Ancestral SARS-CoV-2 and Omicron BA.5-specific neutralizing
antibody and T cell responses after Omicron bivalent booster
vaccination in previously infected and infection-naive individuals

Willem A. Mak!, Wendy Visser!, Marijke van der Vliet!, Hilde Y. Markus!, Johannes G.M.
Koeleman!, and David Ong!

IFranciscus Gasthuis en Vlietland

May 2, 2023

Abstract
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T cell responses. T cell responses, anti-RBD IgG, and Omicron BA.5 neutralization activity increased after receiving an
ancestral/Omicron BA.1 bivalent booster mRNA vaccination. An Omicron BA.5 infection in addition to bivalent vaccination
led to a higher ratio of Omicron BA.5 to ancestral strain neutralization activity compared to bivalent vaccination without a
recent SARS-CoV-2 infection. In conclusion, SARS-CoV-2 T cell and antibody responses persist for up to 10 months after
a monovalent booster mRNA vaccination. An ancestral/Omicron BA.1 bivalent booster mRNA vaccination increases these
immune responses and also induces Omicron BA.5 cross-neutralization antibody activity. Finally, our data indicate that hybrid
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Abstract

COVID-19 bivalent ancestral/Omicron mRNA booster vaccinations became available to boost and expand
the immunity against SARS-CoV-2 Omicron infections. In a prospective cohort study including 59 health-
care workers, we assessed SARS-CoV-2 ancestral and Omicron BA.5-specific neutralizing antibody and T
cell responses in previously infected and infection-naive individuals. Also, we assessed the effect of an an-
cestral/Omicron BA.1 bivalent mRNA booster vaccination on these immune responses. 10 months after
previous monovalent mRNA vaccinations, ancestral SARS-CoV-2 Sl-specific T cell and anti-RBD IgG re-
sponses remained detectable in most individuals and a previous SARS-CoV-2 infection was associated with
increased T cell responses. T cell responses, anti-RBD IgG, and Omicron BA.5 neutralization activity in-
creased after receiving an ancestral/Omicron BA.1 bivalent booster mRNA vaccination. An Omicron BA.5
infection in addition to bivalent vaccination led to a higher ratio of Omicron BA.5 to ancestral strain neu-
tralization activity compared to bivalent vaccination without a recent SARS-CoV-2 infection. In conclusion,
SARS-CoV-2 T cell and antibody responses persist for up to 10 months after a monovalent booster mRNA
vaccination. An ancestral/Omicron BA.1 bivalent booster mRNA vaccination increases these immune re-
sponses and also induces Omicron BA.5 cross-neutralization antibody activity. Finally, our data indicate
that hybrid immunity is associated with improved preservation of T cell immunity.

Introduction

Shortly after the first detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omi-
cron (B.1.1.529) variant in November 2021, Omicron became the global dominant variant that sustains the
ongoing coronavirus disease 2019 (COVID-19) pandemic.’? Omicron infections are mainly restricted to the
upper respiratory tract and are thus generally associated with mild disease.?* However, Omicron infections
may still result in severe disease in immunocompromized patients or those with pre-existing comorbidities,
which substantially contributes to hospitalization rates and general disease burden.®6

Several observational studies reported a high incidence of Omicron vaccine-breakthrough infections and
reinfections.”®These findings can be explained by the more than 30 substitutions in the spike protein, which
make Omicron highly transmissible and very efficient at immune evasion.?'° Moreover, these characteristics
improved even further in each Omicron subvariant, including the previously dominant BA.1, BA.2, BA 4,
and BA.5,1:1% and the most recent dominant subvariants XBB and XBB1.5.%:!!

The continuing emergence of new Omicron subvariants and concerns about waning immunity have led to
the development of bivalent booster vaccines. From September 2022, these bivalent vaccines, containing
spike-encoding mRNA of both the ancestral strain and Omicron BA.1, were first administered. However,
a limited number of studies explored the effects of these bivalent vaccinations and latest Omicron variant
infections on both neutralizing antibody (nAb) and T cell responses. Therefore, we performed a prospective
cohort study aimed to investigate the impact of an ancestral/Omicron BA.1 bivalent booster vaccination, a
recent Omicron BA.5 infection, or a combination of these on ancestral and Omicron BA.5 specific T cell and
nAbs responses.

Methods
Study design



The study population consisted of 59 healthcare workers (HCWs) who had received their primary vaccinations
and were part of our ongoing prospective cohort as described previously.'?> Whole blood was collected at
two timepoints: September/October 2022 (T1) and December 2022 (T2). In between these timepoints
the majority of HCWs received an ancestral/Omicron BA.1 bivalent booster vaccination. Blood samples
were collected in heparin tubes via venipuncture and were processed as described previously.'® This study
received approval from the Medical Research Ethical Committee United (protocol number R20.030) and was
performed according to the Declaration of Helsinki as revised in 2013.

SARS-CoV-2 S1 IFN-g ELISpot

Interferon-gamma (IFN-y) T cell responses after stimulation with spike protein subunit 1 (S1) and nucle-
ocapsid (N) peptides were assessed using the T-spot@®).COVID (Oxford Immunotec, UK) kit as described
previously.'?

SARS-CoV-2 Omicron BA.5 IFN-g ELIspot

An in-house-developed ELISpot was applied to detect IFN-y T cell responses against Omicron BA.5 spike
peptides. On day 1, polyvinylidene fluoride membranes precoated with a monoclonal anti-IFN-y antibody
(mAb 1-D1K, Mabtech, Sweden) were washed thrice with phosphate-buffered saline (PBS) and were con-
ditioned with AIM-V (AIM-V® + AlbuMAX®) (BSA); Gibco, USA) for 30 min at room temperature.
The following stimulations were separately added, each in a volume of 50 yL per well: AIM-V medium
as negative control, anti-CD3 (1:1000, mAb CD3-2, Mabtech) as positive control, Omicron BA.5 mutation
peptides, and corresponding ancestral strain peptides (PepTivator@® SARS-CoV-2 Prot_S B.1.1.529/BA.5,
Miltenyi Biotec, Germany). These peptide pools consisted of 15-mer peptides with 11 amino acids overlap
and were added to a final 0.66 ug/mL concentration. An amount of 2.5 x 10° PBMCs in 100 yL. AIM-V
was added to each well, whereafter the microtiter plate was incubated for 16-20 h at 37°C with 5% COs in
a humidified atmosphere. On day 2, the PBMCs were washed off the plate with PBS, and 100 yL alkaline
phosphatase-conjugated antibody (1:200, 7-B6-1-ALP, Mabtech) was added and incubated for two hours at
room temperature. Subsequently, the microtiter plate was washed with PBS and 100 pL substrate (BCIP-
NBT-plus; Mabtech) was added and incubated at room temperature for 7-12 min, after which the reaction
was stopped with demineralized water.

ELISpot Image Processing and Spot Quantification

For the spot quantification, we used the method previously described.'* In short, images of the ELISpot
membranes were made with the Dx1 microscope (Veho, UK) using Plugable Digital Viewer v3.1.07 for
Windows and an intensity threshold of 95 was applied instead of the previously described threshold of 75
to enhance spot detection sensitivity. The number of spots in the negative control was subtracted from the
number of spots in peptide-stimulated conditions for each individual sample. Samples were excluded if the
positive control resulted in less than 20 spots.

SARS-CoV-2 Anti-RBD IgG Quantitative ELISA

The anti-RBD (ancestral strain) IgG serum concentrations were determined using a quantitative enzyme-
linked immunosorbent assay (ELISA) (Beijing Wantai Biological Pharmacy Enterprise, China) as described
previously.'3

SARS-CoV-2 ancestral and Omicron BA.5 sVNT

Surrogate virus neutralization tests (SVNT) were performed to assess the neutralizing activity of serum
anti-RBD antibodies. The neutralizing activity against the ancestral strain RBD was determined using the
kit (Genscript Biotech, US) and protocol as previously described.'® A second sVNT kit (ACROBiosystems,
US) was used to determine the neutralizing activity of serum antibodies against the Omicron BA.5 RBD.
The sVNT was performed according to the manufacturer’s guidelines using a fully automatic ETI-MAX
(Diasorin, Italy) system. Serum samples, as well as the positive and negative control, were diluted 1:9 with a
dilution buffer. These dilutions were added 1:1 to RBD-horseradish peroxidase (HRP-RBD) in a pre-coated



well, whereafter this was incubated for 1 hour at 37°C. After washing the wells with a washing buffer, a
substrate solution was added and incubated for 20 min at 37°C. Lastly, a stop solution was added and the
absorbance was measured at 450 nm and 620 nm to reduce background noise. The neutralizing activity was
calculated as the percentage of inhibition using the following formula: Inhibition (%) = (1 — (OD450nm —
0OD620nm)) x 100.

Statistical analyses

All data obtained in this study were expressed as median with interquartile range (IQR) and statistical
analyses were performed using GraphPad Prism v9 (GraphPad Software). The Wilcoxon signed-rank test was
applied to compare paired datasets and the Mann-Whitney U test was applied to compare two independent
data sets. The Kruskal-Wallis test with Dunn’s multiple comparison test was performed to compare three
or more independent groups. All statistical tests were performed at a two-tailed a-level of 0.05.

Results

SARS-CoV-2-specific T cell and antibody responses in prior-infected and infection-naive indi-
viduals 10 months after previous monovalent mRNA vaccinations

First, we investigated whether a prior SARS-CoV-2 infection in addition to primary and booster vaccinations
results in prolonged increased SARS-CoV-2-specific T cell and antibody responses. Therefore, we determined
these immune responses in HCWs who tested SARS-CoV-2 PCR positive more than three months ago
(previous) or within three months (recent) and in HCWs who never tested SARS-CoV-2 positive (naive) until
the time of blood collection. All HCWs had received mRNA or viral vector COVID-19 primary vaccinations,
and HCWs received no (n=4), one (n=40), or two (n=7) booster mRNA vaccinations. The last vaccination
was received at median 307 (IQR 301-314.5) days before the first blood collection in this study. Here, we
observed higher spike S1-specific T cell responses in previously infected HCWSs than in infection-naive HCWs
(p = 0.0351), whereas responses were comparable between the recently infected and infection-naive HCWs
(Fig. 1A) . Nucleocapsid protein (N)-specific T cell responses were only observed in prior infected HCWs
since immunological responses against the N protein are not elicited by mRNA vaccines (Fig. 1B) .

For the humoral immunity component, anti-SARS-CoV-2-RBD IgG (of ancestral virus) was detectable in all
HCWs and the serum concentrations were comparable between all groups (Fig. 1C) . Also, we investigated
the neutralizing activity of serum antibodies against Omicron BA.5 spike-RBD (Fig. 1D) . According to
the manufacturer’s cut-off value of [7]20% inhibition, 83.3% of previously infected, 76.9% of recently infected,
and 38.5% of infection-naive HCWs were considered positive for the presence of Omicron BA.5 nAbs. We
observed considerable intragroup variations, but no significant differences between the groups.
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Fig. 1. SARS-CoV-2-specific immune responses in vaccinated HCWs 10 months after previous vaccinations.
Each individual data point represents one previously infected (n=26), recently infected (n=12), or infection-
naive (n=13) HCW. T cell responses against SARS-CoV-2(A) spike S1 and (B) nucleocapsid protein.(C)
Total serum anti-SARS-CoV-2 RBD (ancestral strain) IgG concentrations. (D) Serum antibody neutralizing



activity against Omicron BA.5 spike RBD presented as percentage inhibition. Data are represented as median
with IQR and were assessed by a Kruskal-Wallis test with Dunn’s post-hoc analysis.

The effect of a bivalent ancestral/Omicron BA.1 COVID-19 booster mRNA vaccination on
SARS-CoV-2-specific immune responses

After pooling the previously infected, recently infected and infection-naive HCWs, 18 HCWs received a
COVID-19 bivalent booster mRNA vaccination, i.e., Comirnaty Original/Omicron BA.1 (n=13) or Spikevax
bivalent Original/Omicron BA.1 (n=5), in between T1 and T2. Accordingly, we determined the effect of a
bivalent booster vaccination, which contains spike-encoding mRNA of both the SARS-CoV-2 ancestral strain
and Omicron BA.1, on T cell and antibody responses. We observed a considerable increase in S1-specific T
cell responses (p = 0.0004), anti-RBD (ancestral) IgG antibodies (p = 0.0090), and Omicron BA.5 serum
neutralization activity (p = 0.0023) after bivalent booster vaccination(Fig. 2A-C) . Furthermore, we also
assessed the immune responses of 8 HCWs who were not vaccinated in between the two timepoints with
an interval of 70 (69.5-75.5) days. These HCWs showed comparable immune responses at both timepoints
(Fig. 2D-F) .
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Fig. 2. SARS-CoV-2-specific immune responses before and after bivalent booster vaccination. (A-C) Blood
was collected from 18 HCWs 11 (IQR 5-31) days before (T1) and 57 (IQR 38-65) days after (T2) bivalent
booster vaccination with 70 (IQR 69-71) days in between the two timepoints. (D-F) Immune responses
of 8 HCWs who received no bivalent booster vaccination were also assessed at similar time points with an
interval of 70 (IQR 69.5-75.5) days. (A,D) Spike S1-specific T cell responses. (B,E) Anti-RBD (ancestral)
IgG concentrations. (C,F) Omicron BA.5 serum neutralization activity. HCWs were excluded if a previous
(booster) vaccination was received within three months before T1 or if the HCW tested SARS-CoV-2 RT-
gPCR positive in between T1 and T2. Data are represented as median with IQR and were assessed by a
Wilcoxon signed-rank test.

Ratio of Omicron BA.5 to ancestral SARS-CoV-2 strain-specific immunological responses after
Omicron BA.5 infection and ancestral/Omicron BA.1 bivalent vaccination



We determined the effect of a recent Omicron BA.5 infection, an ancestral/Omicron BA.1 bivalent booster
vaccination, and both on Omicron BA.5 and ancestral SARS-CoV-2 specific immunity. For this purpose,
we stimulated PBMCs with solely Omicron BA.5 mutation peptides and the corresponding ancestral strain
spike peptides. Also, we performed sVNT assays using either Omicron BA.5 or ancestral SARS-CoV-2
pseudovirus particles.

At T1, the T cell responses against these specific peptides were overall low, and the Omicron BA.5/ancestral
ratios were comparable between the two groups (Fig. 3A and Supplementary Fig. 2A) . The neutral-
ization activity was not significantly different between the two groups at T1 (Figure 3B) . However, 92%
of recently infected HCWs versus 57% of non-recently infected HCWs exhibited higher (i.e., a ratio of >1)
neutralization activity against Omicron BA.5 compared to the ancestral strain.

At T2, T cell responses were also overall low and only the HCWs who were both recently infected with
Omicron BA.5 and received a bivalent booster vaccination had 2.2-fold higher T cell responses against
Omicron BA.5 than against ancestral strain (Figure 3C and Supplementary Fig. 2C) . Strikingly,
this HCW group also demonstrated a 2.4-fold higher neutralizing activity against Omicron BA.5 compared
to ancestral strain, which was higher (p = 0.0456) than in HCWs who received a bivalent vaccination
but without a recent Omicron BA.5 infection (Fig. 3D) . The latter group exhibited a 1.4-fold higher
neutralization activity.

For comparison, we also assessed the Omicron BA.5/ancestral neutralization ratios in pre-Omicron BA.5
serum samples which were obtained before and after monovalent booster vaccination in 2021.'? Accordingly,
we observed that there was an overall higher neutralizing activity of the ancestral strain than of BA.5
(Supplementary Fig. 2) .
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Fig. 3. SARS-CoV-2 Omicron BA.5/ancestral specific T cell response and antibody neutralization ratios.
Individual data points comprise the ratio of Omicron BA.5 to ancestral (A, C) T cell responses or (B, D)
serum neutralization activity. Recent Omicron BA.5 infection and bivalent booster vaccination are presented
as positive (4) or negative (-). (A-B) At T1, HCWs were divided into two groups based on recent (i.e.,
<3 months) Omicron BA.5 infection. (C-D) At T2, HCWs were divided into four groups based on recent
Omicron BA.5 infection and receiving a bivalent booster vaccination. Absolute values that were used to
calculate these ratios are presented in Supplementary Fig. 1A-D . Data are represented as median with
IQR and were assessed by a (A-B) Mann-Whitney U test or (C-D) Kruskal-Wallis test with Dunn’s post
hoc analysis.

Discussion

This study showed that approximately 10 months after receiving the last monovalent (booster) mRNA vac-
cination, ancestral SARS-CoV-RBD IgG antibodies were present and a previous SARS-CoV-2 infection in
addition to vaccination led to higher T cell responses against SARS-CoV-2 S1. Subsequently, an ances-
tral/Omicron BA.1 bivalent booster vaccination significantly increased these T cell and antibody responses
against SARS-CoV-2, including serum antibody neutralization activity against Omicron BA.5. Irrespective
of bivalent booster vaccination, a recent Omicron BA.5 infection increased the ratio of Omicron BA.5 to
ancestral strain neutralization activity.

nAbs are considered the first line of defense within adaptive immunity against viruses as these bind external
viral epitopes and thereby prevent infection of host cells. After infection both the nAbs and T cells contribute
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to limiting viral replication and preventing disease progression.'® In our previous study, we similarly assessed
anti-RDB IgG antibody and Sl-specific T cell responses up to seven months post (booster) vaccinations
and observed higher anti-RBD IgG concentrations in individuals with a previous or a recent infection in
comparison to infection-naive individuals.'? In the period from seven to 10 months post vaccination, the
infection-induced higher anti-RBD IgG levels seem to normalize towards infection-naive levels. In this current
study, a recent Omicron BA.5 infection was not associated with statistically significant higher anti-RBD
concentrations, although the recently infected HCWs had 3-fold higher anti-RBD IgG median concentrations
than infection-naive HCWs. Nevertheless, all HCWs had detectable anti-RBD IgG antibodies, which is in
line with other studies showing waning but yet sustained anti-RBD antibodies levels up to nine months after
mRNA vaccinations.!”1?

Protection against reinfection is considered to be reduced against the Omicron variant in comparison to
previous SARS-CoV-2 variants.?2? The proportion of HCWs who were considered positive for the presence of
Omicron BA.5 nABs was increased in both prior-infected groups, and inhibition activity was substantially
higher in the recently Omicron BA.5 infected individuals. In addition, a recent Omicron BA.5 infection
in combination with a bivalent vaccination led to an increased ratio of Omicron BA.5 to ancestral strain
neutralization activity. Moreover, Omicron BA.5 partially escapes nAbs induced by Omicron BA.1 vaccina-
tion, indicating that vaccine-induced Omicron BA.l-specific nAbs might not optimally neutralize Omicron
BA.5.2122 Nevertheless, we observed significantly higher neutralization activity against Omicron BA.5 after
Omicron BA.1 bivalent vaccination in comparison to no bivalent booster vaccination.

Infection plus vaccination, termed hybrid immunity, seemed to induce higher T cell responses against spike
S1 than vaccination alone. Although the underlying mechanisms of hybrid immunity is not well understood,
it is known that a combination of infection and vaccination induces more polyfunctional spike-specific T cells
than infection or vaccination alone.2272% In addition, a SARS-CoV-2 infection also induces T cell responses
against non-spike proteins such as the nucleocapsid protein, allowing for a broader and more protective T
cell response against the virus.?6 Notably, T cell responses were similar between the recently Omicron BA.5
infected and infection-naive HCWs, which is potentially explained by the mild disease following Omicron
BA.5 infection since mild COVID-19 elicits weak T cell responses.?”28

CD4* and CD8™T T cell epitopes in the spike protein remain largely preserved accross SARS-CoV-2 variants,
including Omicron BA.5.29732 This possibly explains why we observed weak T cell responses against the
Omicron BA.5 peptide pool that solely consists of mutation-containing peptides. However, broader T cell
responses are likely to be cross-reactive against different variants, as T cells may prevent severe COVID-19
even in the absence of effective nAbs.3%

Although this study is one of the first to investigate both SARS-CoV-2 ancestral and Omicron BA.5 specific
humoral and cellular immune responses after ancestral/Omicron BA.1 bivalent booster vaccination, there
are some limitations to consider. First, some subgroups were limited in size, because only a small proportion
of HCWs were recently infected or received a bivalent booster vaccination. Second, we assessed immune
responses against Omicron BA.5, while the BA.5 sublineage BQ.1 and the BA.2 sublineage XBB1.5, became
the global dominant variants as of December 2022 and March 2023, respectively.?33However, knowledge of
Omicron BA.5-specific immunity is still relevant since a considerable number of epitopes remain conserved
among Omicron subvariants, and BA.5 sublineages (such as BQ.1) may become more prevalent in the
future.3?

In conclusion, SARS-CoV-2 specific nAb and T cell responses persist for up to at least 10 months after
monovalent booster mRNA vaccinations, and hybrid immunity is associated with improved preservation of
T cell immunity. An ancestral/Omicron BA.1 bivalent booster mRNA vaccination induces nAb and T cell
responses against the ancestral strain and cross-protective neutralization activity against Omicron BA.5.
Future studies must elucidate whether nAb and T cell responses induced by prior-infection and bivalent
vaccinations are protective against new emerging subvariants.
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