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Abstract

DNA methylation (DNAm) is a dynamic, age-dependent, epigenetic modification that can be used to study interactions between

genetic and environmental factors. Environmental exposures during critical periods of growth and development may alter

DNAm patterns, leading to increased susceptibility to diseases such as asthma and allergy. One method to study the role of

DNAm is the epigenetic clock – an algorithm that uses DNAm levels at select age informative Cytosine-phosphate-Guanine

(CpG) dinucleotides to predict epigenetic age (EA). The difference between EA and calendar age (CA) is termed epigenetic

age acceleration (EAA) and reveals information about the biological capacity of an individual. Associations between EAA

and disease susceptibility have been demonstrated for a variety of age-related conditions and, more recently, phenotypes such

asthma and allergic diseases which often begin in childhood and progress throughout the lifespan. In this review, we explore

different epigenetic clocks and how they have been applied, particularly as related to childhood asthma and in utero and early

life exposures (e.g., smoking, diet, and drugs) that result in methylation changes.
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Abstract

DNA methylation (DNAm) is a dynamic, age-dependent, epigenetic modification that can be used to study
interactions between genetic and environmental factors. Environmental exposures during critical periods of
growth and development may alter DNAm patterns, leading to increased susceptibility to diseases such as
asthma and allergy. One method to study the role of DNAm is the epigenetic clock – an algorithm that
uses DNAm levels at select age informative Cytosine-phosphate-Guanine (CpG) dinucleotides to predict
epigenetic age (EA). The difference between EA and calendar age (CA) is termed epigenetic age acceleration
(EAA) and reveals information about the biological capacity of an individual. Associations between EAA
and disease susceptibility have been demonstrated for a variety of age-related conditions and, more recently,
phenotypes such asthma and allergic diseases which often begin in childhood and progress throughout the
lifespan. In this review, we explore different epigenetic clocks and how they have been applied, particularly
as related to childhood asthma and in utero and early life exposures (e.g., smoking, diet, and drugs) that
result in methylation changes.

Key Words (limit 5). Allergy. Asthma. Biomarker. Epigenetic Clock.

Limit=4500

Current Word Count: 3606

Introduction:

DNA methylation (DNAm) is a dynamic epigenetic modification that refers to the bonding of a methyl (CH3)
group to the 5th carbon of a Cytosine base to form 5-methyl-Cytosine (5mC)1. This process primarily occurs
at Cytosine-phosphate-Guanine (CpG) dinucleotides2. DNAm is altered by factors such as environmental
exposures (e.g. smoking3, pesticide exposures4), disease (including asthma5), cell type6, sex7 and age2. As
such, the study of DNAm has great potential to help characterize the impact of gene-environment interactions
on the development of disease.

There is growing interest in considering aging as more than just the passing of calendar years but, rather,
as a life-long process beginning at birth and influenced by an accumulation of environmental exposures and
disease. Consistent patterns of age-associated DNAm changes have been identified2,8-11, resulting in the
development of epigenetic clocks12 that reflect biological aging (e.g. susceptibility to disease, fragility and
early mortality). These ’clocks’ refer to mathematical algorithms that use DNAm levels at select CpG sites
to calculate epigenetic age (EA)13. A variety of disease phenotypes14-18, including asthma and allergy19,20,
have demonstrated associations with epigenetic age acceleration (EAA), where epigenetic age is different
than chronological, or actual, age (CA).

EAA captures biological aging which may be faster or slower than calendar time. A key question is whether
EAA is established during childhood and impacts disease risk in later life. This aligns with the Developmental
Origins of Health and Disease (DOHaD)21 hypothesis that prenatal and early life exposures during the first
1000 days cause DNAm changes that influence the likelihood of disease in later life. This premise has led to
a focus on the study of epigenetic aging in relation to prenatal and childhood exposures (Fig.1A ). There
is evidence of differential methylation in cord blood due to in utero exposures, including elevated maternal
BMI22, air pollution23, and the widely reported and replicated effects of maternal smoking24(Table 1 ). In
addition, maternal smoking has been linked to increased EAA well into childhood (years 6-11)4.
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Asthma is a complex phenotype influenced by genetic and environmental factors, that demonstrates age and
sex specific prevalence patterns25. Childhood asthmatics are predominately male (65%), while 65% of adult
asthmatics are female (Fig.1B )25. There are two main asthma subtypes – allergic and non-allergic. Allergic
asthmatics have an additional allergic disease (e.g., atopy or eczema), whereas non-allergic asthmatics have
asthma without additional allergic disease. Understanding the relationship between EAA and asthma26 may
clarify the mechanisms whereby early life exposures affect methylation and disease susceptibility.

Purpose

The purpose of this review is to provide an overview of current epigenetic clocks, explore their application
in early childhood, and highlight applications to asthma and allergic disease.

Overview of DNA Methylation (DNAm)

About 70% of CpG sites in the human genome are methylated27. CpGs are concentrated in CpG islands
(CGIs) – regions at least 200 base pairs (bp) in length – where C-G dinucleotides make up more than 50%
of the sequence1,28. CGIs house the promoter regions of ˜ 70% of human genes29,28. The effect of DNAm
on gene expression is influenced by CpG density in these promoter regions30.

Different technologies have been developed for assessing DNAm, but arrays and sequencing protocols form the
basis of the literature. Both rely on the bisulfite conversion of DNA. Arrays compare signal intensities between
methylated and unmethylated probes at specific sites while in sequencing, the proportion of methylated
Cytosines is calculated. Three arrays have been most commonly used to study DNAm in humans: the
legacy IlluminaHumanMethylation27 BeadChip31 , the Illumina HumanMethylation450 BeadChip32 and
finally the Illumina MethylationEPIC BeadChip array33. Each arrays features progressive expansion of CpG
coverage and increased representation of different regions of the genome. The EPIC array covers ˜30x more
CpGs compared to the Illumina 27K array and puts greater focus on CpGs outside of CGIs as these regions
are important for gene regulation33.

DNAm and Aging

Consistent changes in DNAm over the lifespan across individuals have been identified by multiple
studies9,34-37. Cord blood tends to show low levels of DNAm10,38followed by a rapid increase in the early
years of life38,39, and then a gradual loss of methylation with aging2. In particular, CpG sites linked to em-
bryonic developmental genes gain methylation during childhood, while regions related to immune processes
lose methylation40. Genes located in the Major Histocompatibility Complex (MHC) class I and II40 – in
particularHLA-B , HLA-C , HLA-DMA , HLA-DPB1 – become demethylated with age. This is significant
as MHC I and II genes have previously been associated with asthma and allergic disease41-44,40,45,46.

The immune system has two key mechanisms: innate immunity and adaptive immunity. MHC complexes
are part of the adaptive immune system and are involved in recognizing and destroying pathogens47. The
innate system is present in the fetus and at birth, but is subdued to tolerate the stress of fetal development48.
The adaptive immune response develops throughout the lifespan, with T cells playing a key role; the helper
T cells can be further divided into Th1 and Th2 cells. Th2 cells stimulate the production of antibodies and
have been linked to increased IgE response in atopy49, and to asthma and other allergic diseases50. Fetal and
neonatal T cells differ significantly from adult cells. Environmental exposures may activate fetal/neonatal
T-cells, resulting in a Th2 immune response48. For example, Zhang et al . found that changes in DNAm
within Th2 pathway genes between the ages of 10 and 18 increase the risk for acquisition of asthma in girls51.

The rate of DNAm fluctuation during childhood is three to four times greater than in adulthood52. Studies
have suggested that early life changes might follow a logarithmic, rather than linear, pattern52-54. In older
age, there is a pattern of increased DNAm discordance across individuals (the so-called “epigenetic drift”
phenomenon). Epigenetic drift2 is defined by the accumulation of random changes in DNAm over time,
leading to increased inter-individual variance in methylation patterns with age36,37,55-57, a difference that
is more pronounced in later life36,37,55. The increase in epigenetic drift in older age has led researchers to
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postulate that aging may be a process of ‘memorizing’ life-time environmental exposures58. Understanding
the effect of these exposures on DNAm is essential to the study of differential rates of aging.

Epigenetic Clocks

The epigenetic clock exploits the reproducible relationship between DNAm at specific CpGs and age, to
predict epigenetic age (EA). The difference between EA and CA highlights changes in cell or tissue function13.
Positive EAA (EA > CA) in adults has been implicated in increased susceptibility to disease (e.g. Alzheimer’s
disease, B cell lymphoma)15,18and increased mortality16,59. In children, positive EAA has been found in
connection with maternal smoking60 and alcohol use61, as well as with diseases such as allergy and asthma19.
There have also been exposures (e.g. exercise, consumption of fish and fruits and vegetables) associated with
negative EAA62,63(epigenetic age < chronological age).

CpGs in most epigenetic clocks were selected using penalized linear regression methods13such as elastic net,
which protect against overfitting in models containing many predictor variables64. However, these linear
methods do not account for any non-additive interactions between CpG sites, and may not fully capture the
complexity of DNAm in the aging process65. This limitation can be addressed by using non-linear methods
in the development of the epigenetic clocks.

Epigenetic Clock Training Metrics

There are two types of epigenetic clocks – first and second-generation. First-generation clocks use raw or
log-transformed CA53 as the dependent variable, whereas a composite measure of aging is the dependent
variable in second generation clocks. For the composite measure, “proxies” of biological aging, such as
markers of heart and kidney function, are used in addition to CA66. These clocks are described in detail
below.

First-Generation Epigenetic Clocks

First generation clocks have been the most widely studied to date in the studies of epigenetic aging. They
are broadly generalizable to different populations, and their accuracy can be easily assessed. Despite only
being trained on CA, the EAA calculated by these clocks has been implicated in the incidence of many
diseases14. First generation clocks can be further classified into single and multi-tissue clocks. In this
review, we will discuss in detail the first-generation clocks that have broad utility (e.g. the Hannum clock67,
the Horvath pan-tissue53 and Skin & Blood clocks68, the PedBE clock69). The features of other clocks
tailored to narrower use cases (e.g., those aimed at studying specific tissues or primarily focusing on an age
group such as neonates), are summarized in Table 2 . The accuracy of first-generation epigenetic clocks is
assessed in relation to CA, usually using Absolute Error (AE=|epigenetic-chronological age|) or Pearson’s
correlation coefficient (r ) between EA and CA. The EA calculated by these clocks is correlated with CA
but the deviation between the two has been shown to be informative of ‘biological capacity’ (e.g. physical
fragility, disease susceptibility) in adults65. First-generation clocks represent facets of both chronological and
biological aging; separating these components remains a major challenge65.

Bocklandt et al developed the first epigenetic clock in 2011, marking a milestone in the field. However,
this clock was aimed specifically at saliva samples and due to the tissue specificity of DNAm has not been
generalized to other sample types (Table 2) 57. Shortly thereafter, the Hannum67 clock – a broadly used
blood epigenetic clock – was published. Using Illumina 450K array data from 656 samples (482 training set
and 174 testing set) of whole blood (age range: 19-101years), the Hannum clock was developed in stages67. In
the first step, ˜70,000 age associated autosomal CpG sites were identified. Then, elastic net regression with
bootstrapping was performed to build an epigenetic clock consisting of 71 CpGs, most of which were located
close to genes implicated in age-related conditions67(Table 2 ). When applied to pediatric samples (CA
<18years) the Hannum clock demonstrated low accuracy61, potentially due to a lack of pediatric samples in
the dataset used to develop this clock61.

First-Generation Multi-Tissue Epigenetic Clocks

4
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The next major milestone in the field of epigenetic aging was the development of multi-tissue epigenetic
clocks. Teschendorff et al. , 201070 described a set of 69 CpGs with age-associated increases in methylation
in both blood and epithelial tissue, demonstrating a pan-tissue signature of aging. Koch et al. used Illumina
27K data from four different tissue types (Table 2 ) to develop a multi-tissue clock with mean AE of 11
years71. This clock was quickly followed by two multi-tissue clocks developed by Horvath et al. : the
pan-tissue53 and Skin & Blood clocks68.

Since its development, the pan-tissue Horvath clock53 has been the backbone of epigenetic aging studies. It
was developed using 8,000 samples (from 51 healthy tissues) of Illumina 27K and 450K data, divided into
training and validation cohorts. Elastic net with 10-fold cross validation was performed on the DNAm values
of 21,369 CpG sites with a log- transformed version of CA as the dependent variable. This regression yielded a
clock of 353 CpG sites with a median AE of 3.6 years in the validation cohort53. The pan-tissue Horvath clock
has been repeatedly validated and has shown high accuracy, even when applied to data from the Illumina
850K EPIC array (missing 19/353 CpG sites)72, and robustness to changes in cell type composition61.
However, the pan-tissue clock underestimates epigenetic age in older individuals73. In addition, while this
clock is more accurate in pediatric samples than the Hannum clock61, it was predominantly developed using
adult samples and may not contain the CpG sites associated with early developmental processes.

The Skin & Blood epigenetic clock is another multi-tissue clock developed by Horvath et al . It aims to
improve the accuracy of the Horvath pan-tissue clock in fibroblasts68. The Skin & Blood clock consists of
391 CpG sites and was developed through a similar process as the pan-tissue clock, but using Illumina 450K
or 850K array data from buccal cells, fibroblasts, keratinocytes, endothelial cells, blood, and saliva68. In
addition to better performance in fibroblasts, this clock is more accurate than both the Horvath pan-tissue
clock and Hannum clock in blood samples (median AE=2.5 years vs. 3.7 and 5.1 years)68.

Pediatric Epigenetic Clock

As the field of epigenetic aging has broadened to study the effects of childhood exposures on aging, pedi-
atric epigenetic clocks have been developed. The most prominent childhood clock is the Pediatric-Buccal-
Epigenetic clock69 (PedBE) - a 94-CpG buccal epithelial cell clock developed using exclusively pediatric
samples (n=1,032, age range: 0.17-19.47 years) and elastic net regression. PedBE’s performance was eval-
uated in an independent set of 689 buccal samples (age range: 0.01-19.96 years)69 where it had median
AE=0.35 years and r=0.98, demonstrating greater accuracy for that age group compared to the pan-tissue
Horvath clock69. However, when applied to an independent set of blood samples (n=134), the PedBE clock
was not as accurate (median AE =3.26 years) as the Horvath pan-tissue clock (median AE= 0.57 years)69.
This performance discrepancy (blood vs. buccal samples) was expected due to the tissue and cell-type speci-
ficity of DNAm. DNAm patterns are highly influenced by tissue types as well as by cell type proportions in
whole blood.

Gestational Age Clocks

The cell type specificity of DNAm has complicated the use of the epigenetic clock to study pre-natal environ-
mental exposures74 as the composition of cord blood is distinct from venous blood, thereby rendering clocks
developed using venous blood unsuitable for gestational epigenetic age (GEA) predictions. The Horvath
pan-tissue clock incorporated cord blood samples in its training set but set their CA at “0”75. This may lead
to lower accuracy in neonatal blood samples as it does not account for their actual gestational age. Since
then, gestational epigenetic clocks have been developed as summarized in Table 2 .

The study of the relationship between maternal exposures and DNAm has expanded rapidly. However, some
studies use gestational age (as estimated through either last menstrual period or ultrasound methods)24

while others use GEA. Much like the use of EAA in childhood and adult studies, GEA can provide insight
into the role of DNA methylation in traits in infancy.

Second-Generation Epigenetic Clocks

First-generation epigenetic clocks are useful in the study of phenotypes and healthy aging, but may not
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select health informative CpG sites because they were trained exclusively on CA (rather than variables
more tightly linked to health status12. Second-generation epigenetic clocks are trained on proxy variables
(e.g., five plasma proteins, and smoking status) for biological aging in addition to CA. These clocks aim to
improve on the performance of the first-generation clocks in predicting disease development and mortality.
PhenoAge66 and GrimAge76(Table 3 ) are second-generation clocks and predict mortality more accurately
than first generation clocks. However, there are several key limitations. The clinical markers used to generate
a composite “biological age” value makes these clocks difficult to implement in many contexts, as such detailed
health data may not always be available. Clinical variables used in the development of these clocks may
be relevant to aging in older adults but may not be informative of biological aging in pediatric samples.
Pediatric-specific second-generation clocks may be needed to assess the accuracy of second-generation clocks
in predicting childhood phenotypes.

Metrics of EAA

The cell and tissue specificity of DNAm also has implications for the calculation of EAA.

In blood data, there are two prominent measures of EAA: Intrinsic Epigenetic Age Acceleration (IEAA) and
Extrinsic Epigenetic Age Acceleration (EEAA). IEAA is used in conjunction with the Horvath pan-tissue
clock and treats cell type proportions as confounders, highlighting “intrinsic aging processes”, which are not
influenced by cell type composition changes. EEAA is used to assess EAA from Hannum clock age estimates.
Since this clock was developed solely using blood samples and its results have been shown to reflect changes in
cell type compositions, EEAA represents changes in the immune system.77. Other commonly used methods
for assessing EAA are the difference between EA and CA and the residual of the regression of EA on CA.

Applications of the First-Generation Epigenetic Clocks to Asthma and Allergic Disease Re-
search

The asthma phenotype, and in particular, allergic asthma, presents a test case for the utility of the epigenetic
clock in studying prenatal and childhood traits and exposures over the lifespan. Asthma often begins in the
early years and may be transient. The clinical presentation is heterogeneous, especially in early childhood,
making timely diagnosis difficult19. Wheeze in young children may resolve without intervention or may
persist and transition into asthma. In addition, there is an unexplained switch in the sex-specific prevalence
of asthma between childhood and adolescence25. According to the atopic march theory78, asthma and allergic
diseases begin in infancy, with the first presenting symptoms being eczema/atopic dermatitis, progressing
to infant food allergies, then asthma and allergic rhinitis. The atopic march is thought to be initiated by
environmental exposures, and it has been proposed that the impact of environmental exposures may be
reflected in DNAm, explaining the heterogeneity of asthma19,20.

Genetic variants have been shown to account for ˜61-75% of susceptibility to asthma79,80. Numerous genome-
wide association studies have demonstrated associations between the HLA region and asthma and allergic
disease. The remaining ˜25-40% of the risk is thought to be due to environmental factors. Epigenome Wide
Association Studies (EWAS) have repeatedly implicated DNAm in both childhood and adult asthma5,81,82.

One exposure of particular interest is viral infection, which may have either a punitive or protective effect,
depending upon the age when infected and viral subtype. Infection may skew the immune response towards
the Th2 pattern observed in allergy50,83,84. For example, infection with the respiratory syncytial virus (RSV)
in infancy is associated with increased risk for asthma, and this effect appears to be mediated through changes
in DNAm83-85. Differential methylation at three CpG sites, mapped to airway and immune response genes,
can separate (with area under the curve (AUC) =1) children who will develop recurrent wheeze and asthma
subsequent to an RSV infection from those who recover normally85.

The few available studies show a positive association between allergy and asthma and EAA19,20. Peng et
al. found that EEAA was linked to asthma and allergic disease (i.e. atopy, food allergy) in Project Viva –
a longitudinal birth cohort which included 408 mother-child pairs with blood DNAm data at mid-childhood
(mean age: 7.8 years, range: 6.7-10.2 years)19. Epigenetic age as predicted by the pan-tissue Horvath clock

6
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and IEAA have also been associated with allergic disease19: the Peng study found a 1.21 increase in the odds
of developing atopic disease and food allergy and 1.16 increase in the odds for asthma at mid-childhood for
every one year increase in EA19. These results were independently replicated. A study examining DNAm
of nasal epithelium cells of 547 Project Viva participants (mean age=12.9, range:11.9-15.3 years) showed
increased EAA in children with asthma (0.74 years) and allergic asthma (1.30 years)20.

The epigenetic clock may provide a greater understanding of the sex-specific asthma prevalence between child-
hood and adulthood25,86. It is believed that hormonal fluctuations during puberty, menstruation, pregnancy
and menopause are associated with asthma pathogenesis, exacerbations and disease severity25(Fig.1B&C
). Sex hormones are key to determining immune response87; thus, an epigenetic clock that captures early
development and puberty may be crucial to understanding the relationship between EAA and asthma (Fig.
1C ). EAA has been shown to be affected by biological sex with males having higher acceleration rates
compared to females77. This pattern is seen at mid-childhood (˜year 7) with persistence into adolescence
(˜year 17) and adulthood61.

A study by Patel et al. identified 13 CpG sites with sex-specific methylation that were associated with the
acquisition of asthma between the ages of 10 and 1888. Ten of these sites were replicated in an independent
cohort. Epigenetic clocks may unravel the relationships between DNAm, asthma and sex, and how they are
associated with the mechanisms of sex-reversal in asthma prevalence.

EAA and the Developmental Origins of Health and Disease

Development is a highly complex essential process (Fig. 1A ). Factors such as environmental exposures may
perturb DNAm during development, and thereby lead to long-term changes that influence susceptibility to
disease. In early life, the majority of CpG sites across the genome are hypomethylated, leaving them
vulnerable to aberrant methylation caused by environmental factors (Fig. 1A ). Subsequent DNAm patterns
may reflect exposures during these stages of life and influence the epigenetic clock and EAA. Previous
studies on development have primarily focused on the pre-natal and early life periods, but development also
encompasses other life stages of rapid change such as puberty and even menopause. Studies have shown
that exposures such as smoking in adolescence can alter DNAm during adolescence89. Whether this leads
to impacts on epigenetic aging which continue in later life remains under-explored.

It has been suggested that an individual’s EAA trajectory is established in childhood and continues at the
same rate throughout adulthood90. However, more work examining this question is needed. In addition,
it is necessary to study whether the rate of EAA is influenced by environmental exposures during critical
developmental periods such as puberty, pregnancy, and menopause. Most current epigenetic clocks, except
the PedBE clock and gestational age clocks, were developed using mainly adult samples. This means that
CpG sites involved in early growth and developmental processes may not be captured in these clocks.

Conclusion

In this review, we have summarized the most frequently used epigenetic clocks as well as their applicability
to childhood phenotypes, with a particular focus on asthma and allergic disease. EAA has been successfully
used to link DNA methylation with disease onset. We focused on the study of epigenetic aging in asthma,
and allergic disease and the potential of epigenetic clocks as a biomarker in asthma diagnosis. This review
has shown the potential of epigenetic clocks as a tool in the study of aging beginning at birth and has
identified areas for continued work. Novel clocks incorporating pediatric longitudinal data can help further
characterize the connection between DNAm, asthma and epigenetic aging.
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Figure 1. The epigenetic clock and Asthma Across the Life Course . Panel A illustrates different
environmental exposures which may alter the rate of the epigenetic clock. Panel B is an illustrative rep-
resentation of the proportion of male vs. female asthmatics over the life stages. Arrows show key changes
in sex-specific patterns of asthma prevalence as extrapolated from25,91,92and are intended for illustrative
purposes only. Panel C shows the different life stages. DNAm during periods of significant hormone changes
(e.g., puberty, pregnancy, and menopause) DNA is particularly vulnerable to alteration by environmental
exposures. Panel D shows the key genes undergoing changes in methylation during development (39,40,88).

Publication CpG Site CHR Position (hg38) Gene Associated Exposure

23 cg14547404 10 48653753 ARHGAP22 Air Pollution
23 cg06517429 10 113679876 CASP7 Air Pollution
24 cg26995690 13 35772239 DCLK1 Birthweight
24 cg00637745 2 120739758 Birthweight
24 cg07133097 2 120739962 Birthweight
22 cg10593758 5 76952917 CRHBP Elevated Maternal BMI
22 cg07621682 19 41321853 CCDC97 Elevated Maternal BMI
24 cg11932158 3 155704340 PLCH1 Gestational Age
24 cg18623216 3 155704181 PLCH1 Gestational Age
24 cg16103712 8 98011641 MATN2 Gestational Age
24 cg17133774 1 6138607 CHD5 Gestational Age
24 cg12713583 19 940724 ARID3A Gestational Age
24 cg04347477 12 124517461 NCOR2 Gestational Age
24 cg08817867 17 19753241 Gestational Age
24 cg02001279 19 940967 ARID3A Gestational Age
24 cg08412913 16 85395916 DOCK6 Gestational Age
24 cg06870470 19 11205091 Gestational Age
24 cg05549655 15 74726802 CYP1A1 Maternal Smoking
24 cg11924019 15 74726942 CYP1A1 Maternal Smoking
24 cg22549041 15 74726910 CYP1A1 Maternal Smoking
24 cg23067299 5 323791 AHRR Maternal Smoking
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Publication CpG Site CHR Position (hg38) Gene Associated Exposure

24 cg22132788 7 44962886 MYO1G Maternal Smoking
24 cg18092474 15 74726961 CYP1A1 Maternal Smoking
24 cg12803068 7 44963320 MYO1G Maternal Smoking
24 cg12101586 15 74726862 CYP1A1 Maternal Smoking

Type Epigenetic
Clock

Tissue
Type

Methodology
Used

Methylation
Technol-
ogy

Strengths Limitations

Single
Tissue

57 Single
Tissue:
Saliva

Association
Analysis

Illumina
27K array

First
epigenetic
clock

Low
accuracy
(mean
AE:5.2
years)

67 Single Tissue:
Whole Blood

Elastic Net
with
bootstrapping

Illumina 450K
Array

Accurate in
blood.
Extensively
used

Limited age
range of
training
samples:
19-101 years

93 Single
Tissue:
Whole
Blood

Multivariate
Linear
Regression

Pyrosequencing Consists of
only three
CpG sites

Low
accuracy
(mean
AE:5.4
years)

94 Single
Tissue:
Breast
Tissue

Elastic Net
Regression
with cross-
validation

TruSeq
Methyl
Capture
EPIC
library

Improved
accuracy in
breast tissue

TruSeq
Methyl
Capture not
yet widely
used

Multi-Tissue 71 Multi-
Tissue:
Epidermis,
dermis,
T-cells,
cervical
smear,
monocytes

Pearson
Correlation

Illumina
27K array

First
multi-tissue
clock

Relative low
accuracy
(mean
AE:11 years)

75 Multi-Tissue:
51 tissue and
cell types

Elastic Net
with ten-fold
cross-
validation

Illumina 27K
array &
Illumina 450K
Array

Accurate
across tissues;
Extensively
used

Mostly adult
samples Age of
neonate
samples set at
“0”

68 Multi-Tissue
including
blood

Elastic Net
with ten-fold
cross-
validation

Illumina
450K &
Illumina
EPIC array

Accurate
(mean AE:
2.5 years)

Not widely
used yet

Pediatric
Single
Tissue

69 Single
Tissue:
Buccal Cells

Elastic Net
with cross-
validation

Illumina
EPIC Array

Pediatric-
only
clock

Low
accuracy in
blood
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Gestational
Age

74 Cord Blood Elastic Net
Regression
with cross-
validation

Illumina 27K
array &
Illumina 450K
Array

Median error
:1.24 weeks

Gestational
Age Only

95 Cord Blood Lasso
Regression
with cross-
validation

Illumina
EPIC array

Uses EPIC
array

Gestational
Age Only

Epigenetic Clock
Citation

Tissue Type Methodology
Used

Platform Strengths Limitations

66 Elastic Net
with Cross
Validation

Phenotypic
Age

Illumina EPIC
Array

Composite of
aging; well
correlated
with morbidity

Utility in
childhood
samples
unknown

76 Elastic Net
with Cross
Validation

Time-to-Death Illumina 450K
& EPIC arrays

Well
correlated
with mortality

Utility in
childhood
samples
unknown

Table 3. Second-Generation Epigenetic Clocks
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