Limiting-Efficiency Assessment on Advanced Crystalline Silicon Solar Cells with Auger Ideality Factor and Wafer Thickness Modifications

Qiao Su¹, Hao Lin¹, Genshun Wang¹, Hanbo Tang¹, Chaowei Xue², Zhenguo Li², Xixiang Xu², and Pingqi Gao¹

¹Sun Yat-sen University - Shenzhen Campus ²LONGi Green Energy Technology Co Ltd

March 20, 2023

Abstract

With the improvement of surface passivation, bulk recombination is becoming an indispensable and decisive factor to assess the limiting efficiency (η lim) of crystalline silicon (c-Si) solar cells. In simultaneous consideration of surface and bulk recombination, a modified model of η lim evaluation is developed. Surface recombination is directly depicted with contact selectivity while bulk recombination is revised on the aspects of ideality factor and wafer thickness. The η lim of cutting-edge photovoltaic technologies, double-side tunneling-oxide passivating contact (TOPCon) and silicon heterojunction (SHJ) solar cells, are numerically simulated using the new model as 28.73% and 29.00%, respectively. Hybrid solar cells consisting of n-type TOPCon contact and p-type SHJ contact can approach an η lim as high as 29.18% at the optimal wafer thickness (W opt) of 103 µm. Our results are instructive in accurately assessing efficiency potential and accordingly optimizing design strategies of c-Si solar cells.

Hosted file

pip-23-111-File001.docx available at https://authorea.com/users/597708/articles/630620limiting-efficiency-assessment-on-advanced-crystalline-silicon-solar-cells-with-augerideality-factor-and-wafer-thickness-modifications