A pile of pipelines: an overview of the bioinformatics software for metabarcoding data analyses Ali Hakimzadeh¹, Alejandro Abdala Asbun², Davide Albanese³, Maria Bernard⁴, Dominik Buchner⁵, Benjamin Callahan⁶, Gregory Caporaso⁷, Emily Curd⁸, Christophe DJEMIEL⁹, Mikael Brandström Durling¹⁰, Vasco Elbrecht⁵, Zachary Gold¹¹, Hyun Gweon¹², Mehrdad Hajibabaei¹³, Falk Hildebrand¹⁴, Vladimir Mikryukov¹, Eric Normandeau¹⁵, Ezgi Ozkurt¹⁴, Jonathan M. Palmer¹⁶, Géraldine Pascal¹⁷, Teresita Porter¹³, Daniel Straub¹⁸, Martti Vasar¹, Tomáš Větrovský¹⁹, Haris Zafeiropoulos²⁰, and Sten Anslan¹ February 11, 2023 ## Abstract Environmental DNA (eDNA) metabarcoding has gained growing attention as a strategy for monitoring biodiversity in ecology. However, taxa identifications produced through metabarcoding require sophisticated processing of high-throughput sequencing data from taxonomically informative DNA barcodes. Various sets of universal and taxon-specific primers have been developed, extending the usability of metabarcoding across archaea, bacteria, and eukaryotes. Accordingly, a multitude of metabarcoding data analysis tools and pipelines have also been developed. Often, several developed workflows are designed to process the same amplicon sequencing data, making it somewhat puzzling to choose one amongst the plethora of existing pipelines. However, each pipeline has its own specific philosophy, strengths, and limitations, which should be considered depending on the aims of ¹University of Tartu Institute of Ecology and Earth Sciences ²NIOZ Royal Netherlands Institute for Sea Research ³Fondazione Edmund Mach Istituto Agrario di San Michele all'Adige ⁴Université Paris-Saclay ⁵University of Duisburg-Essen ⁶North Carolina State University College of Veterinary Medicine ⁷Northern Arizona University ⁸University of Vermont ⁹INRA Dijon ¹⁰Swedish University of Agricultural Sciences ¹¹University of California San Diego $^{^{12}\}mathrm{Center}$ for Ecology and Hydrology ¹³University of Guelph ¹⁴Quadram Institute Bioscience ¹⁵Université Laval 'Institut de Biologie Intégrative et des Systèmes ¹⁶Northern Research Station, US Forest Service ¹⁷GenPhySE ¹⁸University of Tübingen ¹⁹Institute of Microbiology Czech Academy of Sciences $^{^{20}\}mathrm{KU}$ Leuven Rega Institute for Medical Research any specific study, as well as the bioinformatics expertise of the user. In this review, we outline the input data requirements, supported operating systems, and particular attributes of thirty-one amplicon processing pipelines with the goal of helping users to select a pipeline for their metabarcoding projects. ## Hosted file $\label{lem:metabarcoding} \begin{tabular}{ll} Metabarcoding pipelines review paper.rtf available at https://authorea.com/users/585035/articles/623934-a-pile-of-pipelines-an-overview-of-the-bioinformatics-software-for-metabarcoding-data-analyses \\ \begin{tabular}{ll} Available at https://authorea.com/users/585035/articles/623934-a-pile-of-pipelines-an-overview-of-the-bioinformatics-software-for-metabarcoding-data-analyses \\ \end{tabular}$ ## Hosted file Table 1. Pipelines list .xlsx available at https://authorea.com/users/585035/articles/623934-a-pile-of-pipelines-an-overview-of-the-bioinformatics-software-for-metabarcoding-data-analyses