𝑛−1)

𝜕𝜉∗1
𝜕𝜔𝜄3(𝑛−1)

𝜕𝜉∗2
𝜕𝜔𝜄1(𝑛−1)

𝜕𝜉∗2
𝜕𝜔𝜄2(𝑛−1)

𝜕𝜉∗2
𝜕𝜔𝜄3(𝑛−1)

𝜕𝜉∗3
𝜕𝜔𝜄1(𝑛−1)

𝜕𝜉∗3
𝜕𝜔𝜄2(𝑛−1)

𝜕𝜉∗3
𝜕𝜔𝜄3(𝑛−1)

⎤

⎥

⎥

⎥

⎥

⎦

.

Based on mathematical induction, from equation (7), it has

Δ𝑣(𝑛 + 1) =Δ𝑣(𝑛) +
[

𝜕𝑓 ∗

𝜕𝜏𝜄(𝑛)
𝜕Ξ∗

1

𝜕𝜏𝜄(𝑛−1)
⋯

𝜕Ξ∗
𝐿−1

𝜕𝜏𝜄(𝑛−𝐿+1)

]

Δ (𝑛)

+
[

𝜕𝑓 ∗

𝜕𝜔𝜄(𝑛)
𝜕Ξ∗

1

𝜕𝜔𝜄(𝑛−1)
⋯

𝜕Ξ∗
𝐿−1

𝜕𝜔𝜄(𝑛−𝐿+1)

]

ΔΩ(𝑛) + Ξ𝐿(𝑣(𝑛), 𝜁(𝑛), 𝜔(𝑛 − 𝐿), 𝜏(𝑛 − 𝐿)). (8)

Combined with (5), (6) and (7), we get:

Δ𝑣(𝑛 + 1) =Δ𝑣(𝑛) +
[

𝜕𝑓 ∗

𝜕𝜏𝜄(𝑛)
𝜕Ξ∗

1

𝜕𝜏𝜄(𝑛−1)
⋯

𝜕Ξ∗
𝐿−1

𝜕𝜏𝜄(𝑛−𝐿+1)

]

Δ (𝑛) +
[

𝜕𝑓 ∗

𝜕𝜔𝜄(𝑛)
𝜕Ξ∗

1

𝜕𝜔𝜄(𝑛−1)
⋯

𝜕Ξ∗
𝐿−1

𝜕𝜔𝜄(𝑛−𝐿+1)

]

ΔΩ(𝑛) + Γ(𝑛), (9)

where

Γ(𝑛) =Ξ𝐿(𝑣(𝑛), 𝜁(𝑛), 𝜔(𝑛 − 𝐿), 𝜏(𝑛 − 𝐿)).

In the other situation, the partial derivative of 𝑓 (⋅) is non-differentiable, e.g., 𝜔(𝑛) changed suddenly at the sampling instant.
From (5), in the sampling instant, there exists at least one function ℎ(⋅) ∈ 3 which satisfies Assumptions 1,2, and 3 such that

ℎ(𝑣(𝑛), 𝜁(𝑛), 𝜔(𝑛), 𝜏(𝑛)) = 𝑓 (𝑣(𝑛), 𝜁(𝑛), 𝜔(𝑛 − 1), 𝜏(𝑛 − 1)).

Therefore, we can get the equation (9) similarly.
Considering the following equation with variable matrix (𝑛) ∈ 3×3𝐿,(𝑛) ∈ 3×3𝐿:

Γ(𝑛) = (𝑛)Δ (𝑛) +(𝑛)ΔΩ(𝑛). (10)

Due to ‖Δ (𝑛)‖ ≠ 0, there exist ∗(𝑛) and ∗(𝑛) satisfying the (10). In practice, the equation have many solutions for each 𝑛.
Let Φ(𝑛) =

[

𝜕𝑓 ∗

𝜕𝜏𝜄(𝑛)
𝜕Ξ∗

1

𝜕𝜏𝜄(𝑛−1)
⋯

𝜕Ξ∗
𝐿−1

𝜕𝜏𝜄(𝑛−𝐿+1)

]

+∗(𝑛), Ψ(𝑛) =
[

𝜕𝑓 ∗

𝜕𝜔𝜄(𝑛)
𝜕Ξ∗

1

𝜕𝜔𝜄(𝑛−1)
⋯

𝜕Ξ∗
𝐿−1

𝜕𝜔𝜄(𝑛−𝐿+1)

]

+∗(𝑛), then the equation (4) holds.

From equation (5), we can know that
[

Φ(𝑛) Ψ(𝑛)
] [

Δ (𝑛) ΔΩ(𝑛)
]𝑇 = Δ𝑣(𝑛 + 1). Then, based on the Assumption 3, it can be

derived that ‖
[

Φ(𝑛) Ψ(𝑛)
]

‖ ≤  and ‖Φ(𝑛)‖ ≤ 𝜚1, ‖Ψ(𝑛)‖ ≤ 𝜚2 also can be derived.
The proof is now complete.

Remark 2. Different from Reference 17, an equivalent data-driven model of UMVs (EDM-UMVs) with disturbances is es-
tablished. In this paper, the disturbances and input signals have different PPD matrixes Φ̄(𝑛) and Ψ̄(𝑛). And the traditional
data-driven adaptive control methods only consider the I/O data, the EDM-UMVs (4) considers the effect of disturbances in this
paper. It increases the immunity of the UMVs and has stronger robustness. If the disturbances are not considered separately, the
EDM-UMVs (4) will degrade into the equation (4) in Reference 17.

Remark 3. Obviously, the EDM-UMVs based on PFDL will degenerate into data-driven model on CFDL when 𝐿 = 1. We
establish the EDM-UMVs by PFDL algorithm instead of CFDL algorithm. In practice, the change in the output signal of the
UMVs system at the next moment is dependent not only on the change in the input signal at the current moment but also on
the previous input signals. The controller can not process the state information fully in the first few moments of the UMVs,
which leads to the accumulation of residual data. Thus, the PFDL algorithm is more suitable to research the trajectory tracking
of UMVs and makes it possible to study various control problems of UMVs more precisely. The UMVs have better tracking
performance with the increase of 𝐿 in a certain range, but the calculation time will increase. Based on the definition of PFDL
algorithm, it can be seen that the dimension of PPD matrixes cannot be determined and the equivalent data-driven model cannot
be obtained if 𝐿 is not fixed. Then the parameter 𝐿 is usually fixed27–29.

Before designing the adaptive trajectory tracking controller, the variant of the EDM-UMVs is presented as follows.

Corollary 1. For the UMVs system (2), satisfying Assumptions 1, 2 and 3 with ‖Δ (𝑛)‖ ≠ 0, the equivalent data-driven model
(4) of UMVs can be rewritten as:

𝑣̂(𝑛 + 1) = ̂̄Φ′(𝑛)Δ (𝑛) + Λ̂′(𝑛), (11)
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with the following updating laws:

̂̄Φ′(𝑛) = ̂̄Φ′(𝑛 − 1) + [𝑣(𝑛) − ̂̄Φ′(𝑛 − 1)Δ (𝑛 − 1) − Λ̂′(𝑛 − 1)]
𝛽Δ T(𝑛 − 1)

𝛼 + ‖Δ (𝑛 − 1)‖2
, (12a)

𝜙̂𝑖𝑖1(𝑛) =𝜙̂𝑖𝑖1(1), 𝑖𝑓 |𝜙̂𝑖𝑖1(𝑛)| ≤ 𝜖,
Λ̂′(𝑛) =Λ̂′(𝑛 − 1) + 𝛾(𝑣(𝑛) − 𝑣̂(𝑛)), (12b)

where ̂̄Φ′(𝑛) and Λ̂′(𝑛) express the estimation value of Φ̄′(𝑛) and Λ′(𝑛), respectively.

Proof: Define the 𝑊 (𝑛) = Ψ̄(𝑛)ΔΩ(𝑛), and 𝑊 (𝑛) =
[

𝑤1(𝑛) 𝑤2(𝑛) 𝑤3(𝑛)
]T, then equation (4) can be redescribed as follows:

𝑣(𝑛 + 1) = Φ̄′(𝑛)Δ (𝑛) + Λ(𝑛), (13)

where Φ̄′(𝑛) = [Φ′
1(𝑛),⋯ ,Φ′

𝐿(𝑛)], and Φ′
𝑝(𝑛), 𝑝 = 1, 2,⋯ , 𝐿 is a diagonally dominant matrix, e.g., Φ′

𝑝(𝑛) =
𝑑𝑖𝑎𝑔(𝜙11𝑝(𝑛), 𝜙22𝑝(𝑛), 𝜙33𝑝(𝑛)),Λ(𝑛) =

[

𝜆1(𝑛) 𝜆2(𝑛) 𝜆3(𝑛)
]T and

𝜆𝑗(𝑛) =2𝑣𝑗(𝑛) − 𝑣𝑗(𝑛 − 1) +
3
∑

𝑖=1

𝐿
∑

𝑝=1
𝜙𝑗𝑖𝑝(𝑛)Δ𝜏𝑖(𝑛) −

𝐿
∑

𝑝=1
𝜙𝑗𝑗𝑝(𝑛)Δ𝜏𝑗(𝑛) + 𝜔𝑗(𝑛), 𝑗 = 1, 2, 3.

In order to estimate matrix Φ̄′(𝑛), considering the function is as follows:

𝐽 ( ̂̄Φ′(𝑛)) =‖𝑣(𝑛 + 1) − ̂̄Φ′(𝑛)Δ (𝑛) − Λ(𝑛)‖2 + 𝛼‖ ̂̄Φ′(𝑛) − ̂̄Φ′(𝑛 − 1)‖2,

where 𝛼 is a positive weight coefficient.
Solving 𝜕𝐽 ( ̂̄Φ′(𝑛))

𝜕 ̂̄Φ′(𝑛)
= 0, further derived as

̂̄Φ′(𝑛) = ̂̄Φ′(𝑛 − 1) + [𝑣(𝑛) − ̂̄Φ′(𝑛 − 1)Δ (𝑛 − 1) − Λ(𝑛 − 1)]
𝛽Δ T(𝑛 − 1)

𝛼 + ‖Δ (𝑛 − 1)‖2
,

𝜙̂𝑖𝑖1(𝑛) =𝜙̂𝑖𝑖1(1), 𝑖𝑓 |𝜙̂𝑖𝑖1(𝑛)| ≤ 𝜖. (14)

where 𝛽 ∈ (0, 2), 𝛼 > 0.
Suppose ̃̄Φ′(𝑛) = ̂̄Φ′(𝑛) − Φ̄′(𝑛), then equation (13) can be rewritten as

𝑣(𝑛 + 1) = ̂̄Φ′(𝑛)Δ (𝑛) + Λ′(𝑛), (15)

where Λ′(𝑛) = Λ(𝑛) − ̃̄Φ′(𝑛)Δ (𝑛).
According to the ESO strategy in Reference 24, the unknown term Λ′(𝑛) can be derived by

𝑣̂(𝑛 + 1) = ̂̄Φ′(𝑛)Δ (𝑛) + Λ̂′(𝑛),
Λ̂′(𝑛) =Λ̂′(𝑛 − 1) + 𝛾(𝑣(𝑛) − 𝑣̂(𝑛)), (16)

where 𝛾 = 𝑑𝑖𝑎𝑔(𝛾1, 𝛾2, 𝛾3), 𝛾𝑗 ∈ (0, 1), 𝑗 = 1, 2, 3. The 𝑣̂(𝑛) and Λ̂′(𝑛) express the estimation value of 𝑣(𝑛) andΛ′(𝑛), respectively.
And, the equation (14) can be rewritten as:

̂̄Φ′(𝑛) = ̂̄Φ′(𝑛 − 1) + [𝑣(𝑛) − ̂̄Φ′(𝑛 − 1)Δ (𝑛 − 1) − Λ̂′(𝑛 − 1)]
𝛽Δ T(𝑛 − 1)

𝛼 + ‖Δ (𝑛 − 1)‖2
.

Therefore, the equivalent data-driven model (11) of UMVs with disturbances is hold. ■
Then, combining with equation (2a), yields

𝜁 (𝑛 + 1) =𝜁 (𝑛) + 𝑇𝑠𝐽 (𝜓(𝑛))( ̂̄Φ′(𝑛 − 1)Δ (𝑛 − 1) + Λ̂′(𝑛 − 1)). (17)

To derive the adaptive trajectory tracking control law, the following control criterion function was considered:

𝐽 (𝜏(𝑛)) =‖𝜁𝑟(𝑛 + 1) − 𝜁 (𝑛 + 1)‖2 + 𝜅‖𝜏(𝑛) − 𝜏(𝑛 − 1)‖2,

where 𝜅 > 0 denotes the weighting constant.
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Solving 𝜕𝐽 (𝜏(𝑛))
𝜕𝜏(𝑛)

= 0, the adaptive tracking control law can be derived in the following25:

𝜏(𝑛) =𝜏(𝑛 − 1) +
𝜍1𝑇𝑠𝐽 (𝜓(𝑛))Φ̂′T

1 (𝑛)

𝜅 + ‖𝑇𝑠𝐽 (𝜓(𝑛))Φ̂′
1(𝑛)‖

2
(𝜁𝑟(𝑛 + 1) − 𝜁 (𝑛) − 𝑇𝑠𝐽 (𝜓(𝑛))Λ̂′(𝑛 − 1))

−
Φ̂′T

1 (𝑛)𝑇𝑠𝐽 (𝜓(𝑛))
∑𝐿
𝑝=2 𝜍𝑝Φ̂

′
𝑝(𝑛)Δ𝜏(𝑛 − 𝑝 + 1)

𝜅 + ‖𝑇𝑠𝐽 (𝜓(𝑛))Φ̂′
1(𝑛)‖

2
, (18)

where 𝜍𝑝 ∈ (0, 1), 𝑝 = 1,⋯ , 𝐿 is a step-size constant.

3.2 DoS attacks model and predictive compensation scheme
Generally speaking, the system performance might be decreased once the DoS attacks occur, this is because the useful informa-
tion will be blocked to the control center. If the aggressors launch DoS attacks on the system and cause the parcel dropouts, the
control input cannot be created timely, which make control system be unstable and control objective fail. In this article, the con-
troller cannot receive the data packets once DoS attacks occur. Suppose 𝑦(𝑛) = [𝑣(𝑛); 𝜁 (𝑛)], the data packets will be represented
in the following form:

𝑦𝑎𝑡𝑡(𝑛) = 𝜇(𝑛)𝑦(𝑛), (19)

where 𝜇(𝑛) complies with Bernoulli distribution. DoS attacks are successful when 𝜇(𝑛) = 0, and DoS attacks fail when 𝜇(𝑛) = 1.
The successful probability of the DoS attacks can be represented as 𝑃 {𝜇(𝑛) = 0} = 1 − 𝜇̄, the failed one 𝑃 {𝜇(𝑛) = 1} = 𝜇̄.

Remark 4. Similar to30,31 and32, the constraint of frequency and duration for random DoS attacks is dealt with by the theory
of probability. The DoS attacks usually occur in a stochastic manner, which follow Bernoulli distribution in this paper. It means
that the attacks are discontinuous. Instead of frequency, the probability is used to represent the occurrence possibility of random
DoS attacks. Based on the probability of attacks, the duration for random DoS attacks is limited. In fact, the attackers can only
launch intermittent attacks constrained by finite energy on the wireless channel. Thus, it is reasonable to describe the possibility
of DoS attacks by using the Bernoulli distribution.

3.2.1 Predictive compensation scheme
The following assumptions are given to make the predictive compensation algorithm for DoS attacks more practical.
Assumption 5. 33 The delay of data packet in the wireless channel between controller and sensor can be neglected.

The attack signals is limited due to the restricted energy, and the number of subsequent attacks has an upper bound 𝑞.

Figure 1 The control structure of the UMVs system against DoS attacks.
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From Figure 1, we can see that the module of predictive compensation is embedded to repair the damage caused by the
attacks, which composed of a predictor, storage and compensator. The data packet 𝑦(𝑛) and ̂̄Φ′(𝑛) will update to 𝑦(𝑛′) and ̂̄Φ′(𝑛′)
when the data packet 𝑦(𝑛) and ̂̄Φ′(𝑛) are sent to the controller side successfully at time 𝑛. Then the predictor will predict a group
output data 𝑦(𝑛|𝑛′) for 𝑛 = 𝑛′ + 𝚤, 𝚤 = 1, 2,⋯ , 𝑞, and store these value of Δ𝑣𝑠(𝑛|𝑛′) to storage area. At the same time, the attack
signals 𝜇(𝑛) can be detected. When 𝜇(𝑛) = 0, it means the attackers attack the system successfully, the correspondingly value
of 𝑦(𝑛|𝑛′) in storage will be send to the controller. When 𝜇(𝑛) = 1, the attacks failed, and the predictive compensation does not
work. Then, the signals received by PFDL-DDATTC is represented as

𝑦(𝑛′|𝑛′) =
[

𝑣T(𝑛′|𝑛′) 𝜁T(𝑛′|𝑛′)
]T (20)

So the predictive compensation algorithm is as follows:

Δ𝜏(𝑛′|𝑛′) = ℑ(𝑛′)(𝜁𝑟(𝑛′ + 1) − 𝜁 (𝑛′|𝑛′) − 𝑇𝑠𝐽 (𝜓(𝑛′))Λ̂′(𝑛′ − 1)) −℘(𝑛′), (21)

where

ℑ(𝑛′) =
𝜍1𝑇𝑠𝐽 (𝜓(𝑛′))Φ̂′𝑇

1 (𝑛′)

𝜅 + ‖𝑇𝑠𝐽 (𝜓(𝑛′))Φ̂′
1(𝑛

′)‖2
,℘(𝑛′) =

Φ̂′𝑇
1 (𝑛′)𝑇𝑠𝐽 (𝜓(𝑛′)

∑𝐿
𝑝=2 𝜍𝑝Φ̂

′
𝑝(𝑛

′)Δ𝜏(𝑛′ − 𝑝 + 1)

𝜅 + ‖𝑇𝑠𝐽 (𝜓(𝑛′)Φ̂′
1(𝑛

′)‖2
,

𝜁 (𝑛′|𝑛′) = 𝜁 (𝑛′), and 𝜁𝑟(𝑛′ + 1) is the desired trajectory, which stores in the controller and predictor and can be obtained in
advance.

Based on the equation (11), (12), (17), (21), a group of predictive increments for 𝚤 = 1, 2,⋯ , 𝑞 are computed updated as
follows:

𝑦(𝑛′ + 𝚤|𝑛′) =
[

𝑣T(𝑛′ + 𝚤|𝑛′) 𝜁T(𝑛′ + 𝚤|𝑛′)
]T ,

𝑣(𝑛′ + 𝚤|𝑛′) = ̂̄Φ′(𝑛′ − 1)Δ (𝑛′ + 𝚤 − 1|𝑛′) + Λ̂′(𝑛′ − 1)), (22)
𝑣(𝑛′ + 𝚤|𝑛′) =𝑣(𝑛′ + 𝚤 − 1|𝑛′) + Δ𝑣(𝑛′ + 𝚤 − 1|𝑛′), (23)
𝜁 (𝑛′ + 𝚤|𝑛′) =𝜁 (𝑛′ + 𝚤 − 1|𝑛′) + 𝑇𝑠𝐽 (𝜓(𝑛′ + 𝚤|𝑛′))𝑣(𝑛′ + 𝚤|𝑛′), (24)

Δ𝜏(𝑛′ + 𝚤|𝑛′) =ℑ(𝑛′)(𝜁𝑟(𝑛′ + 1) − 𝜁 (𝑛′ + 𝚤|𝑛′) − 𝑇𝑠𝐽 (𝜓(𝑛′))Λ̂′(𝑛′ − 1)) −℘(𝑛′). (25)

According to equation (23),

Δ𝑣𝑠(𝑛′ + 𝚤|𝑛′) = Δ𝑣𝑠(𝑛′ + 𝚤 − 1|𝑛′) + Δ𝑣(𝑛′ + 𝚤|𝑛′), (26)

where Δ𝑣𝑠(𝑛′ + 1|𝑛′) = Δ𝑣(𝑛′ + 1|𝑛′).
From the above the analysis, the corresponding increment sequence as the following:

Δ𝑉 𝑠
𝑛′ =

[

Δ𝑣T𝑠 (𝑛
′
|𝑛′) ⋯ Δ𝑣T𝑠 (𝑛

′ + 𝑞|𝑛′)
]T . (27)

When 𝑞 successive attacks occur after the instant 𝑛′, the compensator will invoke corresponding Δ𝑣𝑠(𝑛′ + 𝚤|𝑛′) from Δ𝑉 𝑠
𝑛′ for

𝚤 = 1, 2,⋯ , 𝑞, to obtain the compensation value

𝑣(𝑛|𝑛′) = Δ𝑣𝑠(𝑛|𝑛′) + 𝑣(𝑛′ − 1). (28)

Furthermore, we can obtain that

𝑦(𝑛′) =
[

𝑣T(𝑛′) 𝜁T(𝑛′)
]T

𝑣(𝑛′) =Δ𝑣𝑠(𝑛′) + 𝑣(𝑛′ − 1) = Δ𝑣(𝑛′) + 𝑣(𝑛′ − 1),
𝜁 (𝑛′) =𝜁 (𝑛′ − 1) + 𝑇𝑠𝐽 (𝜓(𝑛))𝑣(𝑛′). (29)

And there exists a constant 𝑐1 , s.t. ‖𝑣(𝑛′)‖ ≤ 𝑐1.
Inspired by Reference 34, we design the attacks compensation mechanism is 𝑦∗(𝑛) =

[

𝑣∗T(𝑛) 𝜁∗T(𝑛)
]T, and:

𝑣∗(𝑛) =𝑣𝑎𝑡𝑡(𝑛) + 𝑣𝑐𝑜𝑚(𝑛) = 𝜇(𝑛)𝑣(𝑛) + (1 − 𝜇(𝑛))𝑣(𝑛′), (30)
𝜁∗(𝑛) =𝜁(𝑛 − 1) + 𝑇𝑠𝐽 (𝜓(𝑛))𝑣∗(𝑛) = 𝜇(𝑛)𝜁 (𝑛) + (1 − 𝜇(𝑛))𝜁 (𝑛′).
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Then, based on the predictive compensation mechanism, the resilient controller can be designed in the following:

̂̄Φ′(𝑛) = ̂̄Φ′(𝑛 − 1) + [𝑣∗(𝑛) − ̂̄Φ′(𝑛 − 1)Δ (𝑛 − 1) − Λ̂′(𝑛 − 1)]
𝛽Δ T(𝑛 − 1)

𝛼 + ‖Δ (𝑛 − 1)‖2
,

𝜙̂𝑖𝑖1(𝑛) =𝜙̂𝑖𝑖1(1), 𝑖𝑓 |𝜙̂𝑖𝑖1(𝑛)| ≤ 𝜖, (31a)

𝜏(𝑛) =𝜏(𝑛 − 1) +
𝜍1𝑇𝑠𝐽 (𝜓(𝑛))Φ̂′𝑇

1 (𝑛)

𝜅 + ‖𝑇𝑠𝐽 (𝜓(𝑛))Φ̂′
1(𝑛)‖

2
(𝜁𝑟(𝑛 + 1) − 𝜁∗(𝑛) − 𝑇𝑠𝐽 (𝜓(𝑛))Λ̂′(𝑛 − 1))

−
Φ̂′𝑇

1 (𝑛)𝑇𝑠𝐽 (𝜓(𝑛))
∑𝐿
𝑝=2 𝜍𝑝Φ̂

′
𝑝(𝑛)Δ𝜏(𝑛 − 𝑝 + 1)

𝜅 + ‖𝑇𝑠𝐽 (𝜓(𝑛))Φ̂′
1(𝑛)‖

2
. (31b)

Remark 5. Based on the equation (30), it is clear that the compensation mechanism contains two parts, e.g. 𝑦(𝑛) and 𝑦(𝑛|𝑛′).
When the 𝜇(𝑛) = 0, namely, the DoS attacks are successful, the controller will use the predictive data 𝑦(𝑛|𝑛′) for 𝑛 = 𝑛′+1,⋯ , 𝑞
in storage area to reduce the influences of DoS attacks. In the simulations, it is obvious that the compensation scheme improve
the trajectory tracking performance largely of systems.

3.3 Stability analysis
In the subsection, the boundedness of UMVs tracking error systems against DoS attacks is studied. In order to facilitate the
subsequent proof, we give the Lemmas in the following.
Lemma 1. 25 Suppose 𝐴 = [𝛼𝑖𝑗] ∈ 𝐶3×3, the Gerschgorin disk criterion is expressed as 𝑖 = {𝑟|𝑟 − 𝛼𝑖𝑖| ≤

∑3
𝑗≠𝑖,𝑗=1 |𝛼𝑖𝑗|}, 𝑟 ∈

𝐶, 𝑖 ∈ [1, 3], the Gerschgorin domain 𝐴 is defined as 𝐴 =
⋃3
𝑖=1 𝑖, and all eigenvalues of matrix 𝐴 exist in 𝐴.

Lemma 2. 33 Considering the predictive compensation algorithm equation (28), Δ𝑣𝑠(𝑛|𝑛′) is bounded for 𝑛 > 𝑛′.

Before proving the convergence of UMVs tracking error, the analysis of the boundedness of the estimated value of Φ̄′(𝑛),Λ′(𝑘)
is given in Corollary 2.

Corollary 2. For system (2), the data-driven model can be written as the equation (11) with the updating laws (12). Considering
the DoS attacks signals (19) and the resilient controller (31), the value of ̂̄Φ′(𝑛) and Λ̂′(𝑛) are bounded.

Proof. In the initial condition, the conclusion is true.
First, we will prove ̂̄Φ′(𝑛) is bounded.
In one situation, the ̂̄Φ′(𝑛) is bounded when |𝜙̂𝑖𝑖(𝑛)| ≤ 𝜖.
In other situation, |𝜙̂𝑖𝑖(𝑛)| > 𝜖, from equation (31a), we will have

̃̄Φ′(𝑛) =[𝐼 + (𝜇(𝑛) − 1)
𝛽Δ (𝑛 − 1)Δ 𝑇 (𝑛 − 1)
𝛼 + ‖Δ (𝑛 − 1)‖2

] ̃̄Φ′𝑇 (𝑛 − 1) +
𝛽Δ (𝑛 − 1)

𝛼 + ‖Δ (𝑛 − 1)‖2
Φ̄′(𝑛 − 1) (32)

+
𝛽Δ (𝑛 − 1)

𝛼 + ‖Δ (𝑛 − 1)‖2
(𝜇(𝑛)(Λ′𝑇 (𝑛 − 1) − Λ̂′𝑇 (𝑛 − 1))) +

𝛽Δ (𝑛 − 1)
𝛼 + ‖Δ (𝑛 − 1)‖2

(1 − 𝜇(𝑛))𝑣𝑇 (𝑛′) − ΔΦ̄′(𝑛).

Taking norm and the exception for (32), one has:

𝐸{‖ ̃̄Φ′(𝑛)‖} ≤𝐸{‖𝐼 + (𝜇̄ − 1)
𝛽Δ (𝑛 − 1)Δ 𝑇 (𝑛 − 1)
𝛼 + ‖Δ (𝑛 − 1)‖2

‖}𝐸{‖ ̃̄Φ′𝑇 (𝑛 − 1)‖}

+ 𝐸{‖
𝛽Δ (𝑛 − 1)

𝛼 + ‖Δ (𝑛 − 1)‖2
‖}𝐸{‖Φ̄′(𝑛 − 1)‖} + 𝜇̄𝐸{‖

𝛽Δ (𝑛 − 1)
𝛼 + ‖Δ (𝑛 − 1)‖2

‖}𝐸{‖Λ̃′(𝑛 − 1)‖}

+ (1 − 𝜇̄)𝐸{‖
𝛽Δ (𝑛 − 1)

𝛼 + ‖Δ (𝑛 − 1)‖2
‖}𝐸{‖𝑣(𝑛′)‖} + 𝐸{‖ΔΦ̄′(𝑛)‖}, (33)

where Λ̃′𝑇 (𝑛 − 1) = Λ̂′𝑇 (𝑛 − 1) − Λ′𝑇 (𝑛 − 1), and constant 𝑑 satisfies ‖Λ̃′(𝑛 − 1)‖ ≤ 𝑑.
What’s more,

‖𝐼 + (𝜇̄ − 1)
𝛽Δ (𝑛 − 1)Δ 𝑇 (𝑛 − 1)
𝛼 + ‖Δ (𝑛 − 1)‖2

‖

2 ≤ 𝑙. (34)

where 𝑙 ∈ (0, 1) is a constant.
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Note

‖

𝛽Δ 𝑇 (𝑛 − 1)
𝛼 + ‖Δ (𝑛 − 1)‖2

‖ =
𝛽‖Δ (𝑛 − 1)‖

𝛼 + ‖Δ (𝑛 − 1)‖2
=

𝛽
𝛼

‖Δ (𝑛−1)‖
+ ‖Δ (𝑛 − 1)‖

≤ 𝛽
2
√

𝛼
. (35)

Furthermore, from Theorem 1, we can know ‖Φ̄′(𝑛)‖ ≤ 𝜚1, then

‖ΔΦ̄′(𝑛)‖ ≤ 2𝜚1. (36)

Then, substituting (34), (35), (36) into (33) yields

𝐸{‖ ̃̄Φ′(𝑛)‖} ≤𝑙𝐸{‖ ̃̄Φ′(𝑛 − 1)‖} + 𝑐2, (37)

where 𝑐2 =
𝛽𝜚1
2
√

𝛼
+ 𝜇̄ 𝛽𝑑

2
√

𝛼
+ (1 − 𝜇̄) 𝛽𝑐1

2
√

𝛼
+ 2𝜚1.

And from (37), we have

𝐸{‖ ̃̄Φ′(𝑛)‖} ≤𝑙𝐸{‖ ̃̄Φ′(𝑛 − 1)‖} + 𝑐2 ≤ 𝑙𝑛−1𝐸{‖ ̃̄Φ′(1)‖} +
𝑐2

1 − 𝑙
.

This means ̃̄Φ′(𝑛) and ̂̄Φ′(𝑛) are bounded.
Second, we will prove the estimation value of Λ̂′(𝑛) is bounded.
Suppose Λ̃′(𝑛) = Λ̂′(𝑛) − Λ′(𝑛) and ‖Λ̃′(𝑛)‖ < 𝑐3 combined with (15) and (16), we have

𝑣̃(𝑛 + 1) = (𝐼 − 𝛾)𝑣̃(𝑛) + Λ̃′(𝑛) − ΔΛ′(𝑛), (38)

where ΔΛ′(𝑛) = Λ′(𝑛) − Λ′(𝑛 − 1), 𝑐3 > 0 is a constant, 𝐼 ∈ 𝑅3 is unit matrix.
Considering (15), ̃̄Φ′(𝑛) and Λ′(𝑛) are bounded. And

max ‖ΔΛ′(𝑛)‖ ≤ 𝑐4, (39)

where 𝑐4 > 0 is a constant.
Taking norm and the exception for both sides of (38), then yields that:

𝐸{‖𝑣̃(𝑛 + 1)‖} = (𝐼 − 𝛾)𝐸{‖𝑣̃(𝑛)‖} + 𝑐3 + 𝑐4. (40)

Integrating equation (40) with (39), we can get

𝐸{‖𝑣̃(𝑛 + 1)‖} ≤ ‖(𝐼 − 𝛾)𝑛−1‖𝐸{‖Δ𝑣̃(1)‖} + (‖(𝐼 − 𝛾)𝑛−1‖ +⋯ + ‖𝐼 − 𝛾‖ + ‖𝐼‖)(𝑐3 + 𝑐4).

Thus, 𝑣̃(𝑛 + 1) is bounded, it means Λ̂′(𝑛) is bounded.
The proof is now complete.

Theorem 2. For the UMVs system (1), the equivalent data-driven model of UMVs (4) satisfies Assumptions 1, 2, 3 and 4, the
resilient controller is given by the PFDL-DDATTC scheme (31) for trajectory tracking 𝜁𝑟(𝑛), then there exists constant  is as
follows:

 =(𝑝1 + 𝑝2)𝑛𝐸{Γ(1)} + (𝑝2𝑝17)𝑛 +7, (41)

where 𝑝1 + 𝑝2 < 1, Γ(1) and 7 are small constants, such that the error of trajectory tracking is convergent under DoS attacks
and external disturbances.

Proof. Based on the equation (25), it yields that

Δ (𝑛′) =1(𝑛′)Δ (𝑛′ − 1) + 𝜍11(𝑛′)1(𝑛′) − 𝜍11(𝑛′) (𝑛′), (42)

where

1(𝑛′) =
[

−𝑏2(𝑛′)⋯ − 𝑏𝐿(𝑛′) 0
𝐼 0

]

, 𝑏𝑝(𝑛′) =
𝜍𝑝𝑇𝑠𝐽 (𝜓(𝑛′))Φ̂′𝑇

1 (𝑛′)Φ̂′
𝑝(𝑛

′)

𝜅 + ‖𝑇𝑠𝐽 (𝜓(𝑛′))Φ̂′
1(𝑛

′)‖2
, 𝑝 = 2,⋯ , 𝐿,

1(𝑛′) =

[

𝑇𝑠𝐽 (𝜓(𝑛′))Φ̂′𝑇
1 (𝑛′) 0

0 0

]

𝜅 + ‖𝑇𝑠𝐽 (𝜓(𝑛′))Φ̂′
1(𝑛

′)‖2
, 1(𝑛′) =

[

𝜁𝑟(𝑛′ + 1) − 𝜁 (𝑛′|𝑛′)
0

]

, (𝑛′) =
[

𝑇𝑠𝐽 (𝜓(𝑛′))Λ̂′(𝑛′)
0

]

.

From equation (28) and (29), we have

𝜁 (𝑛) = 𝜁 (𝑛′ − 1) + Δ𝜁𝑠(𝑛′ + 𝑞 − 1|𝑛′) + 𝜁 (𝑛|𝑛′) − 𝜁 (𝑛′ + 𝑞 − 1|𝑛′) = 𝜁(𝑛|𝑛′) + ℵ(𝑛). (43)
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For 𝑛 = 𝑛′ + 𝑞, it follows

Δ𝜁𝑠(𝑛|𝑛′) =(1 − (1 − 𝑇𝑠𝐽 (𝜓(𝑛′) ̂̄Φ′(𝑛′)𝜍11(𝑛′))𝑞)(𝜁𝑟(𝑛′)

− 𝜁 (𝑛′|𝑛′)) + 𝑇𝑠𝐽 (𝜓(𝑛′)) ̂̄Φ′(𝑛′)1(𝑛′)
𝑛−1
∑

𝚤=1
Δ (𝑛′ − 𝚤) + 𝑞(𝑇𝑠𝐽 (𝜓(𝑛′))Λ̂′(𝑛′) (44)

− 𝑇𝑠𝐽 (𝜓(𝑛′)) ̂̄Φ′(𝑛′)𝜍11(𝑛′) (𝑛′)).

Then, we have

ℵ(𝑛) =𝜁 (𝑛′ − 1) − 𝜁 (𝑛′ + 𝑞 − 1|𝑛′) − (1 − 𝑇𝑠𝐽 (𝜓(𝑛′)) ̂̄Φ′(𝑛′)𝜍11(𝑛′))𝑞(𝜁𝑟(𝑛′)

− 𝜁 (𝑛′|𝑛′)) + 𝑇𝑠𝐽 (𝜓(𝑛′)) ̂̄Φ′(𝑛′)1(𝑛′)
𝑞−1
∑

𝚤=1
Δ (𝑛′ − 𝚤) + 𝑞(𝑇𝑠𝐽 (𝜓(𝑛′))Λ̂′(𝑛′)

− 𝑇𝑠𝐽 (𝜓(𝑛′)) ̂̄Φ′(𝑛′)𝜍11(𝑛′) (𝑛′)), (45)

where 𝜁 (𝑛′−1), 𝜁(𝑛′+𝑞−1|𝑛′) and 𝜁 (𝑛′|𝑛′) are bounded. As we all know, ̂̄Φ′(𝑛′) is bounded , 𝑇𝑠𝐽 (𝜓(𝑛′)) ̂̄Φ′(𝑛′)𝜍11(𝑛′) ∈ (0, 1),
Λ̂′(𝑛′) is bounded. Hence, there exists an upper bounded ℵ̄ such that ‖ℵ(𝑛)‖ ≤ ℵ̄ for all 𝑛.

Substituting (43) into (30) yields

𝜁∗(𝑛) = 𝜁 (𝑛) − (1 − 𝜇(𝑛))ℵ(𝑛). (46)

Due to 𝑒(𝑛) = 𝜁𝑟(𝑛 + 1) − 𝜁 (𝑛), we have

𝜁𝑟(𝑛 + 1) − 𝜁∗(𝑛) =𝑒(𝑛) + (1 − 𝜇(𝑛))ℵ(𝑛). (47)

The equation (31b) can be rewritten as

Δ (𝑛) = 1(𝑛)Δ (𝑛 − 1) + 𝜍11(𝑛)(𝑛) − 𝜍11(𝑛)2(𝑛) − 𝜍11(𝑛)2(𝑛), (48)

where
(𝑛) =

[

𝑒𝑇 (𝑛)
0

]

,2(𝑛) =
[

𝑇𝑠𝐽 (𝜓(𝑛))Λ̂′(𝑛)
0

]

,2(𝑛) =
[

(1 − 𝜇(𝑛))ℵ(𝑛)
0

]

.

Then we can derived that

(𝑛 + 1) =2(𝑛)(𝑛) − 3(𝑛)Δ (𝑛 − 1) + 𝜍12(𝑛)2(𝑛) + 𝜍12(𝑛)2(𝑛) −  (𝑛) + 𝑟(𝑛), (49)

where

2(𝑛) =

[

𝐼 − 𝜍1𝑇 2
𝑠 𝐽

2(𝜓(𝑛))Φ′
1(𝑛)Φ̂

′
1(𝑛)

𝜅+‖𝑇𝑠𝐽 (𝜓(𝑛))Φ̂′
1(𝑛)‖

2 0

0 0

]

,3(𝑛) =
[

−𝑏′2(𝑛)⋯ − 𝑏′𝐿(𝑛) 0
𝐼 0

]

,

𝑏′𝑝(𝑛
′) =

𝜍𝑝𝑇 2
𝑠 𝐽

2(𝜓(𝑛))Φ̂′𝑇
1 (𝑛)Φ̂′

𝑝(𝑛)

𝜅 + ‖𝑇𝑠𝐽 (𝜓(𝑛))Φ̂′
1(𝑛)‖

2
, 𝑝 = 2,⋯ , 𝐿,2(𝑛) =

[

𝑇 2
𝑠 𝐽

2(𝜓(𝑛))Φ̂′
1(𝑛)Φ̂

′𝑇
1 (𝑛) 0

0 0

]

𝜅 + ‖𝑇𝑠𝐽 (𝜓(𝑛))Φ̂′
1(𝑛)‖

2
,𝑟(𝑛) =

[

Δ𝜁𝑟(𝑛)
0

]

.

Taking norm and the exception, the equation (49) is represented as:

𝐸{‖(𝑛 + 1)‖} ≤𝐸{‖2(𝑛)(𝑛)‖} + 𝐸{‖3(𝑛)Δ (𝑛 − 1)‖} + 𝜍1𝐸{‖2(𝑛)2(𝑛)‖}
+ 𝐸{‖ (𝑛)‖} + 𝜍1(1 − 𝜇̄)ℵ̄𝐸{‖2(𝑛)‖} + 𝐸{‖𝑟(𝑛)‖}. (50)

From Reference 25, using Lemma 1, we can know that the following inequations hold :

0 <1 ≤
𝑇 2
𝑠 𝐽

2(𝜓(𝑛))Φ̂′𝑇
1 (𝑛)Φ̂′

1(𝑛)

𝜅 + ‖𝑇𝑠𝐽 (𝜓(𝑛))Φ̂′
1(𝑛)‖

2
< 1, 𝑠(3(𝑛)) ≤ 1, 𝑠(2(𝑛)) ≤ 1 − 𝜍11 < 1,

where 𝑠() is the spectral radius of matrix .
Due to Φ̄′(𝑛), ̂̄Φ′(𝑛),Λ′(𝑛) and Λ̂′(𝑛) are bounded, there exist constant 2,3,4,5 such that

‖1(𝑛)‖ ≤ 2, ‖2(𝑛)‖ ≤ 3, ‖2(𝑛)‖ ≤ 4, ‖ (𝑛)‖ ≤ 5,1 +23 < 1.
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The characteristic equation of 1(𝑛) is

𝑟3𝑑𝑒𝑡(𝑟𝐿−1𝐼 +
𝐿
∑

𝑝=2
𝑟𝐿−𝑝

𝜍𝑝Φ̂′𝑇
1 (𝑛)Φ̂′

𝑛(𝑛)

𝜅 + ‖Φ̂′
1(𝑛)‖

2
) = 0.

And 𝑑𝑒𝑡(𝑟𝐿−1𝐼 +
∑𝐿
𝑝=2 𝑟

𝐿−𝑝 𝜍𝑝Φ̂
′𝑇
1 (𝑛)Φ̂′

𝑛(𝑛)
𝜅+‖Φ̂′

1(𝑛)‖
2 ) is a 3(𝐿 − 1)-order monic polynomial, which can be rewritten as 𝑟3(𝐿−1)

+ max𝑝=2,⋯,𝐿 𝜍𝑝
𝜅+‖Φ̂′

1(𝑛)‖
2 𝜒(𝑟), where 𝜒(𝑟) is a 2(𝐿 − 1)-order polynomial.

Due to Φ̄′(𝑛), ̂̄Φ′(𝑛) are bounded, and 𝑠(3(𝑛)) ≤ 1,
‖𝜒(𝑟)‖

𝜅 + ‖Φ̂′
1(𝑛)‖

2
≤ 6.

where 6 is a positive constant.
Selecting max

𝑝=2,⋯,𝐿
𝜍𝑝 such that

|𝑟|3(𝐿−1) ≤ max
𝑝=2,⋯,𝐿

𝜍𝑝6 < 1. (51)

Based on equation (51), it has

𝑠(3(𝑛)) ≤ { max
𝑝=2,⋯,𝐿

𝜍𝑝6} < 1. (52)

Based on  , yields

‖(𝑛)‖ < 𝑠((𝑛)) + 𝜀. (53)

Combining with equation (52) and (53), it yields

‖3(𝑛)‖ < 𝑠(3(𝑛)) + 𝜀 ≤ 𝑝2 < 1, ‖2(𝑛)‖ < 𝑠(2(𝑛)) + 𝜀 ≤ 𝑝1 < 1, (54)

where 𝑝1 = { max
𝑝=2,3,⋯,𝐿

𝜍𝑝6}
1

3(𝐿−1) + 𝜀, 𝑝2 = 1 − 𝜍11 + 𝜀.
On the basis of equation (48), and define ‖Δ (0)‖ = 0, one has

𝐸{‖Δ (𝑛)‖} < 𝜍12

𝑛
∑

𝓁=1
𝑝𝑛−𝓁1 𝐸{‖(𝓁)‖} +

(1 − 𝑝𝑛1)𝜍12(4 + (1 − 𝜇̄)ℵ̄)
1 − 𝑝1

. (55)

Similarly, based on the equation (50) and Assumption 4, we have:

𝐸{‖(𝑛 + 1)‖} <𝑝𝑛2𝐸{‖(1)‖} +3

𝑛−1
∑

𝚥=1
𝑝𝑛−1−𝚥2 𝑝1𝐸{‖Δ (𝚥)‖} (56)

+
( +5 + 𝜍1(1 − 𝜇̄)ℵ̄23 + 𝜍1234)(1 − 𝑝𝑛−12 )

1 − 𝑝2
.

From (55) to (56), it easily leads to

𝐸{‖(𝑛 + 1)‖} ≤𝐸{Γ(𝑛 + 1)} +7(𝑛 + 1), (57)

where

𝐸{Γ(𝑛 + 1)} =𝑝𝑛2𝐸{‖(1)‖} + 𝜍1𝑝123

𝑛−1
∑

𝚥=1
𝑝𝑛−1−𝚥2

𝚥
∑

𝓁=1
𝑝𝚥−𝓁1 𝐸{‖(𝓁)‖},

7(𝑛 + 1) =
(1 − 𝑝𝑛1)𝜍12(4 + (1 − 𝜇̄ℵ̄))

1 − 𝑝1

𝜍1𝑝123(1 − 𝑝𝑛2)
1 − 𝑝2

+
( +5 + 𝜍1(1 − 𝜇̄)ℵ̄23 + 𝜍1234)(1 − 𝑝𝑛2)

1 − 𝑝2
.

Suppose 𝑝3 = 𝜍123, computing Γ(𝑛 + 2) yields

𝐸{Γ(𝑛 + 2)} ≤𝑝2𝐸{Γ(𝑛 + 1)} + 𝐸{𝛾(𝑛)}, (58)

where 𝛾(𝑛) = 𝑝3𝑝𝑛1‖(1)‖+𝑝3𝑝
𝑛−1
1 ‖(2)‖+⋯+𝑝3𝑝21‖(𝑛−1)‖+𝑝3𝑝1(Γ(𝑛)+7(𝑛)), and exists a constant7, s.t.,7(𝑛) ≤ 7.
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Due to

𝑝2 =1 − 𝜍11 + 𝜀 > 𝜍1(1 +23) − 𝜍11 + 𝜀 = 𝜍123 + 𝜀 > 𝑝3.

The 𝛾(𝑛) can be derived as

𝛾(𝑛) <𝑝3𝑝𝑛1‖(1)‖ + 𝑝3𝑝
𝑛−1
1 ‖(2)‖ +⋯ + 𝑝3𝑝21‖(𝑛 − 1)‖ + 𝑝2𝑝17 + 𝑝2𝑝1Γ(𝑛)

<𝑝3𝑝
𝑛
1‖(1)‖ + 𝑝3𝑝

𝑛−1
1 ‖(2)‖ +⋯ + 𝑝3𝑝21‖(𝑛 − 1)‖ + 𝑝2𝑝17

+ 𝑝2𝑝1(𝑝𝑛−12 ‖(1)‖ + 𝑝1𝜍123

𝑛−2
∑

𝚥=1
𝑝𝑛−2−𝚥2

𝚥
∑

𝓁=1
𝑝𝚥−𝓁1 ‖(𝓁)‖) (59)

<𝑝1(𝑝𝑛2‖(1)‖ + 𝑝1𝜍123

𝑛−1
∑

𝚥=1
𝑝𝑛−1−𝚥2

𝚥
∑

𝓁=1
𝑝𝚥−𝓁1 ‖(𝓁)‖) + 𝑝2𝑝17

=𝑝1Γ(𝑛 + 1) + 𝑝2𝑝17.

Then from (58) and (59), we get

𝐸{Γ(𝑛 + 2)} < 𝑝2𝐸{Γ(𝑛 + 1)} + 𝑝1𝐸{Γ(𝑛 + 1)} + 𝑝2𝑝17. (60)

Let 𝜍𝑝 ∈ (0, 1), 𝑝 = 1, 2,⋯ , 𝐿 such that

{ max
𝑝=2,3,⋯,𝐿

𝜍𝑝6}
1

3(𝐿−1) < 𝜍11 < 1, 0 < 1 − 𝜍11 + { max
𝑝=2,3,⋯,𝐿

𝜍𝑝6}
1

3(𝐿−1) < 1.

From equation (54), it gets that

𝑝1 + 𝑝2 =1 − 𝜍11 + 𝜀 + { max
𝑝=2,3,⋯,𝐿

𝜍𝑝6}
1

3(𝐿−1) + 𝜀 < 1, (61)

Substituting (61) into (60) gives

𝐸{Γ(𝑛 + 1)} < (𝑝1 + 𝑝2)𝐸{Γ(𝑛)} < (𝑝1 + 𝑝2)𝑛𝐸{Γ(1)} + (𝑝2𝑝17)𝑛 (62)

Moreover, the boundedness of the trajectory tracking error can be derived that

𝐸{‖(𝑛 + 1)‖} < (63)

where  = (𝑝1 + 𝑝2)𝑛𝐸{Γ(1)} + (𝑝2𝑝17)𝑛 + 7 is a small constant, which is affected by the DoS attacks and external
disturbances.

The proof is now complete.

4 SIMULATION RESULTS

The purpose of the section is to prove the validity and superiority of the proposed PFDL-DDATTC algorithm.
In the simulation, the desired tracking trajectory as the following:

𝑥𝑟(𝑛) =𝑛;
𝑦𝑟(𝑛) =5 + 𝑠𝑖𝑛(0.05𝑥𝑟(𝑛));
𝜓𝑟(𝑛) =𝑎𝑟𝑐𝑡𝑎𝑛(𝑥𝑟(𝑛), 𝑦𝑟(𝑛)).

And the sampling time is 0.01s, the probability of random DoS attacks occurrence is 𝑃 . The initial conditions are 𝜁 (1) =
[

0 4 6
]T ; 𝑣(1) =

[

0.5 0.5 0.5
]T. The disturbances are 𝑑𝜈 = 0.015(𝑠𝑖𝑛(2𝜋𝑛)); 𝑑𝜗 = 0.05(𝑠𝑖𝑛(2𝜋𝑛)); 𝑑𝑟 = 0.01(𝑠𝑖𝑛(2𝜋𝑛)). In the

PFDL-DDATTC algorithm, the parameters are as follows: 𝐿 = 4, 𝜅 = 0.4, 𝜍 = [0.9; 0.9; 0.9; 0.9], 𝛽 = 0.01, 𝛼 = 0.7. And the
initial value of ̂̄Φ′(𝑛) is ̂̄Φ′(1) =

[

Φ̂′
1(1) Φ̂

′
2(1) Φ̂

′
3(1) Φ̂

′
4(1)

]T, Φ̂′
1(1) = 𝑑𝑖𝑎𝑔(0.5, 0.5, 0.5) , Φ̂′

2(1) = 𝑑𝑖𝑎𝑔(0.2, 0.2, 0.2), Φ̂′
3(1) =

𝑑𝑖𝑎𝑔(0.05, 0.05, 0.05), Φ̂′
4(1) = 𝑑𝑖𝑎𝑔(0.005, 0.005, 0.005).

When the UMV system is only affected by the disturbances and not subjected to DoS attacks, the tracked trajectory and
desired trajectory are depicted in Figure 2. It is clear that the UMV can track the desired trajectory with estimation algorithm in
subgraph (a), and the actual trajectory fits the desired trajectory quiet well. However, the UMV can not track desired trajectory
without it in subgraph (b), there is always a gap between desired trajectory and actual trajectory. It is clear that the disturbances
estimation algorithm make tracking performances better when the UMV system is affected by the external disturbances.



14 LIU ET AL

0 50 100 150 200 250 300

x(m)

0

5

10

y(
m

)

desired trajectory

trajectory tracking

0 50 100 150 200 250 300

n

-2

0

2

4

6

8
ya

w
 a

ng
le

 (ψ
) ψ

r
(n)

ψ(n)

(a) Trajectory-tracking of UMV under disturbances with es-
timation algorithm.
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(b) Trajectory-tracking of UMV under disturbances without
estimation algorithm.

Figure 2 Comparisons of UMV under disturbances.

When 𝑃 = 0.05, Figure 3 depicts the time response curves for UMV system under DoS attacks without predictive compensa-
tion scheme. From Figure 3, the subgraph (a) depicts the tracking performance for trajectory and yaw angle of UMV; subgraph
(b) is random variable 𝜇(𝑛), which represents DoS attacks signals; subgraph (c) denotes the control input signals; subgraph (d)
gives the tracking error under the situation. Because of the probability of DoS attacks occurrence is small, the UMV can track
the desired trajectory when DoS attacks not occur.
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(d) Tracking error

Figure 3 The time response curves of UMV under DoS attacks without predictive compensation with P=0.05.

From Figure 4, it is clear that the tracking performance become worse for UMV with the increase of DoS attacks probability
when 𝑃 = 0.3. Without the predictive compensation scheme, the UMV can not track the desired trajectory, and there have
larger tracking error. Based on the predictive compensation approach in this article, Figure 5 shows that the UMV can track the
desired trajectory when the system under DoS attacks probability is 𝑃 = 0.3. And the UMV can still track the desired trajectory
accurately when 𝑃 = 0.7, see Figure 6. The tracking error tends to zero, which shows that the proposed predictive compensation
scheme can eliminate the effect of DoS attacks.
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(d) Tracking error

Figure 4 The time response curves of UMV under DoS attacks without predictive compensation with P=0.3.
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Figure 5 The time response curves of UMV under DoS attacks with predictive compensation with P=0.3.

In order to indicate the superiority of PFDL-DDATTC algorithm, we make a comparison with the result using the PFDL-
DDATTC and CFDL-DDATTC in Reference 17 when P=0.3. The UMV can track the desired trajectory faster under CFDL-
DDATTC scheme, but the tracking performance is worse. Compared with CFDL-DDATTC algorithm, the PFDL-DDATTC
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Figure 6 The time response curves of UMV system under DoS attacks with predictive compensation with P=0.7.

algorithm ensures the better tracking performance of UMV. It further verifies the effectiveness of the proposed PFDL-DDATTC
algorithm.
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Figure 7 The comparison of trajectory-tracking for UMV under PFDL-DDATTC and CFDL-DDATTC with P=0.3.

5 CONCLUSION

This paper has studied the problem of data-driven trajectory tracking for UMVs under disturbances and DoS attacks. An equiv-
alent data-driven model has been first proposed which disturbances were considered separately by using PFDL algorithm. And
ESO has been used to estimate the disturbances, it increases the immunity of the UMVs to disturbances in the environment
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and improves the robustness of the controlled system. An effective predicted compensation mechanism has been proposed to
eliminate the effectiveness of DoS attacks on control performance. On the basis of EDM-UMVs, a data-driven adaptive tra-
jectory tracking controller with PFDL algorithm has been designed to guaranteed tracking performance for UMVs under DoS
attacks. The boundary has been determined for the UMVs trajectory tracking error. Finally, the efficacy of the proposed resilient
controller and predicted compensation mechanism in this paper has been demonstrated in the simulations.
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