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Abstract

In this paper, we investigate some new inequalities based on the Riesz-type fractional integral operator for synchronous and

bounded functions.
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1. Introduction

Throughout this paper, let N, R, and C be the sets of the natural, real, and complex numbers,
respectively.

For 0 < o < 1, the Riesz-type fractional integral on a bounded domian is defined as (see [1], p.130)

a 1 b f T
wlian ) = 5500 cos(T2) /a |7 —(t|iad7—’ (1)
where t
LI f(t) = F(la) /a r f(;)la dr, (2)
and

IO F(t) = 1)/ : AR (3)
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The Chebychev’s functional is expressed as [2HT7]
b b
T(f,9.4.k) = / k(e)de / §(@) f@)g(a)da
b b
+ [y [ k@) fe)g(a)do
ab ¢ b
1 k@) f(@)da)] / j()g()da]
b b
oy / j(@) (@) da)] / (x)g()dal,

where f, g : [a,b] — R are two integrable functions on [a,b] and j, k are positive integrable functions
on |[a,b].

It is well-known that (4) has wide applicability in numerical quadrature [§], transform theory [9],
probability and statistical problems [10], and the bounding of special functions [11].

For x,y € [a,b], if f and ¢ are synchronous on [a, b], then [12] [13]

[f(x) = F()llg(x) — 9(y)] = 0, (5)

and
T(f,9,3,k) > 0. (6)

What’s more, if f and g are asynchronous on [a, b], then [14]

[f(x) = f(y)llg(z) — 9(y)] < 0. (7)

The aim of this paper is to study of some inequalities by means of the Riesz-type fractional integral
operator.

The structure of this paper is as follows. In section 2, based on the Riesz-type fractional integral
operator, we introduce some inequalities about synchronous functions. In section 3, by the Riesz-type

fractional integral operator, we present some inequalities about bounded functions.

2. Inequalities involving Riesz-type fractional integral operator for

synchronous functions

In this section, we study some inequalities via the Riesz-type fractional integral operator for
synchronous functions.
Let f and g be two continuous and synchronous functions on [a, b], u,v,l,m and n be continuous

functions on [a,b]. Then we have some theorems as follows:



Theorem 1. If « € RY, a,b € R}, then we have

reAf g {v () R A 9ub(t) + ey {fgv () Ra g 4 {u}t(?)
> redly y{9v} (O reLjg y{fub(t) + RroIfg y {fv} ()R] 5 {gul (t).
Proof. Based on (B)), we have
[f(m) = f(p)llg(T) = 9(p)] = 0,

where 7, p € [a,b].
Multiplying @ by

1 u(r)
2T (av) cos( %) |1 — t|t—o’
we have
1 1 1 1
2T (a) cos(%2) 7 t‘l_af(f)g(T)U(T) + f(p)g(p) 2T () cos(%5) [ = t‘l_au(T)
1 1 1 1

2 9003y con() e ) T O3 gy o~ a9 (D)

Integrating , we have

ref{fgut(t) + f(p)g(p)r-1o p{ut(t)
= 9(p)r=Iy y{fu} () + f(p) oAy {gul ().

Then, multiplying by
1 v(T)

2T (av) cos(%) |7 — tt—o’

we can see

1 1 .
2T () cos(2g) Jp — e VPR Tantfou ()

1 1 .
) cos(Z2) |p — t]-@ F(P)g(p)v(p) Rl ylud(t)

1 1 .
- 2 () cos(T2) |p — t|1faQ(P)U(P)sz[avb}{fu}(t)

1 1 X
 30(a) cos(%2) [p — {10 F(p)v(p)radfg yigub(t).

Integrating , we obtain

RZI[OL;I;]{v}(t)RZI[O:Lb]{fgu}(t) + RZI[O;’I)]{fgv}(t)RZIﬁ’b]{u}(t)
2 Rred {9y () rad g {fub () + oI y{fv} (@) RA 4y {gut(t).

Therefore, is true.

(10)

(11)

(13)

(14)



Theorem 2. Let o, 3 € RT, a,b € RY, p € [a,t], and t € [a,b]. Then

Rzlgb]{v}(t)RzIﬁ,b}{fgu}(t) + RZI£7b]{ng}(t)RzIﬁ,b} {u}(t)

> ol gt ORIy {FuY )+ raIl, y {F} () rTf y{gub (1),

Proof. Multiplying by
1 v(p)
21°(3) COS(LQB) lp—t[t=F"

we have

1 1
21(3) cos(2) |p — t‘l_@v(p)RzI&b]{fgu}(t)

2
1 1

5/ (P)9(p)v(p)r=1fg 4y {u}(t)

~20(B) cos() I — gr 9P (p) Rl L fub()

_|_

2I°(5) cos(%) lp — t‘l—ﬁf(p)v(p)Rzl[(z,b]{gu}(t)-

Integrating , we get
Rzlab]{v}(t)l%zl[ib]{fgu}(t) + Rzlé7b]{fgv}(t)RzIﬁ7b} {u}(t)
> gell (0} ORIy (Fu}(0) + raly {Fo} ORI {gu} ().

Therefore, the proof of can be completed.
Theorem 3. Suppose o € RY, a,b € RJ, and t € [a,b]. Then

Rl g A O [RA[G y { Fan} () R (g y {m}(8) + gy {n}(t) R} yy{fgm} (2)]
+ 21y y im0 R {nd (O r=1[ y {f 9L} (D)

> Relg {3 O[rAG y{gn} (O r g y{fm}(t) + roA y{fn} () R y{gm} (2)]
+ Rredjg im0 [RA(g y{gn} @) R {1} () + gy {fn} ()R] 5y {9} (D)]
+ Rl {n}(O) (R y {gm}(8) R Iy y {1 () + RAg y{ S} () R 5y {91} ()],

18 true.

Proof. For , consider © = m and v = n, we have

Ry {n} () Ry {fgm}(t) + redlg y{fgn} () red[g y{m}(t)
> el {gn} (O rAf y {fm} () + rIf y {1} (@) RAf  {gm} (D).

(16)

(17)

(19)

(21)



According to r I3{l}(t) > 0, and multiplying by r-I5{l}(t) > 0, we have

R0 g A O eI s I} (ORI { Fgm b () + RoT0y L Fan} (D) ra I {m} (1)
>y (U O IE y {gny (O rE g LMY () + padfe (O raIE y fgm} ()]

(22)

What’s more, for , we try to use [,n instead of u,v and [, m instead of u, v, then multiplying

by sz[‘;,b]{m}(t) and RZI[Obe]{n}(t)’ we have

Rl y {m} ()[R 5 {n} () rLfg y {f 9L () + R g {fgn}(t) Rl {1} (2)]
> pedfoy{mt O raA( y {gnt O rAG g {3 @) + redfgy{fn} () radf 5 {903 ()],
and
RreAfg p {n} ()[R ) {m} (O re g y {91 (E) + Ry {fgm} (8) T[T} (2)]
> Redig ) {n} ()[R yy{gm} () A7 y {f1H(E) + RAG y{fm} ()R] 5y {gl} (D).
Thus, we can obtain (Z0).

Theorem 4. If o, 3 € RT, a,b € Ry, and t € [a,b], then

Rl g A (O 281,y LFgn} (O R,y {mb (1) + RIf y{n} (ORI y{ fam}(2)]
+ oA, g 0y ORI g { Famy O]+ RIfy {9 ()[R TGy Im} (O ra T {0} (1)
+ reAfy{n} (ORI, {m} (0)]
> g A g IO [ IG y Im Y () ro 1,y g} () + ReIE y {mg} () raT ),y {nf} (1))
+ Iy {my Ol g (LY O Ry {09} () + raIE (g} ()R], {0 S} (D))
+ re Ay Iny ORIy (U YO R 1]y ima}(8) + ro Iy (L9} () ra T,y {mfH(D)]-
Proof. For (16), setting u = m and v = n, we have
eIy A} (O ra Iy {Fgm} () + maIf, L Fan} (O ra I8 y{m} (D)
> ol {gny (ORI g Um0 + mad) y L} (O ra Iy {gm (D).
Multiplying by rI%{1}(t), we receive
Ry g {3 (ORI y {nH ORI y{fam} () + R,y {Fgn} () RaIE y{m} ()]
> gd g (B OrT], y {gn} O rTf y M) + moIf) y {0} () RTE y {gm} (D).
Replacing u,v by I,n and u,v by I,m in (L6]), we gain
el y A} (O R IE y LFgH ) + maIf, L Fan} (O raIE g {1H(D)
> oy y{an} O rIf g {FHE) + podl, y {n} (O T8y {al} (),



and

Ry g (Y@ pa I8y {918 + o))y {Fam} () rTf, {1 (1)

> Rzlfijb]{gm}(t)l%zl[i,b]{fl}(t) + széﬁb]{fm}(t)szﬁi,b]{gl}(t)-
Then multiplying and by roIf; y{m}(t) and I, ;{n}(t), we can get (25).

(29)

O]

3. Inequalities involving Riesz-type fractional integral operator for

bounded functions

In this section, we investigate some inequalities based on the Riesz-type fractional integral operator

for bounded functions.

Theorem 5. Let « € R, a,b € R}, t € [a,b], f be an integrable function on [a,b], u,v be continuous

function on [a,b], ¢1,¢2 € [a,b], and ¢1(t) < f(t) < pa(t). Then
Rl p{uda} (ORI {0} () + RoIfg ) {uf }(8) R yy{ven }(E)
> Rzl[?i?b} {U¢2}(t)RzIﬁ7b} {vei}(t) + Rz1ﬁ7b]{uf}(t)RzIﬁ,b] {vf}().

Proof. If T > [a,b] and p > [a,b], then we have

[¢2(7) = F(DIf(p) — d1(p)] = 0.

Multiplying by
1 u(T)

2T () cos( ) |7 — t|t=o’

and integrating, we have

ReI2 {uon} (0 (0) + meIly (uf}()61(0)

> gl y{ude}(O)61(p) + raIf, y {uf}()f(p).
Multiplying by

1 v(p)
2I'(a) cos(75) |p — t1 =

and integrating, we can see that (30)) is true.

Theorem 6. Let a € RT, a,b € RT, 7,p > 0, f be an integrable function on [a,b], u,v : [a,b] —

be continuous function, A1, A > 0, and )\% + % = 1. Then

i RzI[OClL,b] {U}(t)RzIfZ,b]{U((% - f))\l}(t) + ):\12 RzI[(Z’b]{U}(t)RzI[C;,b}{U(f - ¢1))\2}<t)

A1
+ redfy y{ud2} (V) rAG y{vdn }(t) + redfg y{uf H ) R y{vf}(T)
> pedfy y{ude} () oIy (v} () + Ry y{uf } () rLfg y{ven } (1)

(30)

(33)

(34)
O

[a, ]



Proof. Based on the well-known Young’s inequality [15]

1 1
7$)\1 + 7y)\2 2 xy, (xvy 2 0)7 (36)
A1 A2

Setting x = ¢o(7) — f(7) and y = f(p) — d1(p), we have

1

%[%(T} = J@O" + 1 (0) = dn (o)™
: - (37)

2 [¢2(7) = F(DIf(p) = d1(p)]-
Multiplying by

1 u(r)v(p)
2I'% (o) cos? (%) |7 — t[2(1-a)’

and integrating, we can acquire (35)). O
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