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Using Jensen’s inequality and integration by parts, we derive some tight
upper bounds on the Gaussian 𝑄-function. The tightness of the bounds
obtained by Jensen’s inequality can be improved by increasing the num-
ber of exponential terms, and one of them is invertible. We obtain a
piece-wise upper bound and show its application in the analysis of the
symbol error probability of various modulation schemes in different
channel models.

Introduction: The Gaussian 𝑄-function is of great significance in the
field of communication. It is defined as

𝑄 (𝑥 ) =
∫ ∞

𝑥

1
√

2𝜋
exp

(
− 𝑡2

2

)
𝑑𝑡. (1)

Its infinite integral form requires signal receivers to have higher process-
ing and computing power and larger storage space. Consequently, many
upper and lower bounds have been proposed in the literature to facilitate
easy calculation.

The upper bound of Gaussian 𝑄-function is obtained by integration
by parts in [1]. Another form of 𝑄-function was proposed in [2], which
stimulated the research on further simplification and approximation of
𝑄-function. According to the monotonically increasing property of the
integrand in Craig form, the upper bound of the integrand is set as the
maximum value in the range of integration, and a set of exponential
upper bound of 𝑄-function is obtained in [3]. A single-term, purely
exponential, lower bound on the Gaussian 𝑄-function is derived in [4],
along with a method to optimize its tightness and a fast iterative method
for its inversion.

The family of exponential lower bounds on the Gaussian 𝑄-function
[5] uses Jensen’s inequality. We here propose to apply the same approach
to the cumulative distribution function (CDF) of the standard Gaussian
distribution in order to obtain a set of exponential upper bounds on the
Gaussian 𝑄-function, one of which is invertible. Our bounds have the
similar simple form as the Chiani bounds in [3], but are tighter at low
SNR values. A lower bound on the Gaussian 𝑄-function [6, eq.(13)]
was obtained via integration by parts. We here apply integration by parts
again on the lower bound [6, eq.(13)] and get a new upper bound. Com-
bining the two upper bounds, we obtain a tighter upper bound as a piece-
wise function. The accuracy of the new upper bound is proved by com-
paring it with the existing upper bounds of Chiani’s[3] and Fu’s[7].

As for applications, a closed-form upper bound of the inverse func-
tion is derived and some SEP expressions of various digital modulation
techniques in different channel models are computed to justify the accu-
racy of our new upper bounds.

A piece-wise upper bound: The CDF of standard normal distribution is
defined as

𝐹 (𝑥 ) = 1 − 𝑄 (𝑥 ) = 1
2
+
∫ 𝑥

0

1
√

2𝜋
exp

(
− 𝑡2

2

)
𝑑𝑡. (2)

First, we split the integration range of [0, 𝑥 ] into 𝑛 subranges, by arbi-
trarily choosing 𝑛 + 1 values of 𝛽𝑘 such that 0 = 𝛽0𝑥 < 𝛽1𝑥 < ... <
𝛽𝑘 < ... < 𝛽𝑛𝑥 = 𝑥, i.e. 𝛽0 = 0 and 𝛽𝑛 = 1. Thus, (2) becomes

𝐹 (𝑥 ) = 1
2
+

𝑛∑︁
𝑘=1

∫ 𝛽𝑘 𝑥

𝛽𝑘−1𝑥

1
√

2𝜋
exp

(
− 𝑡2

2

)
𝑑𝑡. (3)

Then, we can apply the Jensen’s inequality for each summation term in
(3).
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Fig 1 Upper bounds on the Gaussian 𝑄-function for small argument values.

Jensen’s inequality [5, eq.(3)]: Let 𝑓 (𝜃 ) and 𝑝 (𝜃 ) be two functions
defined for 𝑎 ≤ 𝜃 ≤ 𝑏 such that 𝛼 ≤ 𝑓 (𝜃 ) ≤ 𝛽 and 𝑝 (𝜃 ) ≥ 0,
with 𝑝 (𝜃 ) . 0. Let 𝜙 (𝑢) be a convenx function defined on the interval
𝛼 ≤ 𝑢 ≤ 𝛽, then

𝜙
©­«
∫ 𝑏

𝑎
𝑓 (𝜃 ) 𝑝 (𝜃 )𝑑𝜃∫ 𝑏

𝑎
𝑝 (𝜃 )𝑑𝜃

ª®¬ ≤
∫ 𝑏

𝑎
𝜙 ( 𝑓 ) 𝑝 (𝜃 )𝑑𝜃∫ 𝑏

𝑎
𝑝 (𝜃 )𝑑𝜃

. (4)

Letting
𝜙 (𝑢) = exp(𝑢) ,

𝑝 (𝜃 ) = 1
√

2𝜋
,

𝑓 (𝜃 ) = − 𝑡2

2
,

𝑎 = 𝛽𝑘−1𝑥,

𝑏 = 𝛽𝑘 𝑥,

(5)

we obtain a lower bound on (3) as

𝐹LB (𝑥 ) =
1
2
+

𝑛∑︁
𝑘=1

𝑎𝑘 𝑥 exp
(
−𝑏𝑘 𝑥

2
)
, (6)

where

𝑎𝑘 =
𝛽𝑘 − 𝛽𝑘−1√

2𝜋
, 𝑏𝑘 =

𝛽2
𝑘
+ 𝛽𝑘𝛽𝑘−1 + 𝛽2

𝑘−1
6

, (7)

are constant coefficients that are independent of 𝑥.
According to the definition of the CDF of the standard Gaussian dis-

tribution, a new set of upper bounds are obtained as

𝑄UB (𝑥 ) = 1 − 𝐹LB (𝑥 ) =
1
2
−

𝑛∑︁
𝑘=1

𝑎𝑘 𝑥 exp
(
−𝑏𝑘 𝑥

2
)
. (8)

We select several groups of 𝛽 values to determine 𝑎𝑘 and 𝑏𝑘 , and get
a series of new upper bounds:

𝑄UB-2 (𝑥 ) =
1
2
− 1

√
2𝜋

𝑥 exp
(
− 1

6
𝑥2

)
,

𝑄1
UB-3 (𝑥 ) =

1
2
− 1

3
√

2𝜋
𝑥 exp

(
− 1

54
𝑥2

)
− 2

3
√

2𝜋
𝑥 exp

(
− 13

54
𝑥2

)
,

𝑄2
UB-3 (𝑥 ) =

1
2
− 1

2
√

2𝜋
𝑥 exp

(
− 1

24
𝑥2

)
− 1

2
√

2𝜋
𝑥 exp

(
− 7

24
𝑥2

)
,

𝑄3
UB-3 (𝑥 ) =

1
2
− 2

3
√

2𝜋
𝑥 exp

(
− 2

27
𝑥2

)
− 1

3
√

2𝜋
𝑥 exp

(
− 19

54
𝑥2

)
,

𝑄UB-4 (𝑥 ) =
1
2
− 1

3
√

2𝜋
𝑥 exp

(
− 1

54
𝑥2

)
− 1

3
√

2𝜋
𝑥 exp

(
− 7

54
𝑥2

)
− 1

3
√

2𝜋
𝑥 exp

(
− 19

54
𝑥2

)
.

(9)

The lower bounds on the CDF are tight for small argument values only
and they approach the exact value with increasing 𝑛. Fig. 1 shows that
our 2-term, 3-terms and 4-terms bounds are all tighter than the upper
bounds of Chiani’s and Fu’s for small argument values. The 2-term
bound 𝑄UB-2 (𝑥 ) turns out to be invertible, as will be shown in Section
2. Considering accuracy and conciseness of the expressions, 𝑄3

UB-3 (𝑥 )
is chosen for small argument values, as shown in Fig. 2.
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Fig 2 The new upper bound on the Gaussian 𝑄-function for small argument
values.
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Using integration by parts, the following expression for the Gaussian
𝑄-function in [6] is obtained

𝑄 (𝑥 ) = 1
√

2𝜋𝑥

(
1 − 1

𝑥2

)
exp

(
− 𝑥2

2

)
+ 1
√

2𝜋

∫ ∞

𝑥

3
𝑡4 exp

(
− 𝑡2

2

)
𝑑𝑡. (10)

Then, applying integration by parts on the integral part again, (10)
becomes

𝑄 (𝑥 ) = 1
√

2𝜋𝑥

(
1 − 1

𝑥2 + 3
𝑥4

)
exp

(
− 𝑥2

2

)
− 1

√
2𝜋

∫ ∞

𝑥

15
𝑡6 exp

(
− 𝑡2

2

)
𝑑𝑡.

(11)
By omitting the last term in (11), we obtain a new upper bound on the
Gaussian 𝑄-function as

𝑄UB-new (𝑥 ) = 1
√

2𝜋𝑥

(
1 − 1

𝑥2 + 3
𝑥4

)
exp

(
− 𝑥2

2

)
. (12)

Fig. 3 shows that our upper bound is tighter than the upper bounds of
Chiani’s and Fu’s for large argument values.

𝑄3
UB-3 (𝑥 ) is tighter than the upper bounds of Chiani’s and Fu’s for

small argument values while 𝑄UB-new (𝑥 ) is tighter for large argument
values. So we combine the two upper bounds into a piece-wise function,
which is written as:

𝑄UB (𝑥 ) =


1
2 − 2

3
√

2𝜋
𝑥 exp

(
− 2

27 𝑥
2
)
− 1

3
√

2𝜋
𝑥 exp

(
− 19

54 𝑥
2
)
, 𝑥 ≤ 4.8

1√
2𝜋𝑥

(
1 − 1

𝑥2 + 3
𝑥4

)
exp

(
− 𝑥2

2

)
, 𝑥 > 4.8

(13)

The intersection of the 𝑄3
UB-3 (𝑥 ) and 𝑄UB-new (𝑥 ) is at 𝑥 = 1.7378 =

4.8 dB. Fig. 4 shows that the piece-wise upper bound is tighter than the
Chiani bound 𝑄UB-CDS-3 (𝑥 ) for both small and large argument values.
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Inverse function: In some applications, the expression for 𝑄 (𝑥 ) needs
to be inverted, e.g. to determine the SNR required for a certain error
probability. Therefore, a tight invertible bound for the Gaussian 𝑄-
function is useful. The 2-term upper bound 𝑄UB-2 (𝑥 ) in (9) is invertible.
Its closed-form inverse function is given by

𝑥 = 𝑄−1
UB-2 (𝑦) =

√︂
−3𝑊

(
− 𝜋

6
(2𝑦 − 1)2

)
, (14)

where the Lambert W function 𝑊 (𝑧) is defined as the inverse function
of [8, eq.(1.5)]

𝑊 (𝑧)𝑒𝑊 (𝑧) = 𝑧. (15)

Fig. 5 shows the accuracy of 𝑄−1
UB-2 (𝑦) , whereas the other bounds shown

in comparison are not invertible.

Symbol error probability analysis: SEP analysis plays an important role
in performance analysis of communication systems. The SEP expres-
sions for various digital modulation techniques, e.g. quadrature phase
shift keying (QPSK), differentially encoded QPSK (DE-QPSK) and M-
ary pulse amplitude modulation (MPAM), over the additive white Gaus-
sian noise (AWGN) channel are commonly expressed using the Gaus-
sian 𝑄-function, and are further extended to derive SEP expressions over
fading channels.

The SEP of QPSK is given as [6, eq.(58)]:

𝑃AWGN
QPSK = 2𝑄

(√
𝛾
)
− 𝑄2 (√

𝛾
)
. (16)

The SEP of DE-QPSK (coherent detection) is given as [6, eq.(59)]
and [9, eq.(11)]:

𝑃AWGN
DE-QPSK = 4𝑄

(√
𝛾
)
− 8𝑄2 (√

𝛾
)
+ 8𝑄3 (√

𝛾
)
− 4𝑄4 (√

𝛾
)
. (17)

Fig. 6 and Fig. 7 show that the SEP performance of QPSK and DE-QPSK
over AWGN channel using the new piece-wise upper bound is tighter
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Fig 6 Upper bounds on the SEP of QPSK over AWGN.
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Fig 7 Upper bounds on the SEP of DE-QPSK over AWGN.

than the upper bounds of Chiani’s and Fu’s, except for the value near the
intersection of the piece-wise function. Therefore, our upper bound is
very suitable for high or low SNR, for example, when the characteristic
signal itself is really weak or when the SNR is reduced due to the strong
noise interference.

The average SEP of MPAM signals over Nakagami-𝑚 fading can be
derived as [10, eq.(12)]:

𝑃e =
40 (𝑀 − 1) /ln 10

𝑀
√

2𝜋𝜎2

∫ ∞

0

𝑄 (𝑡 )
𝑡

𝑒
−

(
20 lg 𝑡+10 lg 𝑀2−1

6 −𝜇
)2

2𝜎2 𝑑𝑡 (18)

with 𝜇 and 𝜎 being the logarithmic mean and logarithmic standard devi-

ation, respectively. In the comparison, Γ = 𝐸 {𝛾} = 𝑒
ln 10
10 𝜇+ ln2 10

200 𝜎2
. Fig.

8 shows that the average SEP performance of MPAM over Nakagami-𝑚
fading used by our new piece-wise upper bound is also tighter than the
upper bounds of Chiani’s and Fu’s except for the value near the intersec-
tion of the piece-wise function. In this case, the new upper bound fits a
large or small Γ value.

Conclusion: We obtain a set of new exponential upper bounds on the
Gaussian 𝑄-function by the Jensen’s inequality and integration by parts.
A piece-wise upper bound is obtained combining the two. Besides, we
also obtain an invertible upper bound for small argument values. Appli-
cations of the piece-wise upper bound to the SEP of various digital mod-
ulation techniques over AWGN and Nakagami-𝑚 fading show the tight-
ness of the bounds. The upper bounds together with lower bounds, e.g.
those in [4, 5], alone can show the tightness of the bounds, without hav-
ing to compare with exact Gaussian 𝑄-function values.
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Fig 8 Upper bounds on the SEP of MPAM over Nakagami-𝑚 fading (𝑀 =

2, 𝜎 = 2).
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