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Abstract

Uncertain fractional differential equation (UFDE) is an useful tool for studying complex systems in uncertain environments. In

this paper, we study the extreme value theorems of the solution to Caputo-Hadamard UFDEs and applications. A numerical

algorithm for solving the numerical solution of a nonlinear Caputo-Hadamard UFDE is presented, the feasibility of the numerical

algorithm is validated by numerical experiments. The extreme value theorems are applied to the financial markets, and the

pricing formulas of the American option based on the new uncertain stock model are given. Considering the properties of the

American option pricing, the algorithms for computing the expected value of the extreme values based on the Simpson’s rule

are designed. Finally, the price fluctuation of the American option is illustrated by numerical experiments.
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Summary

Uncertain fractional differential equation (UFDE) is an useful tool for studying com-
plex systems in uncertain environments. In this paper, we study the extreme value
theorems of the solution to Caputo-Hadamard UFDEs and applications. A numerical
algorithm for solving the numerical solution of a nonlinear Caputo-Hadamard UFDE
is presented, the feasibility of the numerical algorithm is validated by numerical ex-
periments. The extreme value theorems are applied to the financial markets, and the
pricing formulas of the American option based on the new uncertain stock model are
given. Considering the properties of the American option pricing, the algorithms for
computing the expected value of the extreme values based on the Simpson’s rule are
designed. Finally, the price fluctuation of the American option is illustrated by nu-
merical experiments.

KEYWORDS:
Uncertain fractional differential equation; Extreme value theorems; Numerical algorithm; American op-
tion; Simpson’s rule

1 INTRODUCTION

In the world, when the events of emergencies such as wars, earthquakes, and financial crises are happen, there will be a lack of
effective data to estimate the frequency. When quality of a thing is evaluated, such as scoring diving competition, it has to be done
by judgement. In these cases, it is a common work to invite some experts in the relevant fields to assess the belief degree that an
event happens. To deal more reasonably with the possibility of something happening, Liu1 proposed the uncertainty theory as a
powerful tool to handle the belief degree and refined it in 20102. To better describe the change of dynamic system in uncertain
environment, Liu3 introduced the definition of uncertain process. As an application of uncertain process, Liu4 proposed the
concept of uncertain calculus. Chen and Liu5 proved the existence and uniqueness theorem for solution of uncertain differential
equations. Yao and Chen6 introduced the concept of 𝛼-path for uncertain differential equations, which is a class functions for
solving the corresponding ordinary differential equations. Based on uncertainty theory, Liu7 proposed an extreme value theorem
involving special uncertain processes. Yao8 gave the extreme value of the solution of uncertain differential equations.

Fractional calculus is well suited for describing processes with memory properties. Oldham and Spanier9 and Samko et
al.10 had a preliminary study on fractional differential equation (FDE). Fractional calculus can be defined in different ways.
In order to consider the memory properties in uncertain systems, Zhu11 developed the concepts of UFDEs, and presented the
analytic solution for some special Riemann-Liouville and Caputo UFDEs. Zhu12 proved the existence and uniqueness theorems
of solutions of UFDEs under the Lipschitz condition and the linear growth condition. Hadamard13 introduced another special

0Abbreviations: UFDE, uncertain fractional differential equation; IUD, inverse uncertainty distribution; FDE, fractional differential equation
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kind of differential operator
(
𝑡 d
d𝑡

)𝑝
, which is different from ordinary differential operator

(
d
d𝑡

)𝑝
. Jarad et al.14 and Gambo et al.15

extended the fractional calculus of Hadamard type to the Caputo-Hadamard environment. He et al.16 used the Caputo-Hadamard
fractional derivative to discuss the stability of related systems. Gohar et al.17 proposed the concept of Caputo-Hadamard FDE and
gave the basic theorem for solution of Caputo-Hadamard FDE. Liu et al.18 defined the Caputo-Hadamard UFDE, and deduced
the explicit analytic solution for some special Caputo-Hadamard UFDEs.

After Liu19 introduced uncertainty theory into uncertain financial markets, option pricing problem had gradually become
a research hotspot. Peng and Yao20 developed an uncertain stock model by using uncertain differential equation and gave the
pricing formulas of the European option and the American option. Chen21 derived the pricing formulas of American option in
uncertain financial markets. Chen and Gao22 studied the particular term structure equation and derived the valuation equation for
zero-coupon bonds. Sun and Chen23 gave an pricing formulas of the Asian option, and some corresponding characteristics were
also studied. Lu et al.24 gave the pricing formulas of the European option based on an uncertain stock model with mean-reverting
process. Yao and Qin25 investigated a class of barrier options in uncertain financial markets and presented the pricing formulas
for the barrier options. Gao et al.26 put forward a currency model of American barrier option under uncertain environment and
gave four different pricing formulas of American barrier option.

However, the nonlinear differential equations are used to simulate the dynamic changes of stock price in financial markets,
and the methods for solving analytic solutions of the linear differential equations are no longer applicable. Diethelm et al.27 in-
vestigated the predictor-corrector method for solving the numerical solutions of FDEs. Subsequently, Diethelm et al.28 designed
a numerical solution for solving the numerical solutions of the nonlinear FDEs with initial conditions. Gu and Zhu29 proposed
a new Adams predictor-corrector method to solve uncertain differential equation, and used this method to get the extreme value
of solution of uncertain differential equation. Lu and Zhu30 presented a numerical approach for solving UFDEs with Caputo
type derivatives. Jin et al.31 designed a numerical algorithm to get the inverse uncertainty distributions (IUDs) for extreme val-
ues of solution of Caputo UFDEs. Gohar et al.32 modified the predictor-corrector methods and applied it to solve the nolinear
Caputo-Hadamard fractional ordinary differential equations. Liu et al.33 introduced the numerical algorithm for solving the IUD
of solution of Caputo-Hadamard UFDE.

This paper will develop the extreme values theorems for solution of Caputo-Hadamard UFDEs. Based on the modified
predictor-corrector method, a new algorithm is designed to handle the nonlinear Caputo-Hadamard UFDEs. Furthermore, the
numerical algorithms for calculating the price of the American option without explicit pricing formulas are presented. The rest
of this paper will be arranged as the following ways: in Section 2, we mainly review some useful concepts and lemmas related
to uncertainty theory and fractional calculus. In Section 3, the extreme values theorems of monotonic function for the solution
of Caputo-Hadamard UFDEs are studied. In Section 4, a numerical algorithm are proposed, and accuracy and stability of the
numerical algorithm are illustrated through numerical examples. In Section 5, the proved theorems are used to the American
option pricing problem, and the corresponding pricing formulas are given. The last section gives the conclusion of this paper.

2 PRELIMINARY

In preparation for the next study, some useful lemmas and conclusions about uncertainty theory and fractional calculus will be
introduced. More detailed knowledge, such as uncertain measure, uncertainty distribution, uncertain space, uncertain calculus,
may refer to1,2,14,18,33. Without special statements in this paper, we always assume that 𝛿 = 𝑡 d

dt
and the positive number 𝑝

satisfying that 0 ≤ 𝑛−1 < 𝑝 ≤ 𝑛, where 𝑛 is usually considered as a integer. Besides, we always assume that 𝑓, 𝑔 ∶ [𝑎,∞)×R →
R are two continuous functions.

Liu2 presented the monotonicity theorem of uncertain measure. For any given events Ω1 and Ω2, if Ω1 ⊂ Ω2, then {
Ω1

} ≤{
Ω2

}
. Subsequently, Liu2 proved that if a function Ψ−1 ∶ (0, 1) → ℜ is continuous and {

𝜉 ≤ Ψ−1(𝛼)
}

= 𝛼 for all
𝛼 ∈ (0, 1), then the function is the IUD of an uncertain variable 𝜉.

Liu2 gave a formula for calculating the expected value of uncertain variable. Suppose that 𝜉 is an uncertain variable, then the
expected value of 𝜉 can be calculated by

𝐸[𝜉] =

1

∫
0

Ψ−1(𝛼)d𝛼,

where Ψ−1(𝛼) is the IUD of uncertain variable 𝜉.
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Jarad et al.14 introduced the definition of Caputo-Hadamard fractional order derivative. The Caputo-Hadamard fractional
order derivative of function 𝑔(𝑡) is defined as follows:
(i) If 𝑝 ∉ N+, the fractional order derivative of Caputo-Hadamard type can be expressed as

𝐶𝐻𝑝
𝑎+𝑔(𝑡) =

1
Γ(𝑛 − 𝑝)

𝑡

∫
𝑎

(
log 𝑡

𝑠

)𝑛−𝑝−1
𝛿𝑛𝑔(𝑠)d𝑠

𝑠
, 0 < 𝑎 < 𝑡,

where Γ(𝑝) = ∫ ∞
0 𝑒−𝑡𝑡𝑝−1d𝑡 is a Gamma function.

(ii) If 𝑝 ∈ N+, then
𝐶𝐻𝑝

𝑎+𝑔(𝑡) = 𝛿𝑛𝑔(𝑡), 0 < 𝑎 < 𝑡.
Liu et al.18 defined the UFDE of Caputo-Hadamard type with initial conditions. Suppose that there are two continuous

functions 𝐹 ,𝐺 ∶ [𝑎,∞) × R → R, then a Caputo-Hadamard UFDE satisfies the following equation{
𝐶𝐻𝑝

𝑎+𝑋𝑡 = 𝐹
(
𝑡, 𝑋𝑡

)
+ 𝐺

(
𝑡, 𝑋𝑡

) d𝐶𝑡

d𝑡
, 0 < 𝑎 ≤ 𝑡,

𝛿𝑘𝑋𝑡
||𝑡=𝑎 = 𝑥𝑘, 𝑘 = 0, 1,⋯ , 𝑛 − 1.

(1)

The 𝛼-path for the UFDE of Caputo-Hadamard type is defined by the solution 𝑋𝛼
𝑡 of the following equation{

𝐶𝐻𝑝
𝑎+𝑋𝛼

𝑡 = 𝐹
(
𝑡, 𝑋𝛼

𝑡

)
+ |||𝐺 (

𝑡, 𝑋𝛼
𝑡

)|||Φ−1(𝛼), 0 < 𝑎 ≤ 𝑡,

𝛿𝑘𝑋𝛼
𝑡
||𝑡=𝑎 = 𝑥𝑘, 𝑘 = 0, 1,⋯ , 𝑛 − 1,

(2)

where 𝛼 ∈ (0, 1), Φ−1(𝛼) =
√
3

𝜋
ln 𝛼

1−𝛼
is the IUD of the standard normal uncertain variable.

Denote the 𝐶𝐻𝑝
1+ by the abbreviations 𝐶𝐻𝑝. Liu et al.18 presented an analytic solution for a particular UFDE of Caputo-

Hadamard type. Let 𝑏(𝑡) and 𝜎(𝑡) be continuous functions on a given interval [1, 𝑇 ] and 𝑎 is a constant. Then the UFDE of
Caputo-Hadamard type with initial conditions{

𝐶𝐻𝑝𝑋𝑡 = 𝑎𝑋𝑡 + 𝑏(𝑡) + 𝜎(𝑡) d𝐶𝑡

d𝑡
, 𝑡 ∈ [1, 𝑇 ],

𝛿𝑘𝑋𝑡
||𝑡=1 = 𝑥𝑘, 𝑘 = 0, 1,⋯ , 𝑛 − 1

(3)

has an analytic solution

𝑋𝑡 =
𝑛−1∑
𝑘=0

𝑥𝑘(log 𝑡)
𝑘𝐸𝑝,(𝑘+1)

(
𝑎(log 𝑡)𝑝

)
+

𝑡

∫
1

(
log 𝑡

𝑠

)𝑝−1
𝐸𝑝,𝑝

(
𝑎
(
log 𝑡

𝑠

)𝑝)
𝑏(𝑠)d𝑠

𝑠

+

𝑡

∫
1

(
log 𝑡

𝑠

)𝑝−1
𝐸𝑝,𝑝

(
𝑎
(
log 𝑡

𝑠

)𝑝)
𝜎(𝑠)

d𝐶𝑠

𝑠
,

where 𝐸𝑝,𝑞(𝑧) =
∑∞

𝑘=0
𝑧𝑘

Γ(𝑝𝑘+𝑞)
is a Mittag-Leffler function.

The UFDE of Caputo-Hadamard type has a unique solution if the functions 𝐹 (𝑡, 𝑥) and 𝐺(𝑡, 𝑥) in (1) satisfy the inequality|𝐹 (𝑠, 𝑥) − 𝐹 (𝑠, 𝑧)| + |𝐺(𝑠, 𝑥) − 𝐺(𝑠, 𝑧)| ≤ 𝐿|𝑥 − 𝑧|, ∀𝑥, 𝑧 ∈ R, 0 < 𝑎 ≤ 𝑠,

and the inequality |𝐹 (𝑠, 𝑥)| + |𝐺(𝑠, 𝑥)| ≤ 𝐿(1 + |𝑥|), ∀𝑥 ∈ R, 0 < 𝑎 ≤ 𝑠,
where 𝐿 is a positive constant.

Lemma 1 (33). Assume that 𝑋𝑡 and 𝑋𝛼
𝑡 are the unique solution and 𝛼-path for the Caputo-Hadamard UFDE (1), respectively.

Then {{
𝑋𝑡 ≤ 𝑋𝛼

𝑡 ,∀𝑡 ∈ (𝑎, 𝑇 ]
}
= 𝛼,

{
𝑋𝑡 > 𝑋𝛼

𝑡 ,∀𝑡 ∈ (𝑎, 𝑇 ]
}
= 1 − 𝛼.

(4)

Furthermore, the IUD of the solution 𝑋𝑡 is Φ−1
𝑡 (𝛼) = 𝑋𝛼

𝑡 .
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3 EXTREME VALUES OF SOLUTION

In the section, we will study the supremum and infimum of the solution of Caputo-Hadamard UFDE driven by Liu process, and
give the extreme value theorems through the concept of 𝛼-path. The considered Caputo-Hadamard UFDE with initial conditions
is as follows: ⎧⎪⎨⎪⎩

𝐶𝐻𝑝𝑋𝑡 = 𝐹
(
𝑡, 𝑋𝑡

)
+ 𝐺

(
𝑡, 𝑋𝑡

) d𝐶𝑡

d𝑡
, 𝑡 ≥ 1,

𝛿𝑘𝑋𝑡
||𝑡=1 = 𝑥𝑘, 𝑘 = 0, 1,⋯ , 𝑛 − 1.

(5)

3.1 Extreme value theorems for increasing function 𝐽 (𝑋𝑡)
Theorem 1. Let 𝑋𝑡 and 𝑋𝛼

𝑡 be the unique solution and 𝛼-path for the Caputo-Hadamard UFDE (5), respectively. Suppose that
there is the function 𝐽 (𝑥) is continuous and strictly increasing. For ∀𝑠 > 1, then sup1≤𝑡≤𝑠 𝐽

(
𝑋𝑡

)
has an IUD

Ψ−1
𝑠 (𝛼) = sup

1≤𝑡≤𝑠 𝐽
(
𝑋𝛼

𝑡

)
,

and inf1≤𝑡≤𝑠 𝐽
(
𝑋𝑡

)
has an IUD

Ψ−1
𝑠 (𝛼) = inf

1≤𝑡≤𝑠 𝐽
(
𝑋𝛼

𝑡

)
.

Proof. We will adopt a similar method in8 to prove the result. For any time 𝑠 > 1, let

Ω+
1 =

{
𝛾 ∣ 𝑋𝑡(𝛾) ≤ 𝑋𝛼

𝑡 ,∀𝑡
}
,

Ω−
1 =

{
𝛾 ∣ 𝑋𝑡(𝛾) > 𝑋𝛼

𝑡 ,∀𝑡
}
,

Ω+
2 =

{
𝛾 ∣ sup

1≤𝑡≤𝑠 𝐽
(
𝑋𝑡(𝛾)

) ≤ sup
1≤𝑡≤𝑠 𝐽

(
𝑋𝛼

𝑡

)}
,

Ω−
2 =

{
𝛾 ∣ sup

1≤𝑡≤𝑠 𝐽
(
𝑋𝑡(𝛾)

)
> sup

1≤𝑡≤𝑠 𝐽
(
𝑋𝛼

𝑡

)}
.

Since the function 𝐽 (𝑥) is continuous and strictly increasing, then we have Ω+
1 ⊂ Ω+

2 and Ω−
1 ⊂ Ω−

2 . It follows from the
monotonicity theorem of uncertain measure and Lemma 1 that

𝛼 = {
Ω+

1

} ≤ {
Ω+

2

}
and

1 − 𝛼 = {
Ω−

1
} ≤ {

Ω−
2
}
.

According to the duality axiom in uncertainty theory, we have

{
Ω+

2

}
+{

Ω−
2
}
= 1.

Therefore, we can get that {
Ω+

2

}
= 𝛼.

Then sup1≤𝑡≤𝑠 𝐽
(
𝑋𝑡

)
has an IUD

Ψ−1
𝑠 (𝛼) = sup

1≤𝑡≤𝑠 𝐽
(
𝑋𝛼

𝑡

)
.

Similarly, let

Ω+
3 =

{
𝛾 ∣ inf

1≤𝑡≤𝑠 𝐽
(
𝑋𝑡(𝛾)

) ≤ inf
1≤𝑡≤𝑠 𝐽

(
𝑋𝛼

𝑡

)}
,

Ω−
3 =

{
𝛾 ∣ inf

1≤𝑡≤𝑠 𝐽
(
𝑋𝑡(𝛾)

)
> inf

1≤𝑡≤𝑠 𝐽
(
𝑋𝛼

𝑡

)}
.

It is obviously that we have Ω+
1 ⊂ Ω+

3 and Ω−
1 ⊂ Ω−

3 . It follows from the monotonicity theorem of uncertain measure and Lemma
1 that

𝛼 = {
Ω+

1

} ≤ {
Ω+

3

}
and

1 − 𝛼 = {
Ω−

1
} ≤ {

Ω−
3
}
.
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According to the duality axiom in uncertainty theory, we have

{
Ω+

3

}
+{

Ω−
3
}
= 1.

Therefore, we can get that {
Ω+

3

}
= 𝛼.

Then inf1≤𝑡≤𝑠 𝐽
(
𝑋𝑡

)
has an IUD

Ψ−1
𝑠 (𝛼) = inf

1≤𝑡≤𝑠 𝐽
(
𝑋𝛼

𝑡

)
.

The proof ends.

Theorem 2. Under the assumption of Theorem 1, 𝑋𝑡 has an uncertainty distribution Φ𝑡(𝑥) at time 𝑡. For ∀𝑠 > 1, then supremum
sup1≤𝑡≤𝑠 𝐽

(
𝑋𝑡

)
has an uncertainty distribution

Ψ𝑠(𝑥) = inf
1≤𝑡≤𝑠Φ𝑡

(
𝐽−1(𝑥)

)
,

and the infimum inf1≤𝑡≤𝑠 𝐽
(
𝑋𝑡

)
has an uncertainty distribution

Ψ𝑠(𝑥) = sup
1≤𝑡≤𝑠Φ𝑡

(
𝐽−1(𝑥)

)
.

Proof. Since 𝑋𝛼
𝑡 = Φ−1

𝑡 (𝛼), it follows from Theorem 1 that we have


{

sup
1≤𝑡≤𝑠 𝐽

(
𝑋𝑡

) ≤ sup
1≤𝑡≤𝑠 𝐽

(
Φ−1

𝑡 (𝛼)
)}

= 𝛼.

Let 𝑥 = sup1≤𝑡≤𝑠 𝐽
(
Φ−1

𝑡 (𝛼)
)
. Then 𝛼 = inf1≤𝑡≤𝑠 Φ𝑡

(
𝐽−1(𝑥)

)
. Thus


{

sup
1≤𝑡≤𝑠 𝐽

(
𝑋𝑡

) ≤ 𝑥
}

= inf
1≤𝑡≤𝑠Φ𝑡

(
𝐽−1(𝑥)

)
.

That is to say, the supremum sup1≤𝑡≤𝑠 𝐽
(
𝑋𝑡

)
has an uncertainty distribution

Ψ𝑠(𝑥) = inf
1≤𝑡≤𝑠Φ𝑡

(
𝐽−1(𝑥)

)
.

Similarly, we have


{

inf
1≤𝑡≤𝑠 𝐽

(
𝑋𝑡

) ≤ inf
1≤𝑡≤𝑠 𝐽

(
Φ−1

𝑡 (𝛼)
)}

= 𝛼.

Let 𝑦 = inf1≤𝑡≤𝑠 𝐽
(
Φ−1

𝑡 (𝛼)
)
. Then 𝛼 = sup1≤𝑡≤𝑠 Φ𝑡

(
𝐽−1(𝑦)

)
. Thus


{

inf
1≤𝑡≤𝑠 𝐽

(
𝑋𝑡

) ≤ 𝑦
}

= sup
1≤𝑡≤𝑠Φ𝑡

(
𝐽−1(𝑦)

)
.

That is to say, the infimum inf1≤𝑡≤𝑠 𝐽
(
𝑋𝑡

)
has an uncertainty distribution

Ψ𝑠(𝑦) = sup
1≤𝑡≤𝑠Φ𝑡

(
𝐽−1(𝑦)

)
.

The proof ends.

3.2 Extreme value theorems for decreasing function 𝐽 (𝑋𝑡)
Theorem 3. Let 𝑋𝑡 and 𝑋𝛼

𝑡 be the unique solution and 𝛼-path for the Caputo-Hadamard UFDE (5), respectively. Suppose that
there is the function 𝐽 (𝑥) is continuous and strictly decreasing. For ∀𝑠 > 1, then sup1≤𝑡≤𝑠 𝐽

(
𝑋𝑡

)
has an IUD

Ψ−1
𝑠 (𝛼) = sup

1≤𝑡≤𝑠 𝐽
(
𝑋1−𝛼

𝑡

)
,

and inf1≤𝑡≤𝑠 𝐽
(
𝑋𝑡

)
has an IUD

Ψ−1
𝑠 (𝛼) = inf

1≤𝑡≤𝑠 𝐽
(
𝑋1−𝛼

𝑡

)
.

Proof. The proof is similar to that of Theorem 1.
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Theorem 4. Under the assumption of Theorem 3, 𝑋𝑡 has an uncertainty distribution Φ𝑡(𝑥) at time 𝑡. For ∀𝑠 > 1, then supremum
sup1≤𝑡≤𝑠 𝐽

(
𝑋𝑡

)
has an uncertainty distribution

Ψ𝑠(𝑥) = 1 − sup
1≤𝑡≤𝑠Φ𝑡

(
𝐽−1(𝑥)

)
,

and the infimum inf1≤𝑡≤𝑠 𝐽
(
𝑋𝑡

)
has an uncertainty distribution

Ψ𝑠(𝑥) = 1 − inf
1≤𝑡≤𝑠Φ𝑡

(
𝐽−1(𝑥)

)
.

Proof. The proof is similar to that of Theorem 2.

4 NUMERICAL ALGORITHM FOR SOLVING THE NOLINEAR CAPUTO-HADAMARD
UFDE

When we encounter some linear ordinary differential equations, it is easy to obtain their analytic solutions. However, the practical
problems that we encounter are usually nonlinear, and the method of getting the linear differential equations analytic solution is
no longer applicable. Yao and Chen6 designed a numerical method for solving uncertain differential equations, which obtained
an IUD for solution of uncertain differential equations by solving each 𝛼-path. Jin et al.31 proposed the numerical algorithm based
on the general predictor-corrector method to solve the IUD for solution of Caputo UFDE. However, the proposed numerical
algorithm is only suitable for solving the corresponding differential equation. Therefore, we need to design a new algorithm to
deal with the problems of the nonlinear Caputo-Hadamard UFDEs.

On the basis of the modified predictor-corrector method32, we develop a new numerical algorithm for solving the IUD of
extreme values of solution to Caputo-Hadamard UFDEs. According to Theorem 1 and Theorem 3, the numerical algorithm for
solving the IUD of extreme values of solution to Caputo-Hadamard UFDE are provided by Algorithm 1.

Algorithm 1 (IUD of the supremum or infimum)

Step 1. Fixed a positive integer number 𝑁 which is based on the approximation need, and divide the interval [1, 𝑇 ] into 𝑁
parts. Let ℎ = (𝑇 − 1)∕𝑁 be a step length.

Step 2. Set 𝛼 = 0, and the step length Δ𝛼.
Step 3. Update 𝛼 ← 𝛼 + Δ𝛼. Let 𝐿 = 𝐽 (𝑋𝛼

1 ) and 𝑖 = 1.
Step 4. Based on the modified predictor-corrector method32 at the grid 𝑡𝑖 = 1 + 𝑖ℎ, solve the corresponding FDE with initial

conditions {
𝐶𝐻𝑝𝑋𝛼

𝑡 = 𝐹
(
𝑡, 𝑋𝛼

𝑡

)
+ |||𝐺 (

𝑡, 𝑋𝛼
𝑡

)|||Φ−1(𝛼), 𝑡 ≥ 1,

𝛿𝑘𝑋𝛼
𝑡
||𝑡=1 = 𝑥𝑘, 𝑘 = 0, 1,⋯ , 𝑛 − 1,

and calculate 𝐽
(
𝑋𝛼

𝑡𝑖

)
.

Step 5. Update 𝐿 ← max
(
𝐿, 𝐽

(
𝑋𝛼

𝑡𝑖

))
or min

(
𝐿, 𝐽

(
𝑋𝛼

𝑡𝑖

))
, and 𝑖 ← 𝑖 + 1.

Step 6. If 𝑖 ≤ 𝑁 , go to back Step 4.
Step 7. Obtain sup

1≤𝑡≤𝑇 𝐽
(
𝑋𝛼

𝑡

)
= 𝐿 or inf

1≤𝑡≤𝑇 𝐽
(
𝑋𝛼

𝑡

)
= 𝐿.

Step 8. If 𝛼 + Δ𝛼 < 1, go to back Step 3.
Step 9. Obtain the results. Thus, we can get the IUD Ψ−1

𝑇 (𝛼) = sup
1≤𝑡≤𝑇 𝐽

(
𝑋𝛼

𝑡

)
or inf

1≤𝑡≤𝑇 𝐽
(
𝑋𝛼

𝑡

)
.

Subsequently, the Caputo-Hadamard UFDEs with analytic solution is considered, and the IUD for extreme values of solution
is calculated by Algorithm 1. The absolute error is presented to illustrate the accuracy of the proposed Algorithm 1.

Example 4.1. The considered Caputo-Hadamard UFDE with initial conditions is as follows:{
𝐶𝐻𝑝𝑋𝑡 = 𝑒𝑋𝑡 + 𝑏 (log 𝑡)𝑣 d𝐶𝑡

d𝑡
, 1 ≤ 𝑡 ≤ 𝑇 ,

𝛿𝑘𝑋𝑡
||𝑡=1 = 𝑥𝑘, 𝑘 = 0, 1,… 𝑛 − 1,

(6)
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where the Caputo-Hadamard UFDE (6) has an 𝛼-path 𝑋𝛼
𝑡 by

𝑋𝛼
𝑡 =

𝑛−1∑
𝑘=0

𝑥𝑘(log 𝑡)
𝑘𝐸𝑝,(𝑘+1)

(
𝑒(log 𝑡)𝑝

)
+ |𝑏|Γ(𝑣 + 1)(log 𝑡)𝑝+𝑣𝐸𝑝,𝑝+𝑣+1

(
𝑒 (log 𝑡)𝑝

) √
3

𝜋
ln 𝛼

1 − 𝛼
.

Let 𝐽 (𝑥) = 𝑥. According to Theorem 1, the supremum sup1≤𝑡≤𝑇 𝐽
(
𝑋𝑡

)
has an IUD

Ψ−1
𝑇 (𝛼)=sup

1≤𝑡≤𝑇 𝑋
𝛼
𝑡

=sup
1≤𝑡≤𝑇

(𝑛−1∑
𝑘=0

𝑥𝑘(log 𝑡)
𝑘𝐸𝑝,(𝑘+1)

(
𝑒(log 𝑡)𝑝

)
+ |𝑏|Γ(𝑣 + 1)(log 𝑡)𝑝+𝑣𝐸𝑝,𝑝+𝑣+1

(
𝑒 (log 𝑡)𝑝

) √
3

𝜋
ln 𝛼

1 − 𝛼

)
. (7)

Set the parameters as follows: 𝑝 = 1.8, 𝑒 = 0.6, 𝑏 = 0.7, 𝑣 = 1, 𝑇 = 2, 𝑁 = 100, Δ𝛼 = 0.01, 𝑥0 = 2, 𝑥1 = 0.1. Numerical
solution by Algorithm 1 and analytic solution by (7) of the IUD of sup1≤𝑡≤𝑇 𝐽

(
𝑋𝑡

)
are calculated and shown in Figure 1. To

demonstrate the accuracy of Algorithm 1, the absolute errors between numerical solutions and analytic solutions are shown
in Figure 2. The maximum absolute error that can be obtained from Figure 2 is less than 4.5 × 10−3. Therefore, the proposed
Algorithm 1 has high accuracy.

0 0.2 0.4 0.6 0.8 1
2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

-1 T
(

)

Numerical
Analytic

Figure 1 Numerical and analytic solutions for IUD of sup
1≤𝑡≤𝑇 𝐽

(
𝑋𝑡

)
.

The stability of Algorithm 1 can be demonstrated by calculating the maximum absolute errors of analytic and numerical
solutions of supremum sup1≤𝑡≤𝑇 𝐽

(
𝑋𝑡

)
under different fractional order 𝑝. The remaining parameters are set to 𝑒 = 0.6, 𝑏 = 0.7,

𝑣 = 1, 𝑇 = 2, 𝑁 = 100, Δ𝛼 = 0.01, 𝑥0 = 2, 𝑥1 = 0.1. The results of the maximum absolute error are shown in Table 1. The
maximum absolute error of analytic and numerical solutions of sup1≤𝑡≤𝑇 𝐽

(
𝑋𝑡

)
is 0.0066. Thus, the proposed Algorithm 1 can

be shown to have high stability. Again according to Theorem 1, the infimum inf1≤𝑡≤𝑇 𝐽
(
𝑋𝑡

)
has an IUD

Table 1 The maximum absolute error for analytic and numerical solutions of sup1≤𝑡≤𝑇 𝐽
(
𝑋𝑡

)
with different order 𝑝.

𝑝 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Error 0.0042 0.0061 0.0066 0.0064 0.0059 0.0053 0.0047 0.0041 0.0036 0.0032
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Figure 2 Absolute error between numerical and analytic solutions of sup
1≤𝑡≤𝑇 𝐽

(
𝑋𝑡

)
.

Ψ−1
𝑇 (𝛼)= inf

1≤𝑡≤𝑇 𝑋
𝛼
𝑡

=inf
1≤𝑡≤𝑇

(𝑛−1∑
𝑘=0

𝑥𝑘(log 𝑡)
𝑘𝐸𝑝,(𝑘+1)

(
𝑒(log 𝑡)𝑝

)
+ |𝑏|Γ(𝑣 + 1)(log 𝑡)𝑝+𝑣𝐸𝑝,𝑝+𝑣+1

(
𝑒 (log 𝑡)𝑝

) √
3

𝜋
ln 𝛼

1 − 𝛼

)
. (8)

Set the parameters as follows: 𝑝 = 0.9, 𝑒 = −3.5, 𝑏 = 0.7, 𝑣 = 1, 𝑇 = 2, 𝑁 = 100, Δ𝛼 = 0.01, 𝑥0 = 2. Numerical solution by
Algorithm 1 and analytic solution by (8) of the IUD of inf1≤𝑡≤𝑇 𝐽

(
𝑋𝑡

)
are calculated and shown in Figure 3. To demonstrate

the accuracy of Algorithm 1, the absolute errors between numerical solutions and analytic solutions are shown in Figure 4. The
maximum absolute error that can be obtained from Figure 4 is less than 3×10−3. Therefore, the proposed Algorithm 1 has high
accuracy.

0 0.2 0.4 0.6 0.8 1
-0.1

0

0.1

0.2

0.3

0.4

0.5

-1 T
(

)

Numerical
Analytic

Figure 3 Numerical and analytic solutions for IUD of inf
1≤𝑡≤𝑇 𝐽

(
𝑋𝑡

)
.
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Figure 4 Absolute error between numerical and analytic solutions of inf
1≤𝑡≤𝑇 𝐽

(
𝑋𝑡

)
.

The stability of Algorithm 1 can be demonstrated by calculating the maximum absolute errors of analytic and numerical
solutions of infimum inf1≤𝑡≤𝑇 𝐽

(
𝑋𝑡

)
under different fractional order 𝑝. The remaining parameters are set to 𝑒 = −3.5, 𝑏 = 0.7,

𝑣 = 1, 𝑇 = 2, 𝑁 = 100, Δ𝛼 = 0.01, 𝑥0 = 2. The results of the maximum absolute error are shown in Table 2. The maximum
absolute error of analytic and numerical solutions of inf1≤𝑡≤𝑇 𝐽

(
𝑋𝑡

)
is 0.0046. Thus, the proposed Algorithm 1 can be shown

to have high stability.

Table 2 The maximum absolute error for analytic and numerical solutions of inf1≤𝑡≤𝑇 𝐽
(
𝑋𝑡

)
with different order 𝑝.

𝑝 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Error 0.0024 0.0036 0.0043 0.0046 0.0045 0.0041 0.0037 0.0032 0.0027 0.0023

Since some differential equations have classical properties, these differential equations can be solved the analytic solution.
However, not all differential equations can be solved the analytic solution. In this case, the numerical solution obtained by the
numerical algorithm can be used to simulate the analytical solution of the differential equation.

Example 4.2. The considered Caputo-Hadamard UFDE with initial conditions is as follows:{
𝐶𝐻𝑝𝑋𝑡 =

√
𝑋𝑡 − 1 + (1 − (log 𝑡)) d𝐶𝑡

d𝑡
, 1 ≤ 𝑡 ≤ 𝑇 ,

𝛿𝑘𝑋𝑡
||𝑡=1 = 𝑥𝑘, 𝑘 = 0, 1,… 𝑛 − 1.

(9)

The 𝛼-path of (9) can be given by solving the following Caputo-Hadamard FDE{
𝐶𝐻𝑝𝑋𝑡 =

√
𝑋𝑡 − 1 + |1 − (log 𝑡)|Φ−1(𝛼), 1 ≤ 𝑡 ≤ 𝑇 ,

𝛿𝑘𝑋𝑡
||𝑡=1 = 𝑥𝑘, 𝑘 = 0, 1,… 𝑛 − 1.

Set the parameters as follows: 𝑝 = 1.2, 𝑇 = 2, 𝑁 = 100, Δ𝛼 = 0.01, 𝑥0 = 2, 𝑥1 = 1 and 𝐽 (𝑥) = 𝑥. The numerical solutions
for IUD of sup1≤𝑡≤𝑇 𝐽

(
𝑋𝑡

)
and inf1≤𝑡≤𝑇 𝐽

(
𝑋𝑡

)
are shown in Figure 5 and Figure 6, respectively. Therefore, if the extreme value

of the solution of Caputo-Hadamard UFDE does not have an explicit IUD, the proposed Algorithm 1 can be used to obtain the
corresponding IUD.
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Figure 5 Numerical solutions for IUD of sup
1≤𝑡≤𝑇 𝐽

(
𝑋𝑡

)
.
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Figure 6 Numerical solutions for IUD of inf
1≤𝑡≤𝑇 𝐽

(
𝑋𝑡

)
.

5 UNCERTAIN STOCK MODEL

This section present an uncertain stock model as an application of the extreme value theorems for solution of Caputo-Hadamard
UFDEs. Subsequently, we price the American call option and American put option determined by the uncertain stock models in
uncertain financial markets. Suppose that 𝑋𝑡 and 𝑌𝑡 are the bond price and the stock price at time 𝑡, respectively. The stock price
𝑌𝑡 is simulated by the UFDE of Caputo-Hadamard type, an uncertain stock model to satisfy the following differential equation.⎧⎪⎪⎨⎪⎪⎩

d𝑋𝑡 = 𝑟𝑋𝑡d𝑡,
𝐶𝐻𝑝𝑌𝑡 = 𝑓

(
𝑡, 𝑌𝑡

)
+ 𝑔

(
𝑡, 𝑌𝑡

) d𝐶𝑡

d𝑡
, 𝑡 ∈ [1, 𝑇 ],

𝛿𝑘𝑌𝑡|𝑡=1 = 𝑦𝑘, 𝑘 = 0, 1,… 𝑛 − 1,

(10)

where 𝑟 represents the riskless interest rate.
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5.1 American call option
As a derivative of uncertain financial market, American option is a contract that can be exercised on any day within the validity
period after the transaction. An American call option is a type of contract that endows the holder the right to buy the stock at strike
price 𝐾 before expiration time 𝑇 . Let 𝑓𝑐 denote the price of the American call option and 𝑌𝑡 is the stock price at time 𝑡. Taking
into account the time value of money generated by the bond, the present value of the profit is sup1≤𝑡≤𝑇 exp(−𝑟𝑡)

(
𝑌𝑡 −𝐾

)+ .
Then the net return for the investor is

(
−𝑓𝑐 + sup1≤𝑡≤𝑇 exp(−𝑟𝑡)

(
𝑌𝑡 −𝐾

)+), and the profit for the bank is opposite. For the
buyer and seller to have the same return, then the price of the American call option can be defined as follows.

Definition 1. Assume that an American call option with the strike price 𝐾 and expiration time 𝑇 . Then the American call option
price based on model (10) is defined by

𝑓𝑐 = 𝐸
[
sup
1≤𝑡≤𝑇 exp(−𝑟𝑡)

(
𝑌𝑡 −𝐾

)+] ,
where 𝑌𝑡 is the stock price.

Theorem 5. The American call option price based on model (10) is

𝑓𝑐 =

1

∫
0

[
sup
1≤𝑡≤𝑇 exp(−𝑟𝑡)

(
𝑌 𝛼
𝑡 −𝐾

)+] d𝛼. (11)

Proof. The conclusion follows from the formula for the expected value and Theorem 1.

The price of the American call option is mainly calculated based on the expected value of the supremum. When the function
𝐽
(
𝑋𝑡

)
increases strictly with respect to 𝑋𝑡, then we have

𝐸
[
sup
1≤𝑡≤𝑇 𝐽

(
𝑋𝑡

)]
=

1

∫
0

sup
1≤𝑡≤𝑇 𝐽

(
𝑋𝛼

𝑡

)
𝑑𝛼.

Subsequently, this integral may be calculated by applying Simpson’s rule. There are two improper points 0 and 1
in the above improper integral, we choose the small enough positive number 𝜖 such that ∫ 1

0 sup1≤𝑡≤𝑇 𝐽
(
𝑋𝛼

𝑡

)
𝑑𝛼 =

lim𝜖→0 ∫ 1−𝜖
𝜖 sup1≤𝑡≤𝑇 𝐽

(
𝑋𝛼

𝑡

)
𝑑𝛼. The specific algorithm is shown in Algorithm 2.

Algorithm 2 (Expected value of supremum for the increasing function 𝐽
(
𝑋𝑡

)
. )

Step 1. Set 𝜖 > 0 small enough. Fix a positive even number 𝑀 . Set Δ𝛼 = 1
𝑀

and 𝑖 = 1.
Step 2. Compute sup

1≤𝑡≤𝑇 𝐽
(
𝑋𝜖

𝑡

)
and sup

1≤𝑡≤𝑇 𝐽
(
𝑋1−𝜖

𝑡

)
by Algorithm 1.

Step 3. 𝛼𝑖 = Δ𝛼 ⋅ 𝑖.
Step 4. Compute sup

1≤𝑡≤𝑇 𝐽
(
𝑋𝛼𝑖

𝑡
)

by Algorithm 1.

Step 5. If 𝑖 < 𝑀 − 1, 𝑖 ← 𝑖 + 1 and go to back Step 3.
Step 6. The expected value is provided by

𝐸
[
sup
1≤𝑡≤𝑇 𝐽

(
𝑋𝑡

)]
=Δ𝛼

3

[
sup
1≤𝑡≤𝑇 𝐽

(
𝑋𝜖

𝑡

)
+ 2

𝑀−1∑
𝑖=1

sup
1≤𝑡≤𝑇 𝐽

(
𝑋𝛼𝑖

𝑡
)
+ 2

𝑀∕2∑
𝑖=1

sup
1≤𝑡≤𝑇 𝐽

(
𝑋𝛼2𝑖−1

𝑡
)

+ sup
1≤𝑡≤𝑇 𝐽

(
𝑋1−𝜖

𝑡

)]
.
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Next, a special model is considered, let 𝑋𝑡 and 𝑌𝑡 satisfy the following equations⎧⎪⎪⎨⎪⎪⎩
d𝑋𝑡 = 𝑟𝑋𝑡d𝑡,
𝐶𝐻𝑝𝑌𝑡 =

(
𝑚 − 𝑎𝑌𝑡

)
+ 𝜎𝑌 𝑙

𝑡
d𝐶𝑡

d𝑡
, 𝑡 ∈ [1, 𝑇 ],

𝛿𝑘𝑌𝑡|𝑡=1 = 𝑦𝑘, 𝑘 = 0, 1,… 𝑛 − 1,

(12)

where 𝑟, 𝑚, 𝑎, 𝑙, 𝜎 are some positive constants.
When 𝑙 ≠ 1, we cannot get an explicit pricing formula of the American call option. Now, we consider the special case with

𝑙 = 1.

Theorem 6. Assume that an American call option for the uncertain stock model (12) with 𝑙 = 1 has the strike price 𝐾 and
expiration time 𝑇 . Then we have

𝑓𝑐=

1

∫
0

sup
1≤𝑡≤𝑇 exp(−𝑟𝑡)

[𝑛−1∑
𝑘=0

𝑦𝑘(log 𝑡)𝑘𝐸𝑝,(𝑘+1)

((
−𝑎 + |𝜎|√3

𝜋
ln 𝛼

1 − 𝛼

)
(log 𝑡)𝑝

)

+𝑚(log 𝑡)𝑝𝐸𝑝,𝑝+1

((
−𝑎 + |𝜎|√3

𝜋
ln 𝛼

1 − 𝛼

)
(log 𝑡)𝑝

)
−𝐾

]+

d𝛼. (13)

Proof. The Caputo-Hadamard UFDE (12) has an 𝛼-path 𝑌 𝛼
𝑡 is

𝑌 𝛼
𝑡 =

𝑛−1∑
𝑘=0

𝑦𝑘(log 𝑡)𝑘𝐸𝑝,(𝑘+1)

((
−𝑎 + |𝜎|√3

𝜋
ln 𝛼

1 − 𝛼

)
(log 𝑡)𝑝

)

+ 𝑚(log 𝑡)𝑝𝐸𝑝,𝑝+1

((
−𝑎 + |𝜎|√3

𝜋
ln 𝛼

1 − 𝛼

)
(log 𝑡)𝑝

)
.

Thus, the price of the American call option can be given by Theorem 5, and we have

𝑓𝑐 =

1

∫
0

sup
1≤𝑡≤𝑇 exp(−𝑟𝑡)

[𝑛−1∑
𝑘=0

𝑦𝑘(log 𝑡)𝑘𝐸𝑝,(𝑘+1)

((
−𝑎 + |𝜎|√3

𝜋
ln 𝛼

1 − 𝛼

)
(log 𝑡)𝑝

)

+𝑚(log 𝑡)𝑝𝐸𝑝,𝑝+1

((
−𝑎 + |𝜎|√3

𝜋
ln 𝛼

1 − 𝛼

)
(log 𝑡)𝑝

)
−𝐾

]+

𝑑𝛼.

The proof ends.

Remark 1. The American call option price (13) is calculated with an integral which may be approximated by Simpson’s rule.

Example 5.1. Suppose that there is a stock follows the uncertain stock model (12), which has the initial stock price 𝑦0 = 30, the
initial change rate 𝑦1 = 2, and the riskless interest rate 𝑟 = 2.68% per annum. Make the other parameters as follows: 𝑚 = 3.4,
𝑎 = 0.06, 𝜎 = 0.26, 𝐾 = 31, 𝑇 = 2. We choose different parameters 𝑙 = 0.5 and 𝑙 = 1, and denote the corresponding prices of
the American call option as 𝑓1𝑐 and 𝑓2𝑐 , respectively. The price 𝑓1𝑐 and 𝑓2𝑐 with different fractional order 𝑝 (0 < 𝑝 ≤ 2) can be
effectively computed by Algorithm 2 and Eq. (13) in Theorem 6, respectively, as shown in Table 3.

Table 3 The price of the American call option with different order 𝑝.

𝑝 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
𝑓1𝑐 0.8386 0.8604 0.8365 0.7906 0.7334 0.6697 0.6016 0.5310 0.4595 0.3888
𝑓2𝑐 3.6029 3.7156 3.6736 3.5422 3.3550 3.1323 2.8900 2.6385 2.3868 2.1406
𝑝 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
𝑓1𝑐 1.3260 1.2454 1.1670 1.0919 1.0203 0.9529 0.8900 0.8319 0.7786 0.7301
𝑓2𝑐 2.6714 2.4400 2.2222 2.0192 1.8309 1.6574 1.4984 1.3537 1.2225 1.1044
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It is easy to see from Table 3, the price 𝑓1𝑐 and 𝑓2𝑐 is slowly decreasing in the interval 𝑝 ∈ (0.2, 1] and 𝑝 ∈ (1, 2]. In addition,
the price 𝑓1𝑐 and 𝑓2𝑐 of the American call option has a small increase in the interval 𝑝 ∈ (0, 0.2], and the fluctuation of 𝑓1𝑐 is
smaller than that of 𝑓2𝑐 . Due to the influence of the initial condition 𝑦1, the price 𝑓1𝑐 and 𝑓2𝑐 of the American call option has a
large surge when 𝑝 increases from 1 to 1.1.

5.2 American put option
An American put option is considered a type of contract, which endows the holder the right to sell the stock at strike price 𝐾
before expiration time 𝑇 . Let 𝑓𝑝 denote the price of the American put option and 𝑌𝑡 is the stock price at time 𝑡. Taking into
account the time value of money generated by the bond, the present value of the profit is sup1≤𝑡≤𝑇 exp(−𝑟𝑡)

(
𝐾 − 𝑌𝑡

)+ . Then
the net return of the investor is

(
−𝑓𝑝 + sup1≤𝑡≤𝑇 exp(−𝑟𝑡)

(
𝐾 − 𝑌𝑡

)+), and the profit of the bank is opposite. For the buyer and
seller to have the same return, then the price of the American call option can be defined as follows.

Definition 2. Assume that an American put option with the strike price 𝐾 and expiration time 𝑇 . Then the American put option
price based on model (10) is defined by

𝑓𝑝 = 𝐸
[
sup
1≤𝑡≤𝑇 exp(−𝑟𝑡)

(
𝐾 − 𝑌𝑡

)+] ,
where 𝑌𝑡 is the stock price.

Theorem 7. The American put option price based on model (10) is

𝑓𝑝 =

1

∫
0

[
sup
1≤𝑡≤𝑇 exp(−𝑟𝑡)

(
𝐾 − 𝑌 1−𝛼

𝑡

)+] d𝛼. (14)

Proof. The conclusion follows from the formula for the expected value and Theorem 1.

The price of the American put option is mainly calculated based on the expected value of the supremum. When the function
𝐽
(
𝑋𝑡

)
decreases strictly with respect to 𝑋𝑡, then we have

𝐸
[
sup
1≤𝑡≤𝑇 𝐽

(
𝑋𝑡

)]
=

1

∫
0

sup
1≤𝑡≤𝑇 𝐽

(
𝑋1−𝛼

𝑡

)
d𝛼.

Subsequently, this integral is calculated by applying Simpson’s rule. There are two improper points 0 and 1 in
the above improper integral, we choose the small enough positive number 𝜖 such that ∫ 1

0 sup1≤𝑡≤𝑇 𝐽
(
𝑋1−𝛼

𝑡

)
𝑑𝛼 =

lim𝜖→0 ∫ 1−𝜖
𝜖 sup1≤𝑡≤𝑇 𝐽

(
𝑋1−𝛼

𝑡

)
d𝛼. The specific algorithm is shown in Algorithm 3.

Algorithm 3 (Expected value of the supremum for decreasing function 𝐽
(
𝑋𝑡

)
. )

Step 1. Set 𝜖 > 0 small enough. Fix a positive even number 𝑀 . Set Δ𝛼 = 1
𝑀

and 𝑖 = 1.
Step 2. Compute sup

1≤𝑡≤𝑇 𝐽
(
𝑋𝜖

𝑡

)
and sup

1≤𝑡≤𝑇 𝐽
(
𝑋1−𝜖

𝑡

)
by Algorithm 1.

Step 3. 𝛼𝑖 = Δ𝛼 ⋅ 𝑖.
Step 4. Compute sup

1≤𝑡≤𝑇 𝐽
(
𝑋𝛼𝑖

𝑡
)

by Algorithm 1.

Step 5. If 𝑖 < 𝑀 − 1, 𝑖 ← 𝑖 + 1 and go to back Step 3.
Step 6. The expected value is provided by

𝐸
[
sup
1≤𝑡≤𝑇 𝐽

(
𝑋𝑡

)]
=Δ𝛼

3

[
sup
1≤𝑡≤𝑇 𝐽

(
𝑋1−𝜖

𝑡

)
+ 2

𝑀−1∑
𝑖=1

sup
1≤𝑡≤𝑇 𝐽

(
𝑋1−𝛼𝑖

𝑡

)
+2

𝑀∕2∑
𝑖=1

sup
1≤𝑡≤𝑇 𝐽

(
𝑋1−𝛼2𝑖−1

𝑡

)
+ sup

1≤𝑡≤𝑇 𝐽
(
𝑋𝜖

𝑡

)]
.
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Theorem 8. Assume that an American put option for the uncertain stock model (12) with 𝑙 = 1 has the strike price 𝐾 and
expiration time 𝑇 . Then we have

𝑓𝑝=

1

∫
0

sup
1≤𝑡≤𝑇 exp(−𝑟𝑡)

[
𝐾 −

𝑛−1∑
𝑘=0

𝑦𝑘(log 𝑡)𝑘𝐸𝑝,(𝑘+1)

((
−𝑎 + |𝜎|√3

𝜋
ln 1 − 𝛼

𝛼

)
(log 𝑡)𝑝

)

−𝑚(log 𝑡)𝑝𝐸𝑝,𝑝+1

((
−𝑎 + |𝜎|√3

𝜋
ln 1 − 𝛼

𝛼

)
(log 𝑡)𝑝

)]+

d𝛼. (15)

Proof. The proof is similar to that of Theorem 6.

Remark 2. The American put option price (15) is calculated with an integral which may be approximated by Simpson’s rule.

Example 5.2. Suppose that there is a stock follows the uncertain stock model (12), which has the initial stock price 𝑦0 = 30, the
initial change rate 𝑦1 = −2, and the riskless interest rate 𝑟 = 2.68% per annum. Make the other parameters as follows: 𝑚 = 3.4,
𝑎 = 0.06, 𝜎 = 0.26, 𝐾 = 31, 𝑇 = 2. We choose different parameter 𝑙 = 0.5 and 𝑙 = 1, and denote the corresponding prices of
the American put option as 𝑓1𝑝 and 𝑓2𝑝, respectively. The price 𝑓1𝑝 and 𝑓2𝑝 with different fractional order 𝑝 (0 < 𝑝 ≤ 2) can be
effectively computed by Algorithm 3 and Eq. (15) in Theorem 8, respectively, as shown in Table 4.

Table 4 The price of the American put option with different order 𝑝.

𝑝 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
𝑓1𝑝 0.3220 0.3423 0.3517 0.3537 0.3515 0.3476 0.3437 0.3410 0.3405 0.3427
𝑓2𝑝 2.2910 2.6692 2.7706 2.7489 2.6670 2.5540 2.4249 2.2883 2.1496 2.0131
𝑝 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
𝑓1𝑝 1.1081 1.2032 1.2966 1.3870 1.4735 1.5552 1.6317 1.7028 1.7682 1.8280
𝑓2𝑝 2.5995 2.5660 2.5352 2.5070 2.4813 2.4580 2.4396 2.4177 2.4004 2.3849

It is easy to see from Table 4, the price 𝑓1𝑝 is slowly increasing in the interval 𝑝 ∈ (0, 0.4] and 𝑝 ∈ (1, 2], and it grows faster in
the interval 𝑝 ∈ (1, 2] than in the interval 𝑝 ∈ (0, 0.4]. Furthermore, the price 𝑓1𝑝 decreases smoothly in the interval 𝑝 ∈ (0.4, 1].
The price 𝑓2𝑝 of the American put option is slowly decreasing in the interval 𝑝 ∈ (0.3, 1] and 𝑝 ∈ (1, 2], and it fall faster in the
interval 𝑝 ∈ (0.3, 1] than in the interval 𝑝 ∈ (1, 2]. In addition, the price 𝑓2𝑝 has a small increase in the interval 𝑝 ∈ (0, 0.3]. Due
to the influence of the initial condition 𝑦1, the price 𝑓1𝑝 and 𝑓2𝑝 of the American put option has a large surge when 𝑝 increases
from 1 to 1.1.

6 CONCLUSION

For strictly increasing and strictly decreasing functions, the IUDs of the extreme values (supremum and infimum) of solutions
to Caputo-Hadamard UFDEs are given, respectively. Considering that the methods for solving the analytic solution of the linear
Caputo-Hadamard UFDEs are no longer applicable for the nonlinear problems, we present the numerical algorithm 1 to obtain
the numerical solutions of the nonlinear Caputo-Hadamard UFDEs. Through the verification of numerical experiments, the
numerical algorithm 1 has high accuracy and effectiveness. Considering that the calculation of the American option pricing is
mainly based on computing the expected value of the supremum, the algorithms 2 and 3 for calculating the expected value of
extreme value of monotonic function through the Simpson’s rule are designed, respectively. Subsequently, the new uncertain
stock model is presented based on the Caputo-Hadamard UFDE, and the pricing formulas of the American option are given.
Finally, the price fluctuation of American option with different order 𝑝 is explained by numerical experiments. For the next
work, we will focus on investigate the option pricing formula based on other appropriate models.
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