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Abstract

The development of mega constellations inevitably brings various problems for the development of routing techniques. Most of

the existing work considers end-to-end delay and load balancing problems, while the analysis of routing strategies in case of link

performance degradation is neglected, and an optimization approach applicable to mega satellite networks is not developed.

In this letter, we propose a robust routing strategy based on deep reinforcement learning (RRS-DRL) that regards the Age

of Information (AoI) of packets as an optimization target, and ensures the effectiveness of message transmission throughout

the network. Extensive simulation results show that our proposed RRS-DRL algorithm obtains a lower average AoI across

the network and better utilization of the resources than the traditional shortest path algorithm, significantly increasing the

robustness of the constellation.
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A Robust Routing Strategy based on
Deep Reinforcement Learning for Mege
Satellite Constellations

Ke Chu, Sixi Cheng and Ying Yang

National Key Laboratory of Science and Technology on
Communications, University of Electronic Science and
Technology of China, 611731, Chengdu, China

The development of mega constellations inevitably brings various
problems for the development of routing techniques. Most of
the existing work considers end-to-end delay and load balancing
problems, while the analysis of routing strategies in case of
link performance degradation is neglected, and an optimization
approach applicable to mega satellite networks is not developed.
In this letter, we propose a robust routing strategy based on
deep reinforcement learning (RRS-DRL) that regards the Age
of Information (AoI) of packets as an optimization target, and
ensures the effectiveness of message transmission throughout the
network. Extensive simulation results show that our proposed
RRS-DRL algorithm obtains a lower average AoI across the
network and better utilization of the resources than the traditional
shortest path algorithm, significantly increasing the robustness of
the constellation.

Introduction: In recent years, the explosive growth of the number
of LEO (low-Earth orbit) satellites has brought many opportunities
and challenges to the development of non-terrestrial network [1],
which use mega satellite constellations(e.g. Starlink, OneWeb and
Kuiper). The mege satellite networks face many challenges, the most
important of which is the security of routing. Once the satellite
network routing is attacked by malicious network behavior, it will
likely to be paralyzed. At the same time, an inter-satellite routing
technique with robustness for mega satellite constellations has
become a hot research topic. Due to the increasing number of users
and the potential for jamming or performance degradation, routing
technology is facing the problem of the increasing load and topology
changes. The size of routing table is growing at an extremely fast
rate, resulting in a waste of satellite Internet systems resources.

How to route in satellite networks is a NP-hard problem [2].
In the traditional satellite Internet routing algorithm, it is obvious
that the centralised offline preset strategy is difficult to apply to
the dynamic unknown environments. The intelligent methods have
more applications when dealing with various threats and unexpected
situations. Their advantage becomes more obvious as the complexity
of the problem becomes higher and the size of the data in the
problem becomes larger.

Since reinforcement learning can explore the environment
through trial and error, it has been widely used in routing algorithms.
[3] proposed a satellite routing algorithm based on reinforcement
learning to find the optimal transmission path, and also improved
the traditional algorithm’s problem of long convergence time and
sometimes falling into local convergence by limiting the number
of hops of the algorithm and adopting dynamic greedy coefficients.
However, the text assumes that the network topology is static and
free from being jammed, which is clearly unrealistic. Some studies
[4] proposed deep reinforcement learning methods for solving global
routing problems in simulated environments with the reward from
many aspects, but is simply used for the problem of finding path,
without considering the load balancing problem arising from the
degradation of link performance when subjected to continuous
disturbances, and the consideration of a single problem make it
hard to migrate the model. Regarding the consideration of more
reward functions, some studies [5] propose energy-efficient routing
protocols based on deep reinforcement learning, and again the study
Lack of consideration for jamming. These methods are less able to
generalise to more features and are less responsive to environmental
changes. Other researchers have proposed a proposed Fast Response
Anti-Jamming Algorithm (FRA) [6] with the goal of minimising
the anti-jamming routing overhead and investigated anti-jamming

routing schemes for heterogeneous internet of satellite (IoS), but
the authors separated the process of path-finding and anti-jamming,
making the complexity increases.

For scenarios where jamming is considered, we propose a robust
routing strategy based on deep reinforcement learning (RRS-DRL).
We use a priori information about the jamming as part of the
state, enabling the routing algorithm to deal with dynamic network
changes. Secondly, as it is also crucial for meeting timely responses
to emergency events. We combine the Age of information (AoI) of
packets to reward and punish the selection of the next hop, ensuring
the effectiveness of messages collection and transmission across the
network and realising the time value of information. In this letter,
a mega, dynamically changing satellite network is used to analyse
routing performance, and we consider not only link failures but also
link performance degradation, allowing RRS-DRL to be aware of
jamming through trial and error. Simulation results show that RRS-
DRL has low delay jitter and low average information age across
the network, effectively improving the robustness of the satellite
constellation network.

System Model: This section describes the LEO satellite network
model, the packet transmission model and the problem of anti-
jamming routing.

A. Network Mode.
The structure of a LEO satellite network can be represented

as an abstract diagram G= {η,L}, where η represents the set of
satellites, ζ represents the set of links between satellites, and each
edge eij represents the weight between Vi and Vj .eij = λk

ij
[b] · ψk

ij
,

ψk
ij

represents the propagation delay on the link (i, j) when the kth
packet arrives. λk

ij
[b] is an indicator of link connectivity and λk

ij
[b]

is expressed as follows:

λk
ij
[b] =

 1 if th link(i, j) is activated in channel b

for kth packet
0 otherwise

(1)

To model the jamming between links, we denote Li as the set of
links in L that are within the jamming range at the time of ti . Then,
for the nodes in it we have:∑

l∈Li,t∈ti

λk
ij
[b] +

∑
l∈Li,t∈tj

λk
ij
[b]≤ 1, (2)

where b∈B. This means that if a packet k is received on channel b,
it will not be interfered with on the same channel by an unintended
transmitter p in the tj jamming range.

B. Packet Transmission Model.
Assume that the sender of all sessions is continuously updated

and the generated data is split or reorganized into packets of uniform
size for transmission, the length of the packet is noted as d. νl is the
generation rate of packet k at the source sk, the packet generation
interval at the sender sl is a constant 1

/
νl. Cij indicates the link

capacity in the link (i, j) with:

Cij =Wij log2

(
1 +

(pifi
2)/dij

2

n0WB(4π/c) + (pχfχ
2)/dij

2

)
, (3)

where Wij and c are the channel bandwidth and speed of light,
respectively. pi, pχ, fi, fχ are the power and frequency from the
transmitting node i and the jammer respectively, dij is the distance
between the nodes i and j. And n0 is the ambient Gaussian
noise density. When the link is interfered with, the signal-to-noise
ratio(SNR) is reduced, thus affecting the link capacity. Let µij
denote the transmission rate of the link (i, j) and the rate is limited
by the total capacity of the link:

µij ≤Cij ·
∑
b∈B

λk
ij
[b]. (4)

When the network reaches a steady state, in order to avoid packet
loss due to an infinite number of backlogged messages at any relay
node, the transmission time for each message on the link should not
be greater than the time interval between messages generated by the
session using the message. Therefore, each walk able link has 1

/
νl ≥

d/µij .
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In traditional path planning problems, the metrics adopted are
relatively homogeneous.A newly introduced metric to measure the
timeliness of information updates, AoI [7], is used in our paper. It is
calculated as follows:

Al
a = 1

T

K∑
k=1

(
1

2νl2
+ d

νlµsla
+

dsl_to_a

νlc

)
= K

T
1
K

K∑
k=1

(
1

2νl2
+ d

νlµsla
+

dsl_to_a

νlc

)
= νl

(
1

2νl2 + d
νlµsla

+
dsl_to_a

νlc

)
= 1

2νl + d
µsla

+
dsl_to_a

c

. (5)

Point a is the destination node, µsla denotes the transmission rate
from node sl to node a. It can be deduced that the AoI at the next
node of the current satellite node is:

Adl =
1

2νl
+

∑
i ̸=dl,λ

l
ij=1

(
d

µsla
+
di_to_j

c
). (6)

The time-averaged AoI can be calculated by:

Aave =
∑
l∈L

Adl =
∑
l∈L

 1
2νl +

∑
i ̸=dl,λ

l
ij=1

( d
µij

+
di_to_j

c
)


=
∑
l∈L

1
2νl +

∑
i∈η

∑
j∈Ti,λ

l
ij=1

( d
µij

+
di_to_j

c
)

(7)
Ti Indicates each satellite in the path node set Ti, that session l passes
through from a node satellite η.

C. Anti-jamming Routing Strategy Model
Specifically, in this paper, for packets of a given source and

destination, our goal is ensure the reliability of the link with an
jammed scenario, while guaranteeing the average information age of
all sessions. Also, since satellite node caches all have a certain queue
length, the length of packets entering the queue cannot exceed the
maximum transmission capacity of each node.Based on the above
analysis, the anti-jamming routing problem with guaranteed delays
can be formalised as:

OPTmin (Aave)

s.t.Jamming constraints : (2);
Packet Transmission Model : (4);

The total time averaged AoI function : (7).

Pkt∆T
≤ Pkrevmax+Pk

send
max

The RRS-DRL Algorithm.: In this section, we propose a robust
routing algorithm based on deep Q-network(DQN) to obtain the
perception of satellite link delay with respect to the age of
node information without precise knowledge of the propagation
delay. Once the performance of some satellites degrades or the
corresponding links break, packets are routed to satellites with better
performance and higher capacity.And this algorithm is applicable in
constellations with mega LEO satellite and high state dimension,
which provides ideas for robust routing strategies for complex
networks.

A. Routing Agent Design
For packets, the node selection in the given link depends only

on the node selection in the previous link. The action taken by
each packet is only related to the current state of the network.It can
typically be described as a Markov Decision Process (MDP) [8].

The key elements of the MDP are given below:
i): Status S: (Nodecurrpos, Nodedest, χti ), Nodecurrpos

indicates the number of the current node,Nodedest is the number of
the destination ,χti the form of jamming received, which provides
sufficient information to learn the best strategy for routing.

ii): Action A: Nodenext, the next-hop neighbour node reachable
by the satellite node(generated according to the network topology).

iii):Reward r: The reward is defined as a function R (a, s′),
a denotes the selected action, and s′ denotes the next node
number reached after the node selection action. Traditional routing
algorithms based on reinforcement learning do not work well for
routing in LEO satellite constellations because it is difficult to
iterate due to the large state dimension. In most cases, it is assumed

that links will not fail or that nodes will be directly unavailable
after jamming, but in practice, in LEO constellations, not only
jamming avoidance but also load balancing is required using routing
strategies when sweeping jamming is encountered and when nodes
are partially available but with degraded performance. To overcome
the problem of jamming in the network, we add very few priori
knowledge of jamming to the state to enhance the learning ability
of the agent to the environment. The following elements are used to
set up the reward function:

The distance between the next satellite node and the destination
node Disi. To train the agent to know how to send packets to the
destination without passing through redundant satellite nodes, we
should add a distance penalty so that the agent automatically chooses
the shorter path.

AoI of the packet which arrives at the next hop AoIs′ . Aol
is designed to quantify time-critical updates at the receiving end,
characterising the timely delivery of information at the destination,
and increasing the Aol penalty ensures that information is fresh.

The queue growth rate ϑs′ , which sets a penalty proportional to
the queue growth rate when the queue size exceeds the threshold, is
set to reduce packet buildup and increase the probability that traffic
will be distributed evenly.We define the reward as a weighted sum of
these factors:

r =w1 ∗Disi + w2 ∗AoIs′ + w3 ∗ ϑs′ (8)

The routing policy is the probability distribution of all actions
in each state, denoted by π(s|a) The goal of the proposed routing
MDP is to find the policy that maximizes the reward for discount
accumulation π∗.

P : max
π∗

( ∞∑
τ=0

γτ rt+τ | st = s, at = a

)
(9)

γ ∈ [0, 1) is the discount factor,the weight between immediate
and subsequent rewards. The next section will use RRS-DRL
algorithm to solve the above MDP problem.

B. RRS-DRL Algorithm
In recent years, DRL has been widely used to deal with sequential

decision problems with high-dimensional states. DQN [9], a typical
algorithm in this context, is based on the principle of using a
deep neural network to fit Q-values. The input state s includes the
current node of the packet, the destination node, and the current
topology state number. With this information as input. DQN uses
the approximate action value function Q(s, a, θ) from the network
output to approximate the actual action value function Qπ(s, a) ,
where θ is the neural network parameter. The actions are selected
by Q function Qfunction a = argmaxQ (s, a′, θ). If the next node
meets the packet restriction condition, the packet is forwarded.
Execution of action a obtains the corresponding reward r and the
new state s′. The transitions in the memory replay pool are then
stored e= (s, a, r, s′).The reward value includes the distance to the
end point after , the age of the message, and the queue growth rate
fed by the next node. To update the Q network, the agent selects a
random batch of transitions and calculates the loss.

L(θ) =Eπθ

[∑(
r + γ ∗ V

(
Q∗ (s′, a, θ−))−Q(s, a, θ)

)2]
(10)

Q∗ is the target q-value and θ− is the parameter for the target
q-value. The parameters are updated using the stochastic gradient
descent (SGD) method gradient,and the gradient is calculated as:

∇θL(θ)≈Ee

[(
r + γ ∗ V

(
Q∗ (s′, a, θ−))−Q(s, a, θ)

)]
(11)

where α> 0 is the learning rate.
To enhance the ’exploration’ of the environment, the dynamic ε-

greedy algorithm is considered in the early stages of training. The
value ε is set as a decreasing dynamic value from ε0 to ε1, depending
on the number of iterations, and is denoted as:

ε= ε0 · εif

where i is the number of iterations, ε0 is the initial value, and εf is
the decay rate.

As shown in the Fig.1, we train the routing strategy using the
state information (current node, destination node, and topology state

2



Fig. 1. RRS-DRL Framework

number) in the satellite network. the Agent observes the state from
the environment (i.e., satellite communication network) and selects
the next node from the accessible satellite nodes as the action ,
the The episodic interaction ends once all the packets reach the
destination node. And we obtain the AoI of all packets at the
destination node. The structure of the deep neural network is also
shown in Fig.1. Usually, it contains two fully connected layers (of
size 175) for extracting the features of the satellite network. The
output features are sequentially input to the output layer to obtain
the final value function.

Every time a packet arrives at a new node, the satellite
communication network updates its internal state, feeding back
a reward r,an experience term (st, at, rt, st+1) is stored in the
experience pool, and the model parameters are updated with the
sampled values therein.

Algorithm RRS-DRL Algorithm
1: Initialize: Learning rate α, discount factor γ, network weight θ,

episode memory E, memory replay pool D= ∅
2: for episode = 1 to ∞ do
3: for step= 1 to step− num do
4: Sence env and abtain st
5: Select a random action a according to ε− greedy,
6: Excute at
7: if Pkt∆T

≤ Pkrevmax+Pk
send
max then

8: Forward packet as action at
9: abtain reward rt and new state s′

10: end if
11: Store transition (st, at, rt, st+1) in D
12: Sample random minibatch of transitions

(st, at, rt, st+1) from D

13: Update θ
14: Calculate gradient by Equa.11
15: Update network every C steps
16: end for
17: end for

Numerical Results and Discussions.: The parameters in this paper
are taken from Starlink’s FCC file, and the bilinear element
set coordinates of Starlink’s satellites in different orbits are also
available, from which the distance of the inter-satellite link can be
calculated. During the simulation, 175 satellites were selected as
experiments.

Track height 550km
Minimum angle of elevation 25°

Number of tracks 7
Number of satellites per orbit 25

Inclination 53°
Table 1: Satellite Network Parameters.

We built the network using Python and networkX packages and
evaluated the performance of the RRS-DRL in terms of average
message age and delay jitter across the network. The hyper-
parameters are set as follows: discount factor γ is 0.6, ε0 is 0.7, εf
is 0.975, learning rate is 0.005, memory batch size is 16, and size of
memory replay pool N is 1000. The target network update step is
10, the activation function is Tanh.

Fig. 2. Satellite Network

In the simulations, the presence of sweeping jamming in the
environment causes the link performance degrade. FRRSt, many
packets are generated on the network (network load), each with
a random source and destination node. Each time a packet is
transmitted, a new packet is initialised after a certain time step. Once
a certain number of packets have been generated and transmitted
on the network, the simulation ends. We use the average AoI and
delay jitter values as performance evaluation metrics. To evaluate
the effectiveness of our approach, we compare the traditional routing
algorithms: shortest path fRRSt (SPF) [10]. We then present the
evaluation results and analysis.

A.Average AoI
In this letter, the two algorithms are simulated under the load of

500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000 packets,
and multiple rounds of tests are conducted under each load. As
shown in the Fig.3 and , it is found that the RRS-DRL algorithm
can still maintain relatively low delay with the increase of load, and
the results are stable, showing strong adaptability to the network.
Although, the SPF algorithm performs well when the number of
loads is less than 2500 packets, as the number of loads continues to
increase, the age of the full network information is higher compared
to the RRS algorithm. This is because SPF algorithm has poor
adaptability to the network, and it is more difficult to adjust the
impact of jamming when the number of loads increases. At this time,
the performance of SPF degradation was found.

((a)) RRS-DRL-AOI. ((b)) SPF-AoI.

Fig. 3. Average AoI.

B.Time Delay Jitter
The jitter is the variation of network delay, which is generated

by any two adjacent packets of the same application (the same start
node and destination node) passing through the network delay in
the transmission route. It is obtained by dividing the delay time
difference of adjacent packets by the difference of packet sequence
number, or by the information age difference of adjacent packets.
Time delay jitter can be calculated as follows:

τ[sl,dl] =
AoIj −AoIi

j − i
(12)

We took several of these paths for analysis of the delay jitter
values in the simulation, as shown in box line Fig.4, the red line
represents the median of the delay jitter, the upper and lower bound
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of the box represents the upper and lower quartile, we can also see
the maximum and minimum values from the Fig.4, we can see that
in the RRS-DRL algorithm, there are no data outliers, while the SPF
algorithm not only has delay outliers, and the higher the delay jitter.
With lower levels of delay jitter, the RRS-DRL is more resilient to
dynamic changes in the network, not only in the case of network
failure, but also in the case of node performance degradation.

((a)) RRS-DRL-DJR. ((b)) SPF-DJR.

Fig. 4. Time Delay Jitter Rate

Conclusion: For the problem of routing large networks in the
existence of jamming, a deep reinforcement learning-based robust
routing strategy is proposed in this letter. We consider the situation
that not only the link is damaged, but also some link performance
is degraded when it is disturbed. Meanwhile, the age of satellite
node information is incorporated into the reward function as the
optimization objective to ensure the transmission effectiveness of
the whole network. According to the simulation results, the method
obtains a lower average information age of the whole network and
a lower delay jitter rate compared to SPF, which increases the
robustness of the constellation.
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