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Abstract

In this paper, we investigate the controllability under positivity constraints from the birth of a size-structured population

system with delayed birth process. Firstly, we establish the well-posedness and positivity property of the model. Secondly, and

more importantly, we derive a sufficient condition for boundary approximate controllability under state and control positivity

constraints. The method relies on the feedback theory of infinite-dimensional positive systems.
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Summary

In this paper, we investigate the controllability under positivity constraints from the
birth of a size-structured population system with delayed birth process. Firstly, we es-
tablish the well-posedness and positivity property of the model. Secondly, and more
importantly, we derive a sufficient condition for boundary approximate controllabil-
ity under state and control positivity constraints. The method relies on the feedback
theory of infinite-dimensional positive systems.
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1 INTRODUCTION

In recent years, there has been a significant focus on studying the controllability properties of age- or size-structured population
models (see, for instance,1,2,3,4,5 and related references). Among the pioneering works in this field are3,5, where the authors
studied the null-controllability of age-structured population models with spatial diffusion. A key innovation in these works is
the localization of control in both age and space. Moreover, in4,5 it was shown that the controllability of Lotka-McKendrick
type systems with age structuring can be obtained by preserving the positivity of the state, provided that the time horizon for the
null-controllability is sufficiently large. Recently, the null-controllability of a degenerate population model structured by age,
size, and spatial position was addressed in3, where Carleman estimates were used to obtain a local null-controllability result,
except for small ages. To overcome this locality, a new (global) null-controllability result was generated in6 using the approach
developed in5, which combines final-state observability estimates with the characteristics of the semigroup generator.

In this paper, we investigate the constrained controllability from the birth of the following size-dependent population system
in 𝐿𝑝-spaces (1 ≤ 𝑝 < ∞):

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕𝑧(𝑡,𝑠)
𝜕𝑡

+ 𝜕𝑞(𝑠)𝑧(𝑡,𝑠)
𝜕𝑠

= −𝜇(𝑠)𝑧(𝑡, 𝑠), 𝑡 ≥ 0, 𝑠 ∈ (0, 𝑠∗),
𝑧(0, 𝑠) = 𝑓 (𝑠) ≥ 0, 𝑧(𝜃, 𝑠) = 𝜑(𝜃, 𝑠) ≥ 0, 𝜃 ∈ [−𝑟, 0], 𝑠 ∈ (0, 𝑠∗),

𝑧(𝑡, 0) =

𝑠∗

∫
0

𝛽(𝑠)

0

∫
−𝑟

𝑑𝜂(𝜃)𝑧(𝑡 + 𝜃, 𝑠)𝑑𝑠 + 𝑏𝑢(𝑡), 𝑡 ≥ 0,
(1)

where 𝑧(𝑡, 𝑠) represents the population density of certain species of size 𝑠 ∈ (0, 𝑠∗) at time 𝑡 ≥ 0, where 𝑠∗ > 0 is the maximum
size of any individual in the population. The function 𝑞(𝑠) is the growth rate of size over time and the size dependent functions 𝛽
and 𝜇 denote the fertility and mortality, respectively. Thus, the formula ∫ 𝑠∗

0 ∫ 0
−𝑟 𝛽(𝑠)𝑧(𝑡+𝜃, 𝑠)𝑑𝜂(𝜃)𝑑𝑠 determines the distribution

of newborn individuals and takes into account the delay in the birth process, where the first integral is in the Lebesgue-Stieltjes
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sense. The function 𝑢 ≥ 0 represent the positive input control and 𝑏 > 0 denotes the boundary control operator at the birth. The
function (𝑓, 𝜑) ≥ 0 are the initial distributions of our target population.

System (1) is a simple case of infinite-dimensional structured population systems. These types of problems model population
dynamics by one or more partial differential equations defined on coupled domains and have been an active research subject
since the 1925s (see e.g.,1,2,7,8,5,6,9,10 and references therein). Such research activity is motivated by the applications of age/size-
structured models and interesting mathematical questions arising from their analysis (see e.g.,11,12). In the studies of structured
population equations, linear semigroup methods have been successfully developed to investigate the linear stability and bifur-
cation phenomena of solutions (see, e.g.,13,8,9). In particular, the well-posedness and asymptotic behavior of such models have
been investigated in several works14,15,13,8,16. Age-dependent models with delay in the birth process were investigated in15. In
the latter, the author applied Perron-Frobenius techniques introduced in17 and the theory of positive semigroups to establish
stability criteria. Recently, using the feedback theory of 𝐿𝑝-well-posed and regular linear systems, the authors in16,8 established
the well-posedness and stability results of structured population systems with unbounded birth process. Unlike the asymptotic
behavior, which is well understood, there are no works addressing the controllability properties of age/size-structured popula-
tion models with a delayed birth process, to the best of our knowledge. This problem is important because it reflects our ability
to control the evolution in time of our target population.

The study of system (1) has been prompted by various open problems on infinite-dimensional structured population systems.
Indeed, studying the controllability under positivity constraints is a reasonable question for this class of systems since they
are canonical examples where positivity is preserved for the free dynamics. Therefore, the question of whether the system can
be controlled between two positive states by means of positive controls arises naturally. By exploiting the feedback theory
of infinite-dimensional linear systems, we rewrite the size-structured population system as an abstract free-delay distributed
control system on a suitable product of 𝐿𝑝-spaces. We then prove the existence of a positive mild solution of the system (1)
by introducing suitable conditions on the coefficients, as discussed in Section 3. Specifically, we show that the corresponding
differential operator generates a positive 𝐶0-semigroup on an appropriate 𝐿𝑝-space (see Theorem 2). Using Laplace transform
techniques and developing the solution into a variation of constant formula, we derive a sufficient condition for approximate
controllability under state and control positivity constraints (see Theorem 4). Our argument is based on a general characterization
of boundary approximate positive controllability developed in18, as well as on an approximation result for functions of two
variables19.

The paper is structured as follows. In Section 2, we recall the concept of feedback theory of infinite-dimensional positive
systems as well as a well-posedness result for non-homogeneous boundary value control problem (see Theorem 1). Section 3
introduces the setting and the main assumptions. We show that our system can be rewritten as a non-homogeneous boundary
value control problem on a product space which leads to the well-posedness of (1). In Section 4, we characterize the boundary
approximate positive controllability of (1). Specifically, in Theorem 4, we provide a sufficient condition for controllability under
state and control positivity constraints of (1). Finally, we include a technical lemma in the Appendix that is required to prove
the main controllability result of the paper.

2 PRELIMINARIES

In this section, we shall briefly recall some background about infinite-dimensional positive systems. To this end, let us consider
(𝑋,≥) a Banach lattice (see e.g.,20) i.e., a partially ordered Banach space for which any given elements 𝑓, 𝑔 of 𝑋 have a
supremum sup(𝑥, 𝑦) and for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝛼 ≥ 0

{

𝑥 ≤ 𝑦 ⇐⇒ (𝑥 + 𝑧 ≤ 𝑦 + 𝑧 and 𝛼𝑥 ≤ 𝛼𝑦),
|𝑥|𝑋 ≤ |𝑦|𝑋 ⇐⇒ ‖𝑥‖𝑋 ≤ ‖𝑦‖𝑋 ,

with, for all 𝑥 ∈ 𝑋, |𝑥|𝑋 = sup(𝑥,−𝑥). We will denote by 𝑋+ = {𝑥 ∈ 𝑋 ∶ 𝑥 ≥ 0} the positive cone. We denote by (𝑋,𝑈 )
the Banach algebra of all linear bounded operators from 𝑋 to 𝑈 . An operator 𝑃 ∈ (𝑋,𝑈 ) is positive if and only if 𝑃𝑋+ ⊂ 𝑈+
or, equivalently, if 𝑥 ≤ 𝑦 implies 𝑃𝑥 ≤ 𝑃𝑦. The set of all positive operators, denoted by +(𝐸, 𝐹 ), is a convex cone in (𝑋,𝑈 ).

For a Banach lattice 𝑈 , we denote by 𝐿𝑝
𝑙𝑜𝑐,+(R+;𝑈 ) the set of positive control functions 𝑢 in 𝐿𝑝

𝑙𝑜𝑐(R+;𝑈 ) such that 𝑢(𝑡) ∈ 𝑈+
almost everywhere in R+, where we regard 𝐿𝑝

𝑙𝑜𝑐(R+;𝑈 ) as a lattice ordered Fréchet space with the seminorms being the 𝐿𝑝

norms on the intervals [0, 𝑛], 𝑛 ∈ N.
Let (𝐴,𝐷(𝐴)) be the generator of a positive C0-semigroup T ∶= (𝑇 (𝑡))𝑡≥0 on 𝑋. We denote by 𝜌(𝐴) the resolvent set of 𝐴,

i.e., the set of all 𝜆 ∈ C such that 𝜆𝐼𝑋 − 𝐴 is invertible with 𝐼𝑋 denote the identity operator in 𝑋. By 𝑅(𝜆, 𝐴) ∶= (𝜆𝐼𝑋 − 𝐴)−1
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we denote the resolvent operator of 𝐴. The extrapolation space associated with 𝑋 and 𝐴, denoted by 𝑋−1, is the completion of
𝑋 with respect to the norm ‖𝑥‖−1 ∶= ‖𝑅(𝜆, 𝐴)𝑥‖ for 𝑥 ∈ 𝑋 and some 𝜆 ∈ 𝜌(𝐴). Note that the choice of 𝜆 is not important,
since by the resolvent equation different choices lead to equivalent norms on 𝑋−1. Note also that 𝑥 ∈ 𝑋−1 is positive if 𝑥 belongs
to the closure of 𝑋+ in 𝑋−1. In addition, we have 𝑋 ⊂ 𝑋−1. The unique extension of T on 𝑋−1 is a 𝐶0-semigroup which we
denoted by T−1 and whose generator is denoted by 𝐴−1. For more details on positive semigroups, see e.g.21.

In what follows, let us consider the following non-homogeneous boundary value problem:
⎧

⎪

⎨

⎪

⎩

�̇�(𝑡) = 𝐴𝑚𝑧(𝑡), 𝑡 > 0,
𝑧(0) = 𝑥 ∈ 𝑋+,
(𝐺 − Γ)𝑧(𝑡) = 𝐾𝑢(𝑡), 𝑡 > 0,

(2)

where the state variable 𝑧(⋅) takes values in a Banach lattice 𝑋 and the control function 𝑢(⋅) is given in the Banach space
𝐿𝑝(R+;𝑈 ). The maximal (differential) operator 𝐴𝑚 ∶ 𝐷(𝐴𝑚) ⊂ 𝑋 → 𝑋 is closed and densely defined, 𝐾 is a positive bounded
linear operator from 𝑈 into 𝜕𝑋 (both are Banach lattices), and 𝐺,Γ ∶ 𝐷(𝐴𝑚) → 𝜕𝑋 are linear positive trace operators. Before
going further in our exposition, we underline that:

System (2) is positively well-posed if for every 𝑥 ∈ 𝑋+ and 𝑢 ∈ 𝐿𝑝
+(R+;𝑈 ) there exists a unique positive solution

𝑧 ∈ 𝐶(R+;𝑋) that depends continuously on the initial data 𝑥 and the control 𝑢.

To make the above statement more clear, let us consider the operator A ∶ 𝐷(A ) → 𝑋 defined by

A = 𝐴𝑚, 𝐷(A ) = {𝑥 ∈ 𝐷(𝐴𝑚) ∶ (𝐺 − Γ)𝑥 = 0}.

Next, we shall claim that (2) is positively well-posed if A generates a positive C0-semigroup on 𝑋. To initiate this construction,
let us rewrite (2) as the following boundary input-output system

⎧

⎪

⎨

⎪

⎩

�̇�(𝑡) = 𝐴𝑚𝑧(𝑡), 𝑡 > 0, 𝑧(0) = 𝑥,
𝐺𝑧(𝑡) − 𝑣(𝑡) = 𝐾𝑢(𝑡), 𝑡 > 0,
𝑦(𝑡) = Γ𝑧(𝑡), 𝑡 > 0,

(3)

with the feedback law
"𝑣 = 𝑦". (4)

In the sequel we make use of the following two assumptions:

(H1) 𝐴 ∶= 𝐴𝑚 with domain 𝐷(𝐴) ∶= ker(𝐺) generates a C0-semigroup T ∶= (𝑇 (𝑡))𝑡≥0 on 𝑋.

(H2) 𝐺 ∶ 𝐷(𝐴𝑚) → 𝑈 is surjective.

It is shown in17, Lemmas 1.2 and 1.3 that, under the assumptions (𝐇𝟏)-(𝐇𝟐), the Dirichlet operator

D𝜆 ∶=
(

𝐺
| ker(𝜆𝐼𝑋−𝐴𝑚)

)−1 ∶ 𝜕𝑋 → ker(𝜆𝐼𝑋 − 𝐴𝑚) ⊂ 𝑋, 𝜆 ∈ 𝜌(𝐴),

exist and bounded. Thus, one can verify that the operator

𝐵 ∶= (𝜆𝐼𝑋 − 𝐴−1)D𝜆 ∈ (𝑈,𝑋−1), 𝜆 ∈ 𝜌(𝐴),

is not depend on 𝜆 ∈ 𝜌(𝐴) and that

(𝐴𝑚 − 𝐴−1)|𝑍 = 𝐵𝐺.

The following result provided a very simple characterization of the well-posedness of the boundary input-output system (3),
see18, Proposition 3.1 or22, Section 4.

Lemma 1. Let 𝑋, 𝜕𝑋 be Banach lattices, 𝑝 ∈ [1,∞) and let the assumptions (𝐇𝟏)-(𝐇𝟐) be satisfied. Furthermore, assume that
T is positive and 𝐷𝜇 is positive for every 𝜇 > 𝑠(𝐴). Then, the system (3) is positively well-posed if:

(i) 𝐵 is an 𝐿𝑝-admissible positive control operator for 𝐴, i.e., for some (hence all) 𝜏 > 0,

Φ𝐴
𝜏 𝑣 ∶=

𝜏

∫
0

𝑇−1(𝜏 − 𝑠)𝐵𝑣(𝑠)𝑑𝑠 ∈ 𝑋+,

for all 𝑣 ∈ 𝐿𝑝
+(R+; 𝜕𝑋).
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(ii) 𝐶 ∶= Γ
|𝐷(𝐴) is an 𝐿𝑝-admissible positive observation operator for 𝐴, i.e., for some (hence all) 𝛼 > 0,

𝛼

∫
0

‖𝐶𝑇 (𝑡)𝑥‖𝑝𝑑𝑡 ≤ 𝛾𝑝‖𝑥‖𝑝,

for all 0 ≤ 𝑥 ∈ 𝐷(𝐴) and a constant 𝛾 ∶= 𝛾(𝛼) > 0.

(iii) For 𝜏 > 0, there exists a constant 𝜅 ∶= 𝜅(𝜏) > 0 such that

‖ΓΦ𝐴
⋅ 𝑣‖𝐿𝑝([0,𝜏];𝜕𝑋) ≤ 𝜂‖𝑣‖𝐿𝑝([0,𝜏];𝜕𝑋),

for all 𝑣 ∈ 𝑊 1,𝑝
0,+ ([0, 𝜏]; 𝜕𝑋) ∶= {0 ≤ 𝑣 ∈ 𝑊 1,𝑝([0, 𝜏]; 𝜕𝑋) ∶ 𝑣(0) = 0}.

In particular, (𝐴,𝐵, 𝐶) is a positive 𝐿𝑝-well-posed triplet on 𝑋, 𝜕𝑋, 𝜕𝑋.

Remark 1. For 𝜏 > 0, let us denote by F the operator defined by

(F𝑣)(𝑡) ∶= ΓΦ𝐴
𝑡 𝑣, ∀𝑡 ∈ [0, 𝜏], 0 ≤ 𝑣 ∈ 𝑊 1,𝑝

0 ([0, 𝜏]; 𝜕𝑋),

Then, according to Lemma 1, F is extendable to F ∈ (𝐿𝑝
+([0, 𝜏]; 𝜕𝑋)) for each 𝜏 ≥ 0. The operator F is called the extended

input-output control operator of (𝐴,𝐵, 𝐶). If, in addition, for every 𝑣 ∈ 𝜕𝑋,

lim
𝑡 →0

1
𝑡

𝑡

∫
0

(

F(1
R+
𝑣)
)

(𝜎)𝑑𝜎 = 0, (in 𝜕𝑋),

then (𝐴,𝐵, 𝐶) is a positive 𝐿𝑝-well-posed regular triplet with feedthrough zero, see22, Section 4.

We end this section by recalling a perturbation result from22, Theorem 4.3 (see also18, Theorem 3.1) which prove the existence of a
positive mild solution of (2).

Theorem 1. Let the assumptions (H1) and (H2) be satisfied and let 𝐴, 𝐵, 𝐶 be the operators defined from the operators 𝐴𝑚, 𝐺,
Γ. Furthermore, assume that

1. (𝐴,𝐵, 𝐶) is a positive 𝐿𝑝-well-posed regular triplet with feedthrough zero.

2. 𝐼𝑋 − F has uniformly positive bounded inverse.

Then, the operator (A , 𝐷(A )) generates a positive C0-semigroup T on 𝑋. Additionally, the non-homogeneous boundary value
control problem (2) has an unique mild solution 𝑧 ∶ R+ → 𝑋+ given by

𝑧(𝑡) = T (𝑡)𝑥 +

𝑡

∫
0

T−1(𝑡 − 𝑠)𝐵𝐾𝑢(𝑠)𝑑𝑠,

for all 𝑡 ≥ 0, 𝑥 ∈ 𝑋+ and 𝑢 ∈ 𝐿𝑝
+(R+;𝑈 ).

3 WELL-POSEDNESS

In this section, we propose to use the feedback theory of of infinite-dimensional positive linear systems to prove existence of
a positive mild solution of (1). In a first step, we reformulate the size-structured population system (1) as a non-homogeneous
boundary value control problem. For this purpose, we introduce the following Banach spaces

𝑋 ∶= 𝐿𝑝([0, 𝑠∗]), 𝑌 ∶= 𝐿𝑝([−𝑟, 0];𝑋).

The space 𝑌 is endowed with the norm

‖𝜑‖𝑌 ∶=

0

∫
−𝑟

‖𝜑(𝜃, ⋅)‖𝑋𝑑𝜃.
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On the space 𝑋, we introduce the operator

(𝐴𝑚𝑓 )(𝑠) = −𝑞(𝑠)𝜕𝑠𝑓 − 𝜉(𝑠)𝑓, for a.e. 𝑠 > 0,

with domain

𝐷(𝐴𝑚) ∶= 𝑊 1,𝑝([0, 𝑠∗]).

On the space 𝑌 , we introduce the operator 𝑄𝑚 ∶ 𝐷(𝑄𝑚) ⊂ 𝑌 → 𝑌 defined by

𝑄𝑚𝜑 = 𝜕𝜃𝜑, 𝜑 ∈ 𝐷(𝑄𝑚) = 𝑊 1,𝑝([−𝑟, 0];𝑋).

Define the operator L ∈ (𝑊 1,𝑝([−𝑟, 0];𝑋),R) by

L𝜑 ∶=

𝑠∗

∫
0

𝛽(𝑠)

0

∫
−𝑟

𝜑(𝜃, 𝑠)𝑑𝜂(𝜃)𝑑𝑠, 𝜑 ∈ 𝑊 1,𝑝([−𝑟, 0];𝑋).

With these spaces and operators, the structured population model (1) becomes

⎧

⎪

⎨

⎪

⎩

�̇�(𝑡) = 𝐴𝑚𝑧(𝑡), 𝑡 > 0,
(

𝐼𝑋 ⊗ 𝛿0
)

𝑧(𝑡) = L𝑧𝑡 + 𝑏𝑢(𝑡), 𝑡 > 0,
𝑧(0) = 𝑓, 𝑧0 = 𝜑,

where 𝑧 ∶ [0,+∞[→ 𝑋 is defined us 𝑧(𝑡) = 𝑧(𝑡, ⋅) and 𝑧𝑡 ∶ [−𝑟, 0] → 𝑋 is the history function defined by

𝑧𝑡(𝜃) = 𝑧(𝑡 + 𝜃), 𝜃 ∈ [−𝑟, 0].

It is well known that the function 𝑡 → 𝑧𝑡 is the solution of the following boundary equation:

⎧

⎪

⎨

⎪

⎩

�̇�(𝑡) = 𝑄𝑚𝑣(𝑡), 𝑡 > 0, 𝜃 ∈ [−𝑟, 0],
(

𝐼𝑌 ⊗ 𝛿0
)

𝑣 = 𝑧(𝑡), 𝑡 > 0
𝑣(0) = 𝜑,

(5)

Finally, we define the product space

X ∶= 𝑋 × 𝑌 with norm ‖

‖

( 𝑓𝜑 )‖
‖

∶= ‖𝑓‖𝑋 + ‖𝜑‖𝑌 ,

on which we define the following operators matrices:

A𝑚 ∶=
(

𝐴𝑚 0
0 𝑄𝑚

)

, 𝐷
(

A𝑚
)

∶= 𝐷(𝐴𝑚) ×𝐷(𝑄𝑚),

G ∶=
(

𝐼𝑋 ⊗ 𝛿0 0
0 𝐼𝑌 ⊗ 𝛿0

)

∶ 𝐷
(

A𝑚
)

→ R ×𝑋,

M ∶=
(

0 L

𝐼𝑋 0

)

∶ 𝐷
(

A𝑚
)

→ R ×𝑋.

Now, by selecting the new state

𝜁 (𝑡) =
( 𝑧(𝑡)

𝑧𝑡

)

, 𝑡 ≥ 0,

and using the equation (5), the system (1) is reformulated in X as the following free-delay perturbed boundary value system

⎧

⎪

⎨

⎪

⎩

�̇� (𝑡) = A𝑚𝜁 (𝑡), 𝑡 > 0,
G 𝜁 (𝑡) = M 𝜁 (𝑡) +

( 𝑏𝑢(𝑡)
0

)

, 𝑡 > 0,
𝜁 (0) =

( 𝑓
𝜑
)

≥ 0.
(6)

In what follows, we make use of the following assumptions:

Main Assumptions 3.1.

(A1) 𝛽 ∈ 𝐿∞((0, 𝑠∗)) and 𝛽(𝑠) ≥ 0 for a.e. 𝑠 ∈ (0, 𝑠∗),

(A2) 𝜇 ∈ 𝐿∞((0, 𝑠∗)), 𝜇(𝑠) ≥ 0 for a.e. 𝑠 ∈ (0, 𝑠∗) and ∫ 𝑠∗

0 𝜇(𝑠)𝑑𝑠 = +∞,
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(A3) 𝑞 ∈ 𝑊 1,∞([0, 𝑠∗]), 𝑞∗ ≤ 𝑞(𝑠) and 𝜉(𝑠) ∶= 𝜕𝑠𝑞 + 𝜇(𝑠) ≥ 0 for a.e. 𝑠 ∈ [0, 𝑠∗] and a constant 𝑞∗ > 0,

(A4) 𝜂 is an increasing function of bounded variation with total variation |𝜂| satisfying

lim
𝜀→0

|𝜂|([−𝜀, 0]) = 0.

We select the following definition.

Definition 1. Let 𝑠1, 𝑠2 ∈ [0, 𝑠∗] and set

𝜏(𝑠1, 𝑠2) =

𝑠2

∫
𝑠1

1
𝑞(𝑠)

𝑑𝑠, Ξ(𝑠1, 𝑠2) =

𝑠2

∫
𝑠1

𝜇(𝑠)
𝑞(𝑠)

𝑑𝑠. (7)

Here, for an individual of size 𝑠1, 𝜏(𝑠1, 𝑠2) determine the time it takes the individual to reach the size 𝑠2 with the growth rate of
size 𝑞(𝑠) for 𝑠 ∈ [𝑠1, 𝑠2], while Ξ(𝑠1, 𝑠2) is the loss of individuals on this journey resulting from the factor 𝜇(𝑠).

Remark 2. In view of the assumptions (A2)-(A3) the functions 𝜏(⋅, ⋅) and Ξ(⋅, ⋅) are well-defined. Moreover, if we set ℎ(𝑠) =
𝜏(0, 𝑠) for every 𝑠 ∈ [0, 𝑠∗], then the assumption (A3) further yields that the function ℎ is strictly increasing and continuous and
hence invertible. So, we select the following function

�̃�(𝑡) ∶= ℎ−1(ℎ(𝑠0) − 𝑡), 𝑡 ∈ [0, ℎ(𝑠0)],

where ℎ−1 denote the inverse of ℎ. �̃�(𝑡) presents the size of individuals at time 𝑡, who were of size 𝑠0 at time 0. Note that
�̃� ∈ 𝐶([0, ℎ(𝑠0)]) and satisfies the initial value problem

𝜕𝑡�̃�(𝑡) = 𝑞(�̃�(𝑡)), �̃�(0) = 𝑠0,

Moreover, 𝜏(�̃�(𝑡), 𝑠0) = 𝑡.

Lemma 2. Let the assumptions (A2) and (A3) be satisfied. Then, the operator

𝐴 ∶= 𝐴𝑚, 𝐷(𝐴) = ker{𝐼𝑋 ⊗ 𝛿0},

generates a positive 𝐶0-semigroup T ∶= (𝑇 (𝑡))𝑡≥0 on 𝑋 given by

(𝑇 (𝑡)𝑓 )(𝑠) =

{ 𝑞(�̃�(𝑡))
𝑞(𝑠)

𝑒−Ξ(�̃�(𝑡),𝑠)𝑓 (�̃�(𝑡)), if 𝑡 ≤ ℎ(𝑠),

0, if not,
(8)

for all 𝑡 ≥ 0, 𝑓 ∈ 𝑋 and 𝑠 ∈ [0, 𝑠∗].

Proof. First step. Let 𝜆 ∈ C, 𝑓 ∈ 𝑋. For 𝑠 ∈ [0, 𝑠∗], we set

𝑔(𝑠) =

𝑠

∫
0

𝑒− ∫ 𝑠
𝜎

𝜆+𝜉(𝑎)
𝑞(𝑎)

𝑑𝑎 1
𝑞(𝜎)

𝑓 (𝜎)𝑑𝜎 = 1
𝑞(𝑠)

𝑠

∫
0

𝑒− ∫ 𝑠
𝜎

𝜆+𝜇(𝑎)
𝑞(𝑎)

𝑑𝑎𝑓 (𝜎)𝑑𝜎 ∈ 𝐷(𝐴).

Then, we have

((𝜆 − 𝐴)𝑔)(𝑠) = 𝜆𝑔(𝑠) + 𝑞(𝑠)𝜕𝑠𝑔(𝑠) + 𝜉(𝑠)𝑔(𝑠)
= 𝜆𝑔(𝑠) − 𝜆𝑔(𝑠) − 𝜉(𝑠)𝑔(𝑠) + 𝑓 (𝑠) + 𝜉(𝑠)𝑔(𝑠) = 𝑓 (𝑠).



El gantouh ET AL 7

On the other hand, for 𝑓 ∈ 𝐷(𝐴), we have
𝑠

∫
0

𝑒− ∫ 𝑠
𝜎

𝜆+𝜉(𝑎)
𝑞(𝑎)

𝑑𝑎 1
𝑞(𝜎)

((𝜆 − 𝐴)𝑓 )(𝜎)𝑑𝜎

=

𝑠

∫
0

𝑒− ∫ 𝑠
𝜎

𝜆+𝜉(𝑎)
𝑞(𝑎)

𝑑𝑎 1
𝑞(𝜎)

(

𝜆𝑓 (𝜎) + 𝑞(𝜎)𝜕𝜎𝑓 (𝜎) + 𝜉(𝜎)𝑓 (𝜎)
)

𝑑𝜎

=

𝑠

∫
0

𝑒− ∫ 𝑠
𝜎

𝜆+𝜉(𝑎)
𝑞(𝑎)

𝑑𝑎 1
𝑞(𝜎)

(𝜆 + 𝜉(𝜎)) 𝑓 (𝜎)𝑑𝜎 +

𝑠

∫
0

𝑒− ∫ 𝑠
𝜎

𝜆+𝜉(𝑎)
𝑞(𝑎)

𝑑𝑎𝜕𝜎𝑓 (𝜎)𝑑𝜎

=

𝑠

∫
0

𝑒− ∫ 𝑠
𝜎

𝜆+𝜉(𝑎)
𝑞(𝑎)

𝑑𝑎𝜕𝜎𝑓 (𝜎)𝑑𝜎 −

𝑠

∫
0

𝜕𝜎
(

𝑒− ∫ 𝑠
𝜎

𝜆+𝜉(𝑎)
𝑞(𝑎)

𝑑𝑎
)

𝑓 (𝜎)𝑑𝜎

=
[

𝑒− ∫ 𝑠
𝜎

𝜆+𝜉(𝑎)
𝑞(𝑎)

𝑑𝑎𝑓 (𝜎)
]𝜎=𝑠

𝜎=0
= 𝑓 (𝑠).

Thus, for every 𝜆 > −‖𝜇‖∞, 𝑠 ∈ [0, 𝑠∗] and 𝑓 ∈ 𝑋, the resolvent of 𝐴 is given by

(𝑅(𝜆, 𝐴)𝑓 )(𝑠) = 1
𝑞(𝑠)

𝑠

∫
0

𝑒− ∫ 𝑠
𝜎

𝜆+𝜇(𝑎)
𝑞(𝑎)

𝑑𝑎𝑓 (𝜎)𝑑𝜎.

Second step. Let V be the family of bounded linear operators (V(𝑡))𝑡≥0 on 𝑋 defined by

(V(𝑡)𝑓 )(𝑠) =

{ 𝑞(�̃�(𝑡))
𝑞(𝑠)

𝑒−Ξ(�̃�(𝑡),𝑠)𝑓 (�̃�(𝑡)), if 𝑡 ≤ ℎ(𝑠),

0, if not,

for all 𝑡 ≥ 0, 𝑓 ∈ 𝑋 and 𝑠 ∈ [0, 𝑠∗]. First, we shall prove that V is a positive C0-semigroup on 𝑋. Indeed, we clearly have
V(0)𝑓 = 𝑓 for every 𝑓 ∈ 𝑋, since �̃�(0) = 𝑠. Moreover, the continuity of �̃� (see Remark 2) yields that V is strongly continuous.
Furthermore, for 𝑡1 + 𝑡2 ≤ ℎ(𝑠), we have

(V(𝑡1 + 𝑡2)𝑓 )(𝑠) =
𝑞(�̃�(𝑡1 + 𝑡2))

𝑞(𝑠)
𝑒−Ξ(�̃�(𝑡1+𝑡2),𝑠)𝑓 (�̃�(𝑡1 + 𝑡2))

=
𝑞(̃̃𝑠(𝑡1)(𝑡2))

𝑞(𝑠)
𝑒−Ξ(�̃�(𝑡1)(𝑡2), ̃̃𝑠(𝑡1))𝑓 (̃̃𝑠(𝑡1))

= (V(𝑡2)(V(𝑡1)𝑓 )(𝑠),

since 𝑡1 ≤ ℎ(𝑠) and 𝑡2 ≤ 𝜏(�̃�(𝑡1), 𝑠), where
̃̃𝑠(𝑡1)(𝑡2) = ℎ−1(ℎ(�̃�(𝑡1)) − 𝑡2) = �̃�(𝑡1 + 𝑡2).

On the other hand, if 𝑡1 + 𝑡2 ≥ ℎ(𝑠), then either 𝑡1 ≥ ℎ(𝑠) or 𝑡2 ≥ ℎ(�̃�(𝑡1)), hence (V(𝑡1 + 𝑡2)𝑓 )(𝑠) = (V(𝑡2)(V(𝑡1)𝑓 )(𝑠) = 0.
Therefore, V is a C0-semigroup on 𝑋. Let 𝑃 denote its generator.

Third step. We show that 𝐴 = 𝑃 by proving that the resolvents of them coincide. Indeed, for 𝑓 ∈ 𝑋, we have

(𝑅(𝜆, 𝑃 )𝑓 )(𝑠) =

+∞

∫
0

𝑒−𝜆𝑡(V(𝑡)𝑓 )(𝑠)𝑑𝑡

=

ℎ(𝑠)

∫
0

𝑒−𝜆𝑡
𝑞(�̃�(𝑡))
𝑞(𝑠)

𝑒−Ξ(�̃�(𝑡),𝑠)𝑓 (�̃�(𝑡))𝑑𝑡.

If we set 𝜎 = �̃�(𝑡), then 𝑑𝜎 = −𝑞(�̃�(𝑡))𝑑𝑡, 𝜎 = 0 if 𝑡 = ℎ(𝑠) and 𝜎 = 𝑠 if 𝑡 = 0. Therefore

(𝑅(𝜆, 𝑃 )𝑓 )(𝑠) = 1
𝑞(𝑠)

𝑠

∫
0

𝑒− ∫ 𝑠
𝜎

𝜆+𝜇(𝑎)
𝑞(𝑎)

𝑑𝑎𝑓 (𝜎)𝑑𝜎,
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for all 𝑓 ∈ 𝑋 and 𝑠 ∈ [0, 𝑠∗]. It follows from the first step, that 𝑅(𝜆, 𝑃 ) = 𝑅(𝜆, 𝐴) for all 𝜆 > −‖𝜇‖∞ and hence 𝐴 = 𝑃 . This
completes the proof.

It is clear that the operator 𝐼𝑋 ⊗𝛿0 is surjective. By a simple calculations, the Dirichlet operator D𝜆 ∶ R → 𝐷(𝐴𝑚) associated
with 𝐴𝑚 and 𝐼𝑋 ⊗ 𝛿0 is given by

(D𝜆𝑥)(𝑠) =
𝑞(0)
𝑞(𝑠)

𝑒−𝜆ℎ(𝑠)−Ξ(0,𝑠)𝑥, 𝑥 ∈ R, 𝑠 ∈ [0, 𝑠∗], 𝜆 > −‖𝜇‖∞. (9)

We define also the control operator associated with 𝐴𝑚 and 𝐼𝑋 ⊗ 𝛿0 by

𝐵 ∶= 𝐴−1D0 ∈ (R, 𝑋−1). (10)

Lemma 3. Let the assumptions (A1)-(A3) be satisfied. Then, 𝐵 is an 𝐿𝑝-admissible positive control operator for 𝐴 and the
associated input-map is given by

(

Φ𝐴,𝐵
𝑡 𝑣

)

(𝑠) =

{ 𝑞(0)
𝑞(𝑠)

𝑒−Ξ(0,𝑠)𝑣(𝑡 − ℎ(𝑠)), 𝑡 ≥ ℎ(𝑠),

0, if not,
(11)

for all 𝑡 ≥ 0, 𝑠 ∈ [0, 𝑠∗] and 𝑣 ∈ 𝐿𝑝(R+,R).

Proof. By tacking Laplace transform in both side of (11), one can see that Φ̂𝐴,𝐵
⋅ 𝑣(𝜆) = 𝐷𝜆�̂�(𝜆) for a large 𝜆 > 0, where �̂� denotes

the Laplace transform of a function 𝑣. According to the injectivity of the Laplace transform, we get that for any 𝑣 ∈ 𝐿𝑝(R+,R)
𝑡

∫
0

𝑇−1(𝑡 − 𝑠)𝐵𝑣(𝑠)𝑑𝑠 = Φ𝐴,𝐵
𝑡 𝑣, 𝑡 ≥ 0.

Moreover, it follows from (11) that the input-maps Φ𝐴,𝐵
𝑡 are positive for any 𝑡 ≥ 0.

Now, we consider the operator

𝑄 ∶= 𝑄𝑚, 𝐷(𝑄) ∶= ker
(

𝐼𝑌 ⊗ 𝛿0
)

=
{

𝜙 ∈ 𝑊 1,𝑝([−𝑟, 0], 𝑌 ), 𝜙(0) = 0
}

.

It is well known that the operator 𝑄 generates the left shift semigroup S ∶= (𝑆(𝑡))𝑡≥0 on 𝑌 defined by

(𝑆(𝑡)𝜑)(𝜃) =

{

0, −𝑡 ≤ 𝜃 ≤ 0,
𝜑(𝑡 + 𝜃), −𝑟 ≤ 𝜃 ≤ −𝑡.

(12)

The Dirichlet operator associated with 𝑄𝑚 and 𝐼𝑌 ⊗ 𝛿0 is 𝑑𝜆 ∶ 𝑋 → 𝑌 given by

(𝑑𝜆𝜑)(𝜃, 𝑠) = 𝑒𝜆𝜃𝑔(𝑠), (13)

for any 𝜃 ∈ [−𝑟, 0], 𝑠 ∈ [0, 𝑠∗] and 𝑔 ∈ 𝑋. We select the control operator

Θ ∶= (−𝑄−1)𝑑0 ∈ (𝑋, 𝑌−1). (14)

Lemma 4. Let the assumptions (A1) and (A4) be satisfied. Then, (𝑄,Θ,L
|𝐷(𝑄)

) is a positive 𝐿𝑝-well-posed regular triplet on
𝑌 ,𝑋,𝑋 with feedthrough zero. Moreover, the input-maps of (𝑄,Θ) are given by

(Φ𝑄,Θ
𝑡 𝑔)(𝜃, 𝑠) =

{

𝑔(𝑡 + 𝜃, 𝑠), −𝑡 ≤ 𝜃 ≤ 0,
0, −𝑟 ≤ 𝜃 ≤ −𝑡,

(15)

for any 𝑡 ≥ 0 and 𝑠 ∈ [0, 𝑠∗], and 𝑔 ∈ 𝐿𝑝(R+, 𝑋).

Proof. It suffices to verify the condition of Lemma 1. We omit further details.

The well-posedness of the size-structured population system (1) follows from the following result.

Theorem 2. Let the assumptions (A1)-(A4) be satisfied. Then the operator (𝔄, 𝐷(𝔄)) defined by
𝔄 ∶= A𝑚,
𝐷(𝔄) ∶=

{ ( 𝑓
𝜑
)

∈ 𝐷(𝐴𝑚) ×𝐷(𝑄𝑚) ∶ 𝑓 (0) = ∫ 𝑠∗

0 𝛽(𝑠) ∫ 0
−𝑟 𝑑𝜂(𝜃)𝜑(𝜃, 𝑠)𝑑𝑠, 𝜑(0, ⋅) = 𝑓 (⋅)

} (16)

generates a positive 𝐶0-semigroup 𝔗 on X . Thus, the size-structured population system (6) has a unique positive mild solution.
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Proof. First, we rewrite the domain of 𝔄 as

𝐷 (𝔄) ∶=
{

𝜉 ∈ 𝐷
(

A𝑚
)

, (G − M )𝜉 = 0
}

.

Thus we will use Theorem 1 to prove our claims. In fact, define the operator

A ∶= A𝑚, 𝐷(A ) ∶= ker G .

It is clear that A generates a positive 𝐶0-semigroup T ∶= (T (𝑡))𝑡≥0 on X , given by

T =
(

T 0
0 S

)

, (17)

where the semigroups T and S are given by (8) and (12), respectively.
Obviously, the operator G is surjective and positive. By a standard argument, the Dirichlet operator associated to A𝑚 and G

is given by

D𝜆 =
(

D𝜆 0
0 𝑑𝜆

)

, 𝜆 > −‖𝜇‖∞,

where D𝜆 and 𝑑𝜆 are given by (9) and (13), respectively. It follows from the expressions of D𝜆 and 𝑑𝜆, that D𝜆 is positive.
Define the control operator B associated to A𝑚 and G and its input-maps

B =
(

𝐵 0
0 Θ

)

∈ (R ×𝑋,X−1), ΦA ,B
𝑡 =

(

Φ𝐴,𝐵
𝑡 0
0 Φ𝑄,Θ

𝑡

)

, 𝑡 ≥ 0,

where 𝐵, Θ, Φ𝐴,𝐵
𝑡 and Φ𝑄,Θ

𝑡 are given by (10), (14), (11) and (15), respectively. Thus, according to Lemmas 3 and 4, B is an
𝐿𝑝-admissible positive control operator for A . On the other hand, it follows from Lemma 4 that the operator

C ∶= M
|𝐷(A ) =

(

0 L
|𝐷(𝑄)

𝐼𝑋 0

)

,

is an 𝐿𝑝-admissible positive observation operator for A .
Now, for any

( 𝑣
𝑓
)

∈ 𝑊 1,𝑝
0,+ ([0, 𝜏];R ×𝑋) the input-output control operator associated with (A ,B,C ) is given by

F
A ,B,C ( 𝑣

𝑓
)

=
(

F
𝑄,Θ,L𝑓
Φ𝐴,𝐵

𝑡 𝑣

)

,

where F𝑄,Θ,L is the input-output control operator associated with (𝑄,Θ,L). In view of (11),

(FA ,B,C ( 𝑥
𝑓
)

)(𝑡) =
(

0 (F𝑄,Θ,L𝑓 )(𝑡)
0 0

)

,

for all
( 𝑣
𝑓
)

∈ R × 𝑋 and 𝑡 < ℎ(𝑠) with 𝑠 ∈ [0, 𝑠∗]. Thus, it follows from Lemmas 3 and 4 that (A ,B,C ) is a positive
𝐿𝑝-well-posed regular triplet. In addition, we have

𝐼
R×𝑋 − FA ,B,C =

(

𝐼
R
−F𝑄,Θ,L

0 𝐼𝑋

)

, on 𝐿𝑝([0, 𝜏];R ×𝑋),

for any 𝜏 < ℎ(𝑠) and 𝑠 ∈ [0, 𝑠∗]. Thus, 𝐼
R×𝑋 − FA ,B,C is invertible and

(

𝐼
R×𝑋 − FA ,B,C )−1 =

(

𝐼
R
F𝑄,Θ,L

0 𝐼𝑋

)

, on 𝐿𝑝([0, 𝜏];R ×𝑋),

is uniformly bounded and positive, since F𝑄,Θ,L is bounded positive. Hence, according to Theorem 1, the operator 𝔄 generates
a positive C0-semigroup on X and therefore the size-structured population system (6) has a unique positive mild solution. This
ends the proof.
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4 APPROXIMATE CONTROLLABILITY CRITERIA

Here, we investigate the controllability under positivity constraints of the size-structured population model (1). We recall that
(1) is reformulated in X as the following non-homogeneous boundary value control problem

⎧

⎪

⎨

⎪

⎩

�̇� (𝑡) = A𝑚𝜁 (𝑡), 𝑡 > 0,
G 𝜁 (𝑡) = M 𝜁 (𝑡) +

(

𝑏𝑢
0
)

, 𝑡 > 0,
𝜁 (0) =

( 𝑓
𝜑
)

≥ 0.
(18)

Consideration similar to18, Theorem 3.1 shows that (18) is equivalent to
{

�̇� (𝑡) = 𝔄−1𝜁 (𝑡) + B
( 𝑏𝑢(𝑡)

0

)

, 𝑡 ≥ 0,
𝜁 (0) =

( 𝑓
𝜑
)

≥ 0.

Furthermore, Theorem 1 implies that for the initial condition 𝜁0 ∶=
( 𝑓
𝜑
)

∈ 𝑋+ × 𝑌+ and control 𝑢 ∈ 𝐿𝑝
+(R+;R), the size-

structured (1) has unique mild solution 𝜁 (⋅) satisfying 𝜁 (𝑡) ∈ 𝑋+ and for all 𝑡 ≥ 0

𝜁 (𝑡) = 𝔗(𝑡)𝜁0 +

𝑡

∫
0

𝔗−1(𝑡 − 𝑠)B
( 𝑏𝑢(𝑠)

0

)

𝑑𝑠

= 𝔗(𝑡)𝜁0 +

𝑡

∫
0

𝔗−1(𝑡 − 𝑠)𝔅𝑢(𝑠)𝑑𝑠,

where 𝔅 ∶ R+ → 𝑋−1 × {0} is given by

𝔅𝑢 =
(

𝐴−1
𝑞(0)
𝑞(⋅)

𝑒−Ξ(0,⋅)𝑏𝑢
0

)

, 𝑢 ∈ R+.

Let Φ𝔄,𝔅
𝑡 be the input-map associated with 𝔄 and 𝔅. Then the solution 𝜁 is given by

𝜁 (𝑡) = 𝔗(𝑡)
( 𝑓
𝜑
)

+ Φ𝔄,𝔅
𝑡 𝑢, 𝑡 ≥ 0, 𝑢 ∈ 𝐿𝑝(R+;R).

Let us now precise the framework of approximate controllability under state and control positivity constraints (also called
approximate positive controllability) associated with the size-structured population system (1). To this end, we introduce the
following set of reachable positive states from the origin in time 𝜏:

Ran Φ𝔄,𝔅
𝜏,+ =

⎧

⎪

⎨

⎪

⎩

𝜏

∫
0

𝔗−1(𝜏 − 𝑠)𝔅𝑢(𝑠)𝑑𝑠, 𝑢 ∈ 𝐿𝑝
+([0, 𝜏];R)

⎫

⎪

⎬

⎪

⎭

.

Then the concept of approximate positive controllability in finite time is defined as follows.

Definition 2. Let the assumptions (A1)-(A4) be satisfied. We say that the system (1) is boundary approximately positive
controllable if the reachable set from the origin in finite time

⋃

𝜏>0
Ran Φ𝔄,𝔅

𝜏,+ is dense in X+.

Remark 3. The approximate positive controllability in finite time of (1) is equivalent to the following: For any 𝜁0, 𝜁1 ∈ X+ and
any 𝜀 > 0, there exist 𝜏0 > 0 and 𝑢 ∈ 𝐿𝑝

+([0, 𝜏0];R) such that the solution 𝜁 of (1) satisfies ‖𝜁 (𝜏0) − 𝜁1‖ < 𝜀.

We have the following characterization of the approximate positive controllabilty of the system (1).

Theorem 3. Let the assumptions (A1)-(A4) be satisfied and let 𝜆1 > −‖𝜇‖∞ such that A𝜆1 ∶= L𝑑𝜆1D𝜆1 < 1. Then the size-
structured population system (1) is boundary approximately positive controllable if and only if the following implication holds
for all 𝑓 ∗ ∈ 𝑋′ and 𝜑∗ ∈ 𝑌 ′:

⟨

A
𝑛
𝜆D𝜆𝑏𝑢, 𝑓

∗⟩ +
⟨

𝑑𝜆A
𝑛
𝜆D𝜆𝑏𝑢, 𝜑

∗⟩ ≤ 0, ∀ 𝑢 ∈ R+, 𝑛 ∈ N, 𝜆 ≥ 𝜆1 ⇐⇒ 𝑓 ∗ ≤ 0, 𝜑∗ ≤ 0. (19)

Proof. We first note that as 𝐿1 satisfies the Radon-Nikodým property, then 𝑌 ′ = 𝐿∞([−𝑟, 0], 𝑋′) with 𝑋′ = 𝐿∞([0, 𝑠∗]). In
view of18, Theorem 2.2, the system (1) is boundary approximately positive controllable if and only if the following implication holds
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for all
(

𝑓 ∗

𝜑∗

)

∈ X ′:
⟨

D𝜆(𝐼R×𝑋 − MD𝜆)−1
(

𝑏𝑢
0
)

,
(

𝑓 ∗

𝜑∗

)⟩

≤ 0, ∀ 𝑢 ∈ R+, 𝑛 ∈ N, 𝜆 ≥ 𝜆1 ⇐⇒
(

𝑓 ∗

𝜑∗

)

≤ 0. (20)

By a simple computation we obtain

D𝜆(𝐼R×𝑋 − MD𝜆)−1
(

𝑏𝑢
0
)

=
(

(𝐼
R
− A𝜆)−1D𝜆𝑏𝑢

𝑑𝜆(𝐼R − A𝜆)−1D𝜆𝑏𝑢

)

=

⎛

⎜

⎜

⎜

⎝

∑

𝑛∈N
A
𝑛
𝜆D𝜆𝑏𝑢

∑

𝑛∈N
𝑑𝜆A

𝑛
𝜆D𝜆𝑏𝑢

⎞

⎟

⎟

⎟

⎠

,

for all 𝑢 ∈ R and 𝜆 ≥ 𝜆1. By Replacing the above explicit expression of D𝜆(𝐼R×𝑋 − MD𝜆)−1 in (20) and using the fact that the
family (A𝜆)𝜆≥𝜆1 is positive and monotonically decreasing, we get (19).

Corollary 1. Let the assumptions of Theorem 3 be satisfied. Then the system (1) is boundary approximately positively
controllable if and only if the following implication holds for all 𝜑∗ ∈ 𝑌 ′:

⟨

𝑑𝜆A
𝑛
𝜆D𝜆𝑏𝑢, 𝜑

∗⟩ ≤ 0, ∀ 𝑢 ∈ R+, 𝑛 ∈ N, 𝜆 ≥ 𝜆1 ⇐⇒ 𝜑∗ ≤ 0. (21)

Proof. To prove our claim, we will show that (21) implies for all 𝑓 ∗ ∈ 𝑋′:
⟨

A
𝑛
𝜆D𝜆𝑏𝑢, 𝑓

∗⟩ ≤ 0, ∀ 𝑢 ∈ R+, 𝑛 ∈ N, 𝜆 ≥ 𝜆1 ⇐⇒ 𝑓 ∗ ≤ 0. (22)

To this end, let assume that (21) holds and let 𝑓 ∗ ∈ 𝑋′ such that
⟨

A
𝑛
𝜆D𝜆𝑏𝑢, 𝑓 ∗⟩ ≤ 0 for all 𝑢 ∈ R+, 𝑛 ∈ N and 𝜆 ≥ 𝜆1. Set

𝜑∗ ∶= 𝑑−𝜆𝑓 ∗, then 𝜑∗ ∈ 𝑌 ′ and 𝜑∗(𝜃) = 𝑒−𝜆𝜃𝑓 ∗ for all 𝜃 ∈ [−𝑟, 0]. Moreover, we have

⟨

𝑑𝜆A
𝑛
𝜆D𝜆𝑏𝑢, 𝜑

∗⟩ =

0

∫
−𝑟

⟨

(𝑑𝜆A𝑛
𝜆D𝜆𝑏𝑢)(𝜃), 𝜑∗(𝜃)

⟩

𝑑𝜃

=

0

∫
−𝑟

⟨

𝑒𝜆𝜃A𝑛
𝜆D𝜆𝑏𝑢, 𝑒

−𝜆𝜃𝑓 ∗⟩𝑑𝜃 =
⟨

A
𝑛
𝜆D𝜆𝑏𝑢, 𝑓

∗⟩𝑟 ≤ 0,

for all 𝑢 ∈ R+, 𝑛 ∈ N and 𝜆 ≥ 𝜆1. Thus, 𝜑∗ ≤ 0 and hence 𝑓 ∗ ≤ 0. Thus, (21) implies (22) and hence the system (1) is boundary
approximately positively controllable if and only if the condition (21) for all 𝜑∗ ∈ 𝑌 ′. This completes the proof.

We end this section by the following useful characterization of the boundary approximate positive controllability of the
population model (1).

Theorem 4. Let the assumptions (A1)-(A4) be satisfied. Assume that there exists 𝜆1 > 0 such that

0 < A𝜆1 < 1. (23)

Then, the size-structured population system (1) is boundary approximately positive controllable.

Proof. Since 𝐿1 has the Radon-Nikodym property, then using Fubini’s theorem we can identify 𝑌 with 𝐿𝑝([−𝑟, 0]× [0, 𝑠∗]
)

for
all 𝑝 ∈ [1,∞). So, for 𝑞 ∈ [1,∞) such that 1

𝑝
+ 1

𝑞
= 1, 𝑌 ′ = 𝐿𝑞([−𝑟, 0] × [0, 𝑠∗]

)

.
It follows from Corollary 1 that the system (1) is boundary approximately positive controllable if and only if the following

implication holds for all 𝜑∗ ∈ 𝐿𝑞([−𝑟, 0] × [0, 𝑠∗]
)

:
⟨

𝑑𝜆A
𝑛
𝜆D𝜆𝑏𝑢, 𝜑

∗⟩ ≤ 0, ∀ 𝑢 ∈ R+, 𝑛 ∈ N, 𝜆 ≥ 𝜆1 ⇐⇒ 𝜑∗ ≤ 0,

or, equivalently,

A
𝑛
𝜆 ⟨𝑑𝜆D𝜆𝑏𝑢, 𝜑

∗
⟩ ≤ 0, ∀ 𝑢 ∈ R+, 𝑛 ∈ N, 𝜆 ≥ 𝜆1 ⇐⇒ 𝜑∗ ≤ 0.

The condition (23) further yields that the system (1) is boundary approximately positive controllable if and only if for all
𝜑∗ ∈ 𝐿𝑞([−𝑟, 0] × [0, 𝑠∗]

)

:

⟨𝑑𝜆D𝜆, 𝜑
∗
⟩ ≤ 0, ∀ 𝜆 ≥ 𝜆1 ⇐⇒ 𝜑∗ ≤ 0. (24)
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Now, let 𝑛 ≥ 𝜆1 and 𝜑∗ ∈ 𝐿𝑞([−𝑟, 0] × [0, 𝑠∗]
)

. The explicit expression of 𝑑𝜆 and D𝜆 further yield that

⟨𝑑𝑛D𝑛, 𝜑
∗
⟩ =

0

∫
−𝑟

𝑠∗

∫
0

𝑒−Ξ(0,𝑠)𝓁𝑛,𝑛(𝜃, 𝑠)𝜑∗(𝜃, 𝑠) 𝑑𝑠𝑑𝜃,

where (𝓁𝑛,𝑚)𝑛,𝑚∈N is defined in (26). By virtue of Lemma 6 the fact that for all 𝜑∗ ∈ 𝐿𝑞([−𝑟, 0] × [0, 𝑠∗]
)

⟨𝑑𝑛D𝑛, 𝜑
∗
⟩ ≤ 0,

implies that 𝜑∗ ≤ 0. Hence, according to Corollary 1, the size-structured population system (1) is boundary approximately
positive controllable.

5 CONCLUSION

In this work, we studied the controllability under positivity constraints of a size-structured population model with a delayed
birth process. We exploited the feedback theory of infinite-dimensional positive linear systems to rewrite the aforementioned
system as an abstract free-delay distributed control system on a suitable product of 𝐿𝑝-spaces. We proved the existence and
uniqueness of a positive mild solution in this product space. By developing the solution into a variation of the constant formula
and applying Laplace transform techniques, we derived a sufficient condition for boundary approximate controllability under
state and control positivity constraints.

6 APPENDIX

In this appendix we prove an approximation lemma needed to prove the main controllability result of the paper. Let us first recall
the following approximation result for functions of two variables by the so-called Szász-Mirakjan operators19.

Lemma 5. Let 𝐽 ∶= [0,+∞) × [0,+∞) and let (𝐽 ) denote the space of all continuous real valued functions on 𝐽 . Set

𝑏(𝐽 ) ∶= {𝑓 ∈ (𝐽 ) ∶ ∃ 𝛼, 𝛿, 𝜅 ≥ 0 such that |𝑓 (𝑥, 𝑦)| ≤ 𝛿𝑒𝛼𝑥+𝜅𝑦},

and for every 𝑓 ∈ 𝑏(𝐽 ), 𝑛, 𝑚 ≥ 1, and 𝑥, 𝑦 ≥ 0, define

J𝑛,𝑚(𝑓 ; 𝑥, 𝑦) ∶= 𝑒−𝑛𝑥𝑒−𝑚𝑦
∞
∑

𝑘=0

∞
∑

𝑗=0
𝑓 ( 𝑛

𝑘
, 𝑚
𝑗
)
(𝑛𝑥)𝑘

𝑘!
(𝑚𝑦)𝑗

𝑗!
. (25)

Then, for every 𝑓 ∈ 𝑏(𝐽 ) we have

lim
𝑛 →+∞

J𝑛(𝑓 ) = 𝑓, uniformly on compact subsets of 𝐽 .

With the help of the above approximation lemma, one can deduce the following density result.

Lemma 6. Let 𝑛, 𝑚 ∈ N, 𝑠∗, 𝑟 > 0 and 𝑝, 𝑞 ≥ 1 such that 1
𝑝
+ 1

𝑞
= 1. Let us consider the family of functions

(

𝓁𝑛,𝑚
)

𝑛,𝑚∈N2 on
[−𝑟, 0] × [0, 𝑠∗] defined by

𝓁𝑛,𝑚(𝜃, 𝑠) = 𝑒𝑛𝜃𝑒−𝑚ℎ(𝑠), (26)

where ℎ(𝑠) ∶= ∫ 𝑠
0

1
𝑞(𝜏)

𝑑𝜏. Then for all 𝜑 ∈ 𝐿𝑞([−𝑟, 0] × [0, 𝑠∗]
)

0

∫
−𝑟

𝑠∗

∫
0

𝓁𝑛,𝑛(𝜃, 𝑠)𝜑∗(𝜃, 𝑠) 𝑑𝑠𝑑𝜃 ≤ 0, ∀ 𝑛 ∈ N ⇐⇒ 𝜑∗ ≤ 0. (27)

Proof. Let 𝜑 ∈ 𝐿∞([−𝑟, 0]×[0, 𝑠∗]
)

such that ∫ 0
−𝑟 ∫

𝑠∗

0 𝓁𝑛,𝑛(𝜃, 𝑠)𝜑∗(𝜃, 𝑠) 𝑑𝑠𝑑𝜃 ≤ 0 for all 𝑛 ∈ N. Let 0 ≤ 𝑓 ∈ ([−𝑟, 0]×[0, 𝑠∗])
and define the function

𝑓 (𝜎, 𝑠) ∶=

{

𝑓 (−𝜎, 𝑠), (𝜎, 𝑠) ∈ [0, 𝑟] × [0, 𝑠∗],
𝑓 (−𝑟, 𝑠), 𝜎 ≥ 𝑟, 𝑠 ≥ 𝑠∗.
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Then 0 ≤ 𝑓 ∈ 𝑏(𝐽 ) and
𝑟

∫
0

𝑠∗

∫
0

𝓁𝑛,𝑛(−𝜎, 𝑠)𝑓 (
𝑛
𝑘
, 𝑛
𝑗
)
(𝑛𝜎)𝑘

𝑘!
(𝑛𝑠)𝑗

𝑗!
𝜑∗(−𝜎, 𝑠) 𝑑𝑠𝑑𝜎 ≤ 0, ∀ 𝑛 ≥ 1, 𝑘, 𝑗 ∈ N.

It follows that
∞
∑

𝑘=0

∞
∑

𝑗=0

𝑟

∫
0

𝑠∗

∫
0

𝓁𝑛,𝑛(−𝜎, 𝑠)𝑓 (
𝑛
𝑘
, 𝑛
𝑗
)
(𝑛𝜎)𝑘

𝑘!
(𝑛𝑠)𝑗

𝑗!
𝜑∗(−𝜎, 𝑠) 𝑑𝑠𝑑𝜎 ≤ 0, ∀ 𝑛 ≥ 1.

Therefore, by the continuity of 𝑓 , Lemma 5 and the dominated convergence theorem we obtain
𝑟

∫
0

𝑠∗

∫
0

𝑓 (−𝜎, 𝑠)𝜑(−𝜎, 𝑠) 𝑑𝑠𝑑𝜎 ≤ 0, ∀ 0 ≤ 𝑓 ∈ ([−𝑟, 0] × [0, 𝑠∗]).

The density of the positive cone of ([−𝑟, 0] × [0, 𝑠∗]) in 𝐿𝑝
+([−𝑟, 0] × [0, 𝑠∗]) further yields that

𝑜

∫
−𝑟

𝑠∗

∫
0

𝑓 (𝜃, 𝑠)𝜑(𝜃, 𝑠) 𝑑𝑠𝑑𝜃 ≤ 0, ∀ 𝑓 ∈ 𝐿𝑝
+([−𝑟, 0] × [0, 𝑠∗]).

and hence 𝜑 ≤ 0.

DECLARATIONS

Ethics approval Not applicable.

Conflict of interest statement The authors declare that there is no potential conflict of interest.

Authors’ contributions All authors contributed to the manuscript.

Availability of data and materials Not applicable.

References

1. Ainseba B, Anita S. Local exact controllability of the age-dependent population dynamics with diffusion. In: . 6. Hindawi.
; 2001: 357–368.

2. Anita S. Analysis and control of age-dependent population dynamics. 11. Springer Science & Business Media . 2000.

3. Fragnelli G, Yamamoto M. Carleman estimates and controllability for a degenerate structured population model. Applied
Mathematics & Optimization 2021; 84(1): 999–1044.

4. Hegoburu N, Magal P, Tucsnak M. Controllability with positivity constraints of the Lotka-Mckendrick system. SIAM
Journal on Control and Optimization 2018; 56(2): 723–750.

5. Maity D, Tucsnak M, Zuazua E. Controllability and positivity constraints in population dynamics with age structuring and
diffusion. Journal de Mathématiques Pures et Appliquées 2019; 129: 153–179.

6. Simporé Y, El gantouh Y, Biccari U. Null controllability for a degenerate structured population model. arXiv preprint
arXiv:2209.03645 2022.

7. Iannelli M. Mathematical theory of age-structured population dynamics. Giardini editori e stampatori in Pisa 1995.



14 El gantouh ET AL

8. Mei ZD, Peng JG. Dynamic boundary systems with boundary feedback and population system with unbounded birth
process. Mathematical Methods in the Applied Sciences 2015; 38(8): 1642–1651.

9. Yan D, Fu X. Asymptotic analysis of a spatially and size-structured population model with delayed birth process. Commun.
Pure Appl. Anal 2016; 15(2): 637–655.

10. Webb G. Theory of nonlinear age-dependent population dynamics. 89. Monographs and Textbooks in Pure and Applied
Mathematics, Marcel Dekker, Inc., New York . 1985.

11. Arino O, Shin YJ, Mullon C. A mathematical derivation of size spectra in fish populations. Comptes Rendus Biologies
2004; 327(3): 245–254.

12. Inaba H. Age-structured homogeneous epidemic systems with application to the MSEIR epidemic model. Journal of
mathematical biology 2007; 54: 101–146.

13. Farkas JZ, Hagen T. Stability and regularity results for a size-structured population model. Journal of Mathematical Analysis
and Applications 2007; 328(1): 119–136.

14. Guo Bao Z, Chan W. A semigroup approach to age-dependent population dynamics with time delay. Communications in
Partial Differential Equations 1989; 14(6): 809–832.

15. Piazzera S. An age-dependent population equation with delayed birth process. Mathematical methods in the applied sciences
2004; 27(4): 427–439.

16. Boulouz A. A spatially and size-structured population model with unbounded birth process. Discrete & Continuous
Dynamical Systems-Series B 2022; 27(12).

17. Greiner G. A typical Perron-Frobenius theorem with applications to an age-dependent population equation. In: Springer. ;
2006: 86–100.

18. Gantouh YE. Boundary approximate controllability under positivity constraints of linear systems. To appear in J. Optim.
Theory Appl. arXiv:2210.10509 2022.

19. Totik V. Uniform approximation by Szász-Mirakjan type operators. Acta Mathematica Hungarica 1983; 41(3-4): 291–307.

20. Schaefer HH. Banach lattices and positive operators. Springer-Verlag, Berlin-Heidelberg . 1974.

21. Bátkai A, Fijavz MK, Rhandi A. Positive operator semigroups: From finite to infinite dimensions. Birkhäuser-Verlag, Basel
. 2016.

22. Gantouh YE. Positivity of infinite-dimensional linear systems. arXiv preprint arXiv:2208.10617 2022.

23. Auslander D, Oster G, Huffaker C. Dynamics of interacting populations. Journal of the Franklin Institute 1974; 297(5):
345–376.


	Controllability under positivity constraints of a size-structured population model with delayed birth process
	Abstract
	Introduction
	Preliminaries
	Well-posedness
	Approximate controllability criteria
	Conclusion
	Appendix
	Declarations
	References


